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Abstract

Let G = (V,E) be a connected simple graph. A bijection f : E → {1, 2, . . . , |E|} is said to be a local antimagic labeling
of G if f+(u) 6= f+(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and
f+(u) =

∑
e∈E(u) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local

antimagic chromatic number, denoted χla(G), is the minimum number of induced colors taken over local antimagic labelings
of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this
paper, we obtain sufficient conditions for χla(G[H]) ≤ χla(G)χla(H). Consequently, we give examples of G and H such
that χla(G[H]) = χ(G)χ(H), where χ(G) is the chromatic number of G. We conjecture that (i) there are infinitely many
graphs G and H such that χla(G[H]) = χla(G)χla(H) = χ(G)χ(H), and (ii) for k ≥ 1, χla(G[H]) = χ(G)χ(H) if and only if
χ(G)χ(H) = 2χ(H) + dχ(H)

k
e, where 2k + 1 is the length of a shortest odd cycle in G.
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1. Introduction

Let G = (V,E) be a connected simple graph of order p and size q. A bijection f : E → {1, 2, . . . , q} is called a local antimagic
labeling of G if f+(u) 6= f+(v) holds for any two adjacent vertices u and v, where f+(u) =

∑
e∈E(u) f(e), and E(u) is the

set of edges incident to u. Clearly, a local antimagic labeling induces a proper coloring of G. The function f is called a
local antimagic t-coloring of G if f induces a proper t-coloring of G, and we say c(f) = t. The local antimagic chromatic
number of G, denoted by χla(G), is the minimum number of c(f), where f takes over all local antimagic labelings of G [1].
Interested readers may refer to [6,7,11] for results related to local antimagic chromatic numbers of graphs.

Let G and H be two disjoint graphs. The lexicographic product G[H] of graphs G and H is a graph such that its vertex
set is the cartesian product V (G)× V (H), and any two vertices (u, u′) and (v, v′) are adjacent in G[H] if and only if either
uv ∈ E(G) or u = v and u′v′ ∈ E(H). In [10], the first two authors studied the exact value of χla(G[On]), where On is a
null graph of order n ≥ 2. Motivated by the above result, we investigate the sharp upper bound of χla(G[H]) for any two
disjoint non-null graphs G and H in this paper. We present the sufficient conditions for

χla(G[H]) ≤ χla(G)χla(H).

Further, we conjecture that (i) there are infinitely many graphsG andH with χla(G[H]) = χla(G)χla(H) = χ(G)χ(H), where
χ(G) is the chromatic number of G; and (ii) for any positive integer k, χla(G[H]) = χ(G)χ(H) if and only if χ(G)χ(H) =

2χ(H) + dχ(H)
k e, where 2k + 1 is the length of the shortest odd cycle in G. We refer to [3] for all undefined notation.

2. Bounds of χla(G[H])

Before presenting our main results, we introduce some necessary notation and known results which will be used in this
section.

Let [a, b] = {n ∈ Z | a ≤ n ≤ b} and S ⊆ Z. Let S− and S+ be a decreasing sequence and an increasing sequence of S,
respectively.
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Lemma 2.1 (see [8, Lemma 2.2]). For positive integers q and p, let Sp(a) = [p(a− 1) + 1, pa], 1 ≤ a ≤ q. Then,

(i) {Sp(a) | 1 ≤ a ≤ q} is a partition of [1, pq];

(ii) when a < b, every term of Sp(a) is less than that of Sp(b);

(iii) for each 1 ≤ i ≤ p, the sum of the i-th term of S+
p (a) and that of S−p (b) is independent of i, where 1 ≤ a, b ≤ q;

(iv) for any positive integer k and each 1 ≤ i ≤ p,
k∑
l=1

(
i-th term of S+

p (al)
)

+
k∑
l=1

(
i-th term of S−p (bl)

)
is independent of i,

where 1 ≤ al, bl ≤ q.

Note that the proof of Lemma 2.1 in [8] shows that the sum of i-term of S+
p (a) and that of S−p (b) is p(a + b − 1) + 1.

According to the definitions of S+
p (a) and S−p (a), we shall write the sequence S+

p (a) and S−p (a) as column vectors in this
paper. Now we are ready to present our first main result.

