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Abstract
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1. Classic riddle

Many of us have heard, and quite a few of us solved, the following famous puzzle (see [6], and references thereof), that goes
back (at least!) to Tartaglia (of cubic equation fame).

Three missionaries and three cannibals must cross a river using a boat which can carry at most two people, under
the constraint that, for both banks, if there are missionaries present on the bank, they cannot be outnumbered by
cannibals (if they were, the cannibals would eat the missionaries). The boat cannot cross the river by itself with
no people on board.

This brainteaser was used as a challenge at the very early days of Artificial Intelligence (see, for example [4], p. 51),
and was also a toy model in Engineering Design; see the wonderful book [1] (pp. 139-143) by the (biological) brother of the
academic father of Doron Zeilberger (and hence the academic grandfather of George Spahn). As indicated in [6] (see also [2]
and [3]), in order to solve it nowadays, one sets up a directed graph with the vertices labeled by triples of non-negative
integers [m, c, b] where

• m is the number of missionaries currently at the first bank,

• c is the number of cannibals currently at the first bank,

• b = 1 if the boat is currently at the first bank, and b = 0 if it is at the second bank.

It follows that the numbers of missionaries and cannibals in the second bank are 3−m and 3− c respectively. In order for
no missionary to be eaten, we need at all times:

• If m > 0 then m ≥ c,

• If 3−m > 0 then 3−m ≥ 3− c, or equivalently if m < 3 then c ≥ m.

The edges are

• [m, c, 1]→ [m− e1, c− e2, 0],

• [m, c, 0]→ [m+ e1, c+ e2, 1];

where 0 < e1 + e2 ≤ 2, and both vertices are legal, where the boat carries e1 missionaries and e2 cannibals. To solve the
puzzle all we need is to find a shortest path from the initial state [3, 3, 1] to the final state [0, 0, 0]. This can be done with
the famous Dijkstra algorithm [5], that we adapted ourselves to the present problem.
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2. Let the computer do it

Now that we have such high-level computer languages (Maple in our case), it is an easy programming exercise to solve not
only the original puzzle, but the following general version, for any specific, numerical parameters M , C, B, and d, and
not only find one solution but all of them. So we set up to write Maple code for finding all solutions for any inputted
M,C,B, d, to the following family of puzzles.

M missionaries and C cannibals must cross a river using a boat which can carry at most B people, under the
constraint that, for both banks, and for the boat, if there are missionaries and cannibals present there, the
number of missionaries must exceed the number of cannibals by at least d.

(If d > 0 then it means that the cannibals are stronger than the missionaries, so one needs a higher ‘safety margin’.) Now,
the number of missionaries and cannibals in the second bank are M −m and C−c, respectively. In order for no missionary
to be eaten, we need at all times

• If m > 0 and c > 0 then m− c ≥ d.

• If M −m > 0 and C − c > 0 then (M −m)− (C − c) ≥ d.

The edges are:

• [m, c, 1]→ [m− e1, c− e2, 0];

• [m, c, 0]→ [m+ e1, c+ e2, 1];

where 0 < e1 + e2 ≤ B and both vertices are legal, and (e1, e2) satisfies the following condition:

• If e1 > 0 and e2 > 0, then e1 − e2 ≥ d.

This is implemented in procedure Sols(M,C,B,d), in our Maple package Cannibals.txt, obtainable from the website:
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cannibals.html

In particular, to get all four solutions for the original puzzle, type “Sols(3,3,2,0);” and get in 0.04 seconds the following
four solutions:

• [[3, 3, 1], [2, 2, 0], [3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2, 2, 1],[0, 2, 0], [0, 3, 1],

[0, 1, 0], [0, 2, 1], [0, 0, 0]];

• [[3, 3, 1], [2, 2, 0],[3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2, 2, 1], [0, 2, 0], [0, 3, 1],

[0, 1, 0], [1, 1, 1], [0, 0, 0]];

• [[3, 3, 1], [3, 1, 0], [3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2, 2, 1], [0, 2, 0], [0, 3, 1],

[0, 1, 0], [0, 2, 1], [0,0, 0]];

• [[3, 3, 1], [3, 1, 0], [3, 2, 1], [3, 0, 0], [3, 1, 1], [1, 1, 0], [2,2, 1], [0, 2, 0], [0, 3, 1],

[0, 1, 0], [1, 1, 1], [0, 0, 0]].

For any solution, S, procedure SO(M,C,B,d,S), in our Maple package Cannibals.txt, spells out the solution, very verbosely;
see the output file
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCannibals1.txt.
To see all 25 solutions with 5 missionaries and 5 cannibals, boat-capacity 3 and safety-margin still 0, as well as the spelled-
out solution for one of the solutions see
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCannibals2.txt.
The above-mentioned website contains a few more sample solutions, but readers (who have access to Maple) are welcome
to find solutions to many other cases.

3. Paths in general directed graphs and linear algebra

After we completed the Maple package (mentioned in the previous section), Cannibals.txt, that focuses on one specific
class of problems, we realized that we may just as well treat the general case of finding all walks in an arbitrary directed
graph, from one designated vertex to another. So we wrote a much more general Maple package, DiGpaths.txt, available
from: https://sites.math.rutgers.edu/~zeilberg/tokhniot/DiGpaths.txt.
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In order to represent a directed graph in the computer, we used the data structure list of sets [N1, . . . , Nn]. Here we
assumed that the set of vertices is {1, . . . , n}, and for each vertex 1 ≤ i ≤ n, Ni is the set of vertices j such that there is a
directed edge from vertex i to vertex j. In other words the set of outgoing neighbors of i.

We also make the convention that the originating vertex is 1 and the terminal vertex is n. Our function RG(n,p) can
construct many random examples. We want to find the set of shortest paths from 1 to n. In order to do that, we recursively
construct longer and longer self-avoiding paths until we encounter the terminal vertex n. If after n steps we did not reach
it, we declare failure.

For any specific class of puzzles, e.g. Missionaries and Cannibals with general parameters, or other ‘river-crossing’
riddles, we construct the relevant directed graph. See procedure MCgraph(M,C,B,d) in DiGpaths.txt.

If we only want to find the number of such paths then we can use linear algebra. Recall that the adjacency matrix of
a directed graph G is the 0− 1 matrix defined by

Aij =

1, if there is a directed edge from i to j;

0, otherwise.

The number of paths of length k between vertex i and vertex j is the ij entry of Ak. Since we are only interested in
shortest paths, their length is at most n, hence in order to find the length of the shortest paths, and their number, we keep
raising the power Ak until, for the first time, the (ij) entry is non-zero. That first successful k would give us the desired
minimal length, and the corresponding (ij) entry is the desired number of shortest paths (i.e., the number of solutions
to our puzzle). Note that this is number-crunching, and it only tells you whether a solution exists, and if it does, the
number of solutions, but it does not tell you how to actually solve the puzzle, i.e. to find at least one legal path in the
underlying graph. This is implemented in procedure NuPaths of the Maple package DiGpaths.txt .

Since Maple can do symbol-crunching so well, we can use linear algebra not just to find the number of paths, but
to actually find all of them. Define the symbolic adjacency matrix by

Sij =

aij , if there is a directed edge from i to j;

0, otherwise.

Then, since we already know, from the numeric adjacency matrix, what is the smallest k such that the ij entry of Ak is
non-zero, and that means that for that very same k, Sk is also non-zero, that ij entry of Sk gives a certain polynomial in
the indeterminates aij (where ij is an edge) where each monomial corresponds to a path that is easy to reconstruct, since
we are given the set of participating edges in each such path.

This is implemented in procedure WtPath in the Maple package DiGpaths.txt. Alas, to our disappointment, for larger
graphs, this took much longer than the straightforward approach of generating all paths, mentioned above (procedure
PathsG(G) in the Maple package DiGpaths.txt, and SolveMC(M,C,B,d) when applied to Missionaries and Cannibals prob-
lems).