Theorem 2.1. Suppose H admits a local antimagic t-coloring f that satisfies the following conditions:

(a) for each vertex, the number of even incident edge labels equals the number of odd incident edge labels under f ;

(b) when f+(u) = f+(v), deg(u) = deg(v);

(c) when f+(u) 6= f+(v), pf+(u)− 1
2 deg(u)(p− 1) 6= pf+(v)− 1

2 deg(v)(p− 1) holds for a fixed integer p.

Then χla(pH) ≤ t.

Proof. Let V (H) = {x1, . . . , xn} and L be the labeling matrix of H according to f (for definition of labeling matrix, please
see [5,12]). Now we define a guide matrix †M by adding a ‘+’ sign to all odd entries and a ‘−’ sign to all even entries in L.

We define pmatrices L1, . . . , Lp as follows. For each 1 ≤ i ≤ p, the (j, k)-entry of Li is the i-th term of S+
p (a) (resp. S−p (a))

if the corresponding (j, k)-entry ofM is +a (resp. −a), where 1 ≤ a ≤ |E(H)|.
From the condition (a), for each row of L, the number of odd entries equals that of even entries. Thus, let a1, . . . , as

denote the odd numerical entries of the j-th row of L and b1, . . . , bs denote the even numerical entries of the j-th row of L,
where s is a positive integer. Now,

rj(Li) =

s∑
l=1

[i-th term of S+
p (al)] +

s∑
l=1

[i-th term of S−p (bl)].

By Lemma 2.1 (iv), rj(Li) is constant for a fixed j. Actually, it is

p

s∑
l=1

(al + bl)− ps+ s = prj(L)− k(p− 1) = pf+(xj)−
1

2
deg(xj)(p− 1).

By conditions (a) and (b), the diagonal block matrix
L1 F · · · F
F L2 · · · F
...

... . . . ...
F F · · · Lp


is a local antimagic labeling of pH. Thus

χla(pH) ≤ t.

It is known that χla(K1,2n) = 2n + 1 and χla(mK1,2n) = 2nm + 1 [2, Corollary 3]. Clearly, the upper bound stated in
Theorem 2.1 is not sharp. From Theorem 2.1, we obtain the following result immediately.

Corollary 2.1. IfH is an r-regular graph (r ≥ 2) with a local antimagic t-coloring f satisfying the condition (a) of Theorem
2.1, then χla(pH) ≤ t holds for any positive integer p.

†A guide matrixM is an (n − r) × n matirx in which (j, k)-th entry is (S)j,k(M′)j,k, where 1 ≤ j ≤ n − r, 1 ≤ k ≤ n, S is an (n − r) × n matrix
obtained from Sn (Sn is a ‘sign matrix’, refer to [8]) by removing the last r rows, andM′ is also an (n − r) × n matrix in which (M′)j,k = (M′)k,j for
1 ≤ j < k ≤ n− r, the upper part of the off-diagonal entries is the increasing sequence [1, (n− r)(n+ r − 1)/2] and the entries of the main diagonal is
[(n− r)(n+ r − 1)/2 + 1, (n− r)(n+ r − 1)/2 + (n− r)] in natural order.

77



G. C. Lau, W. C. Shiu, K. Premalatha, R. Zhang, and M. Nalliah / Discrete Math. Lett. 11 (2023) 76–83 78

Theorem 2.2. Let G be a graph of order p admitting a local antimagic χla(G)-coloring g and H be a graph of order n
admitting a local antimagic χla(H)-coloring h. Suppose h satisfies the following conditions:

(i) For each vertex, the number of even incident edge labels equals the number of odd incident edge labels under h;

(ii) when h+(u) = h+(v), degH(u) = degH(v);

(iii) when h+(u) 6= h+(v), ph+(u)− 1
2 degH(u)(p− 1) 6= ph+(v)− 1

2 degH(v)(p− 1).

Moreover, g satisfies the following conditions:

(iv) when g+(u) = g+(v), degG(u) = degG(v), and

(v) when g+(u) 6= g+(v), g+(u)n3 − (n3−n) degG(u)
2 6= g+(v)n3 − (n3−n) degG(v)

2 .

Then χla(G[H]) ≤ χla(G)χla(H).