One can also generate interesting sequences for ‘infinite families’ of Missionaries and Cannibals puzzles. Procedure
SeqrBd(r,B,d,K) outputs the first K terms of the sequence enumerating the number of solutions to the Missionaries and
Cannibals problem with i missionaries, i+ r cannibals, boat size B and safety margin d; see the output file
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDiGpaths2.txt.
In particular SeqrBd(5,3,1,8) outputs [4, 4, 13, 21, 34, 55, 89, 144]. This leads to the following conjecture.

Conjecture 3.1. The number of solutions to the Missionaries and Cannibals problem where there are i+ 5 missionaries, i
cannibals, the Boat capacity is 3 and the safety margin is 1 is the Fibonacci number Fi+4 , for i ≥ 3.

In the next section we will describe an even more efficient approach for generating such conjectures. Sometimes the
enumerating sequences are eventually constant. The next proposition was first conjectured experimentally, using our
Maple packages, and later we found a human-generated proof.

Proposition 3.1. The number of solutions with i missionaries and i cannibals, boat size 4, and safety margin 0, is always
361, for all i ≥ 7.

Human-Generated Proof. If n is sufficiently large compared to B, the boat size, then at some point during the solution
there will need to be many missionaries and many cannibals on each side of the river. When this happens, the only legal
moves are sending across boats that contain an equal number of missionaries and cannibals. If the missionaries exceed
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the cannibals in a location, that implies that the cannibals exceed the missionaries in another location, which is an illegal
state.

Let (a, b) denote a move that sends a missionaries and b cannibals across the river. Let −(a, b) be a similar moves that
brings people in the other direction. If the boat size is less than 4, and there are more than 5 missionaries and cannibals
on both sides of the river, the only legal moves will be ±(1, 1). It is clear that no progress can be made with only these
moves. This shows that for B < 4, and sufficiently large n, there will be no solutions. It is not too hard to show that for
B = 2 there exist solutions only when n < 4, and that for B = 3 there exist solutions only when n < 6.

When B = 4, we now can make progress for large n. We can alternate moves (2, 2) and −(1, 1) to slowly ferry the people
across without violating the rules. Using this approach we can solve the puzzle in 2n − 3 moves. It is clear that during
the middle of a solution, it is not possible to be more efficient. But maybe we can be more efficient at the start or end, by
exploiting the fact that the cannibals are allowed to outnumber the missionaries if either are not present on a side of the
river. Let’s say the start of the solution is the moves before 4 missionaries and 4 cannibals have crossed. Once 4 and 4
have crossed, we are now restricted to alternating (2, 2) and −(1, 1). After the first two moves, at most 3 people will have
crossed. Thus it is clear that it is not possible to do the start in 3 moves. Thus the minimum possible number of moves for
the start of the solution is 5 moves. It turns out there are exactly 19 ways to perform the start of the puzzle in 5 moves.
Symmetrically, there are also 19 ways to perform the end of a solution as efficiently as possible. For n ≥ 7, the start of the
solution and the end of solution do not intersect, so we conclude that for n ≥ 7, the number of solutions that use the fewest
numbers of moves will be 19 · 19 = 361.

4. Using “high school algebra” for efficient enumeration

While finding one solution (or path) can be done fast, using Dijkstra’s algorithm, finding all of them takes much longer,
since there are exponentially many of them. Of course we can do it as in the previous section, transcribing the puzzle into
a directed graph, finding the adjacency matrix, etc., but the resulting graph has special structure, and it would be nice to
take advantage of this.

We will now describe a naive ‘high-school algebra’ approach for quickly counting the solutions (as opposed to finding all
of them, or even one of them). In particular, if we find out, for a particular choice of parameters (for example, (M,C,B, d) =

(4, 4, 2, 0)), that the number of solutions is 0, we would know that there is no way of solving the puzzle.
Let’s consider a more general river-crossing puzzle, that includes the even-more-famous-and-older Cabbage-Sheep-Wolf

puzzle [7].
There are k species, let’s call them 1, . . . , k, and there are A1, A2, . . . , Ak individuals from each kind. If at any time,

there are a1, . . . , ak individuals of species 1, . . . , k respectively, at the starting bank, then the vectors [a1, a2, . . . , ak] must
satisfy a set of conditions C(a1, . . . , ak). There is another set of conditions C ′(b1, . . . , bk) regarding what the boat can carry.

Let’s introduce k ‘formal’ variables (alias indeterminates) x1, . . . .xk and define the crossing polynomial

P (x1, . . . , xk) :=
∑

(b1,...,bk)

xb1
1 · · ·x

bk
k ,

where the sum is over all vectors of non-negative integers (b1, . . . , bk) satisfying the conditions C ′(b1, . . . , bk).
For example, for the original puzzle where x1 is the variable corresponding to missionaries and x2 is the variable

corresponding to cannibals (and the boat size is 2)

P (x1, x2) = x1 + x2
1 + x2 + x2

2 + x1x2.

Let’s also introduce a “clean-up” linear operator T that is defined on polynomials in the variables x1, . . . , xk, by first
defining it on monomials xa1

1 · · ·x
ak

k by

T (xa1
1 · · ·x

ak

k ) =

xa1
1 · · ·x

ak

k , if C(a1, . . . , ak) is true;

0, otherwise,

and extending it linearly.
We start with the monomial representing the initial position xA1

1 · · ·x
Ak

k . Going in the forward direction corresponds
to multiplying by P (x−11 , . . . , x−1k ), since you reduce the population of the first bank, while going back to the starting bank
corresponds to multiplying by P (x1, . . . , xk), since you increase the population of the first bank.

At any stage, after multiplying by P (x1, . . . , xk) or P (x−11 , . . . , x−1k ), we have to “clean up” by applying the operator T

(which enforces the conditions).
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This leads to the following sequence of polynomials

f0(x1, . . . , xk) = xA1
1 · · ·x

Ak

k ,

and for i = 1, 2, . . .

gi(x1, . . . , xk) = T [P (x−11 , . . . , x−1k )fi−1(x1, · · · , xk) ]

fi(x1, . . . , xk) = T [P (x1, . . . , xk)gi(x1, · · · , xk) ].

We keep going until we reach an i where gi has non-zero constant term. If we do reach such an i we know that the puzzle
can be solved in 2i − 1 crossing ((i − 1) double crossings followed by the final one), and the constant term of that lucky gi

is the number of solutions to the puzzle (equivalently the number of shortest paths). Of course it is very possible that we
will never reach that state.

Since any shortest path must be self-avoiding, we have an upper bound for the length of a shortest path, if it exists.
Let’s call the number of states T . If by the time i = T + 1 none of the gi have a non-zero constant term, we find out that
there are no solutions.

Let’s illustrate our method with the original puzzle of 3 missionaries, 3 cannibals, boat size 2, and safety margin 0.
Recall that for this case P (x1, x2) = x1 + x2

1 + x2 + x2
2 + x1x2.

f0 = x3
1 x

3
2.

f0 · P (x−11 , x−12 ) = (x3
1 x

3
2) · (x−11 + x−21 + x−12 + x−22 + x−11 x−12 ) = x3

1x
2
2 + x2

1x
3
2 + x3

1x2 + x2
2x

2
1 + x1x

3
2.

“Cleaning up”, i.e., applying T , we get
g1(x1, x2) = x3

1x
2
2 + x3

1x2 + x2
2x

2
1.

Now going back to the other bank

g1(x1, x2) · P (x1, x2) = (x3
1x

2
2 + x3

1x2 + x2
2x

2
1)(x1 + x2

1 + x2 + x2
2 + x1x2) =

x5
1x

2
2 + x4

1x
3
2 + x3

1x
4
2 + x5

1x2 + 3x4
1x

2
2 + 3x3

1x
3
2 + x2

1x
4
2 + x4

1x2 + 2x3
1x

2
2 + x2

1x
3
2.

“Cleaning up”, i.e., applying T , by discarding all ‘illegal monomials’, we get

f1(x1, x2) = 3x3
1x

3
2 + 2x3

1x
2
2.