Proof. Let q(G) and q(H) denote the sizes of G and H respectively. Clearly, G[H] is a graph of order pn and size pq(H) +

q(G)n2. Suppose that {u1, . . . , up} and {x1, . . . , xn} are the vertex lists of G and H respectively. According to these vertex
lists, we define that AG and AH are the adjacency matrices of G and H respectively. Thus the adjacency matrix of G[H]

can be expressed as
AG ⊗ Jn + Ip ⊗AH ,

where Jn is an n×nmatrix whose entries are all 1, Ip is an identity matrix of order p, and AG⊗Jn is the Kronecker product
of AG and Jn. Note that AG ⊗ Jn is the adjacency matrix of G[On] and Ip ⊗AH is the adjacency matrix of Op[H], where On
and Op are null graphs of orders n and p. Therefore, the diagonal blocks of AG⊗Jn are zero matrices and only the diagonal
blocks of Ip ⊗AH are non-zero matrices.

Now we shall label the edges of Op[H] and G[On] separately. According to the definition, Op[H] ∼= pH. By Theorem 2.1,
pH has a local antimagic χla(H)-coloring, say φ, by using integers in [1, pq(H)] such that for each vertex (ui, xj) in Op[H],
φ+(ui, xj) is independent of i, where 1 ≤ i ≤ p. The labeling matrix of φ is denoted by M1.

Next we shall label G[On] by integers in [1, q(G)n2]. This labeling was constructed in the proof of [10, Theorem 2.1]. For
completeness, we list the outline of the construction.

Let Mg be the labeling matrix of G corresponding to g. Suppose Ω is a magic square of order n. Let Ωi = Ω+(i−1)n2Jn,
where 1 ≤ i ≤ q(G) and ψ0 be the labeling of G[On] such that its labeling matrix M is defined by replacing each entry of
MG with an n× n matrix as follows:

(1) replace ∗ by F which is an n× n matrix whose entries are ∗;

(2) replace i by Ωi, if i lies in the upper triangular part of Mg;

(3) replace i by ΩTi , if i lies in the lower triangular part of Mg, where ΩTi is the transpose of Ωi.

For each vertex (ul, xj) ∈ V (G[On]), the row sum of M1 corresponding to the vertex (ul, xj) is

ψ+
0 (ul, xj) = g+(ul)n

3 − (n3 − n) degG(ul)

2
,

which is independent of j. By condition (i), ψ0 is a local antimagic labeling of G[On]. According to condition (v), there are
at most χ(G) distinct row sums of M . Let M2 be the matrix obtained from M by adding all numerical entries with pq(H)

and ψ be the corresponding labeling. Then, ψ+(ul, xj) = ψ+
0 (ul, xj) + npq(H), which is independent of j.

Therefore, M1 + M2 is a labeling matrix that corresponds to a local antimagic labeling of G[H], where ∗ is treated as 0.
Hence χla(G[H]) ≤ χla(G)χla(H).

The following is an example of Theorem 2.2.

Example 2.1. Let G be the one point union of two 4-cycles and H be the one point union of two 3-cycles. Figure 1 shows the
local antimagic 3-colorings of G and H.

Note that χla(G) = χla(H) = 3. It is easy to check that the above local antimagic 3-colorings of G and H satisfy the
conditions of Theorem 2.2 respectively. Thus, the labeling matrices of G and H are shown below:

Mg =



∗ ∗ ∗ ∗ 8 ∗ 1
∗ ∗ ∗ ∗ 2 ∗ 7
∗ ∗ ∗ ∗ ∗ 6 3
∗ ∗ ∗ ∗ ∗ 4 5
8 2 ∗ ∗ ∗ ∗ ∗
∗ ∗ 6 4 ∗ ∗ ∗
1 7 3 5 ∗ ∗ ∗


, Mh =


∗ ∗ 6 ∗ 1
∗ ∗ ∗ 5 2
6 ∗ ∗ ∗ 3
∗ 5 ∗ ∗ 4
1 2 3 4 ∗

 .
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(b) Graph H

Figure 1: Local antimagic 3-colorings of graphs G and H.