Moving right along
g2(x1, x2) = 3x3

1x
2
2 + 5x3

1x2 + 5x2
2x

2
1 + 2x3

1,

f2(x1, x2) = 13x3
1x

3
2 + 12x3

1x
2
2 + 2x3

1x2,

g3(x1, x2) = 13x3
1x

2
2 + 25x3

1x2 + 25x2
2x

2
1 + 14x3

1 + 2x1x2,

f3(x1, x2) = 63x3
1x

3
2 + 64x3

1x
2
2 + 16x3

1x2 + 2x2
2x

2
1,

g4(x1, x2) = 63x3
1x

2
2 + 127x3

1x2 + 127x2
2x

2
1 + 80x3

1 + 18x1x2 + 2x2
2,

f4(x1, x2) = 317x3
1x

3
2 + 334x3

1x
2
2 + 98x3

1x2 + 20x2
2x

2
1 + 2x3

2,

g5(x1, x2) = 317x3
1x

2
2 + 651x3

1x2 + 651x2
2x

2
1 + 432x3

1 + 118x1x2 + 22x2
2 + 2x2,

f5(x1, x2) = 1619x3
1x

3
2 + 1734x3

1x
2
2 + 550x3

1x2 + 140x2
2x

2
1 + 24x3

2 + 2x1x2 + 2x2
2,

and finally:
g6(x1, x2) = 619x3

1x
2
2 + 3353x3

1x2 + 3353x2
2x

2
1 + 2284x3

1 + 690x1x2 + 164x2
2 + 28x2 + 4.

Success! We have found that with i = 6, gi(x1, x2) has a non-zero constant term, which happens to be 4. Hence the puzzle
can be solved with 2 · 6− 1 = 11 crossings, and the number of solutions is 4.

If we try to solve the puzzle with 4 missionaries and 4 cannibals, we get that the gi have no non-zero constant term for
all i ≤ 14, and since there are 13 legal states, it means that there are no solutions.

Since Maple is so good with high-school algebra, this is very fast, and we can investigate many infinite families, getting
similar conjectures to the Fibonacci conjecture from the previous section. To enjoy 139 such (conjectured) propositions, see
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oRiverCrossing2.txt.
Let’s just reproduce one of these conjectures (that we sure are theorems).
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Conjecture 4.1. Let a(n) be the number of ways of safely transporting n+9 missionaries, n cannibals, with a boat that can
have at most two passengers, and such that at no time, at either bank, should the number of cannibals exceed the number
of missionaries (if there are missionaries present), then

∞∑
n=0

a(n)xn = −1774224x7 − 63279616x6 − 54735368x5 + 31754164x4 − 2667061x3 − 736742x2 − 6726x− 1

4x4 − 384x3 + 337x2 − 39x+ 1
.

We believe that it would not be too hard to teach the computer to set up a finite-automata that would model such
situations, furnishing rigorous proofs, but we leave this to interested readers.

5. Let humans do some general thinking

We now consider the problem of determining for which values of the parameters there exists a solution. Again we have:

• M , the number of missionaries, should be at least 1;

• C, the number of cannibals, should be at least 1;

• B, the boat size, should be at least 2;

• d, if both cannibals and missionaries are present (on either side of the river or in the boat) then the number of
missionaries must be at least the number of cannibals plus d.

Tackling the problem in general is hard, but there are a lot of cases where it is easy to show that a solution exists.
We do so by demonstrating a strategy that illustrates how to solve the puzzle in a specific case, and then mention the
requirements on the parameters for that strategy to be successful. The strategies provide no insight into what happens
when their requirements are not met, so these strategies give a set of sufficient conditions for when a solutions exists, but
do not provide necessary conditions.

“Two-Boat Strategy”: This strategy only requires two people to be in the boat at any given time (hence the name), and
therefore works for any value of B ≥ 2. To start, we can send a single missionary across by sending 2 missionaries across
in the boat, and then having one come back with the boat. Call this sequence of 2 moves P. By repeating P, we can send
missionaries across until P is no longer legal. We can send over M − C − d − 1 missionaries in this way. Now consider
the same operation, but with cannibals instead of missionaries. Call this operation Q. If Q is legal, we can do Q, and then
complete the puzzle by alternating P and Q until all the cannibals are across. The requirement for Q to be legal is that
(M − C − d− 1) ≥ 2 + d, which simplifies to:

M − C ≥ 2d+ 3.

We now know that if the above condition is satisfied, then the puzzle is solvable.

“Big Boat Strategy #1”: If the boat is big enough relative to the number of Cannibals, we can send all of the missionaries
across before sending any cannibals across. Similar to Two-Boat, we start by sending M − C − d − 1 missionaries across
and bringing the boat back. The number of missionaries remaining is then C + d+1. If B ≥ C + d+1 then we can proceed
to send the rest of the missionaries over, send B − 1 back, use them to ferry a single cannibal across, send the cannibal
back, and then the cannibals can all ferry themselves across.

“Big Boat Strategy #2”: This case is very trivial, but does require its own approach. If the boat is so big that it can carry
all the missionaries in it, then we can use this strategy. Send 2 cannibals across, send 1 back, send all the missionaries
over, send 1 cannibal back, send the rest of the cannibals across; B ≥M, C ≥ 2.

“Split Cannibals Strategy”: In this strategy we send half of the cannibals over, and then all the missionaries over. It
is similar to Big Boat in that it only works if the Boat is large compared to half the number of cannibals. The strategy is
slightly different depending on if there is an even number or odd number of cannibals.
First consider the even case. We send over half the cannibals. Then we can send a boat of C/2 + d+ 1 missionaries. This
requires B > C/2 + d+ 1 and M − (C/2 + d+ 1) ≥ C/2 + d, which simplifies to M −C ≥ 2d+ 1. Then the missionaries can
ferry themselves across, and then the cannibals can ferry themselves across.
In the odd case, we send dC/2e cannibals across, then dC/2e + d + 1 missionaries across, and we can proceed similarly if
B > dC/2e+ d+ 1 and M − (dC/2e+ d+ 1) ≥ bC/2c+ d, which simplifies to M −C ≥ 2d+ 1. However, it is still sometimes
possible if B = bC/2c+ d+ 1. This is an open problem.
We can combine the even and odd cases and conclude that the strategy can be applied when

M − C ≥ 2d+ 1 and B > dC/2e+ d+ 1.

89



G. Spahn and D. Zeilberger / Discrete Math. Lett. 11 (2023) 84–90 90

“Simultaneous Ferry Strategy”: Here we start by sending d missionaries over, and then we repeatedly send d+ 1 mis-
sionaries and 1 cannibal over, and d missionaries back. Since cannibals and missionaries are in all 3 places at once, this
requires M − C ≥ 3d in addition to B ≥ d+ 2.

We now summarize the conditions required for each strategy to be applied.

Two-Boat M − C ≥ 2d+ 3,
Big Boat 1 B ≥ C + d+ 1,
Big Boat 2 B ≥M AND C ≥ 2,

Split Cannibals M − C ≥ 2d+ 1 AND B > dC/2e+ d+ 1,

Simultaneous Ferry M − C ≥ 3d AND B ≥ d+ 2.

Also note that the condition that M − C ≥ d is assumed.
The above strategies do not say too much about what happens when d = 0. Since this was the original version of the

puzzle it deserves some extra attention. It turns out that we can do much better than the listed strategies, and in almost
all cases it is very simple to do so. We consider if there is some slack, that is M > C.

“d = 0, M > C”: Send over a boat with 1 missionary and 1 cannibal. Send 1 cannibal back. Call this operation Q.
Repeat Q until all the cannibals are across, then have the missionaries ferry the remaining missionaries across. Done.

When M = C and B ≥ 4, another simple strategy applies.

“d = 0, M = C, B ≥ 4”: Send over 2 missionaries and 2 cannibals. Send 1 missionary and 1 cannibal back. Repeat until
everyone is across.

The remaining cases are when M = C, and either B = 2 or B = 3. For B = 2 it turns out to be doable if and only if
M = C ≤ 3 and for B = 3 it turns out to be doable if and only if M = C ≤ 5. These cases are not easily described by a
simple strategy and make for a fun puzzle.

Necessary conditions? Are the above conditions necessary for the riddle to be solved? Not entirely. One example is that
sometimes the Split cannibals strategy can still be applied when the condition is not satisfied. With more computation
power, we should get a better idea of any potential cases where a strategy not described can be used.
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