Let

L1 =


∗ ∗ 42 ∗ 1
∗ ∗ ∗ 29 14
42 ∗ ∗ ∗ 15
∗ 29 ∗ ∗ 28
1 14 15 28 ∗

 , L2 =


∗ ∗ 41 ∗ 2
∗ ∗ ∗ 30 13
41 ∗ ∗ ∗ 16
∗ 30 ∗ ∗ 27
2 13 16 27 ∗

 , L3 =


∗ ∗ 40 ∗ 3
∗ ∗ ∗ 31 12
40 ∗ ∗ ∗ 17
∗ 31 ∗ ∗ 26
3 12 17 26 ∗

 ,

L4 =


∗ ∗ 39 ∗ 4
∗ ∗ ∗ 32 11
39 ∗ ∗ ∗ 18
∗ 32 ∗ ∗ 25
4 11 18 25 ∗

 , L5 =


∗ ∗ 38 ∗ 5
∗ ∗ ∗ 33 10
38 ∗ ∗ ∗ 19
∗ 33 ∗ ∗ 24
5 10 19 24 ∗

 , L6 =


∗ ∗ 37 ∗ 6
∗ ∗ ∗ 34 9
37 ∗ ∗ ∗ 20
∗ 34 ∗ ∗ 23
6 9 20 23 ∗

 ,

L7 =


∗ ∗ 36 ∗ 7
∗ ∗ ∗ 35 8
36 ∗ ∗ ∗ 21
∗ 35 ∗ ∗ 22
7 8 21 22 ∗

 .

Obviously, for each 1 ≤ i ≤ 7, the row sums of Li are 43, 43, 57, 57, 58 respectively. Let Ω be a magic square of order 5
with row sum 65 and Ωi = Ω + 25(i− 1)J5, where 1 ≤ i ≤ 8. For each 1 ≤ i ≤ 8, let Ψi = Ωi + 42J5. Then, the labeling matrix
of G[H] is 

L1 F F F Ψ8 F Ψ1

F L2 F F Ψ2 F Ψ7

F F L3 F F Ψ6 Ψ3

F F F L4 F Ψ4 Ψ5

ΨT
8 ΨT

2 F F L5 F F
F F F ΨT

6 ΨT
4 L6 F

ΨT
1 ΨT

7 ΨT
3 ΨT

5 F F L7


By calculating the row sums of the above matrix, we obtain that the distinct row sums are 1468, 1482, 1483, 1593, 1607,
1608, 2643, 2657, 2658. Thus, χla(G[H]) ≤ 9.

In [4], N. Čižek and S. Klavžar gave the lower bound of chromatic number of the lexicographic product as follows.

Corollary 2.2 (see [4, Corollary 3]). Let G be a non-bipartite graph. Then for any graph H, χ(G[H]) ≥ 2χ(H) +
⌈χ(H)

k

⌉
,

where k ≥ 1 and 2k + 1 is the length of a shortest odd cycle in G.

Combining Theorem 2.2 and Corollary 2.2, we obtain the following results.

Corollary 2.3. Suppose G and H are graphs satisfying the conditions listed in Theorem 2.2. If the length of a shortest odd
cycle in G is 2k + 1, then 2χ(H) + dχ(H)

k e ≤ χ(G[H]) ≤ χla(G[H]) ≤ χla(G)χla(H). In particular, if C3 is a subgraph of G,
then 3χ(H) ≤ χla(G[H]) ≤ χla(G)χla(H).

Proof. χ(G[H]) ≤ χla(G[H]) is trivial. The lower bound follows from Corollary 2.2 and the upper bound follows from
Theorem 2.2.

Corollary 2.4. LetG andH be regular graphs andH admit a local antimagic χla(H)-coloring h. Suppose for each vertex of
H, the number of even incident edge labels equals the number of odd incident edge labels under h. If the length of a shortest
odd cycle in G is 2k + 1, then 2χ(H) + dχ(H)

k e ≤ χ(G[H]) ≤ χla(G[H]) ≤ χla(G)χla(H). In particular, if C3 is a subgraph of
G, then 3χ(H) ≤ χla(G[H]) ≤ χla(G)χla(H).

By applying Corollary 2.4, we can obtain χla(G[H]) for some graphs G and H. An example is shown in Example 2.2.
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Example 2.2. Let G = C3 ×K2 and H be the octahedral graph. Figure 2 presents their local antimagic 3-colorings which
are shown in [9].
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Figure 2: Local antimagic 3-colorings of graphs G and H.

It is easy to verify that G and H satisfy the conditions of Corollary 2.4, which implies that

3χ(H) ≤ χla(G[H]) ≤ χla(G)χla(H).

Since χla(G) = χla(H) = 3, χla(G[H]) = 9.

In [7, Theorem 3.3], the first two authors proved that χla(C2m∨O2n) = 3 for m ≥ 2, n ≥ 1, where C2m∨O2n is the join of
graphs C2m and O2n. In the following, we give another local antimagic 3-coloring of C2m ∨O2n that satisfies the conditions
(i) and (ii) of Theorem 2.2.

Theorem 2.3. For m ≥ 2 and n ≥ 1, there is a local antimagic 3-coloring of C2m ∨ O2n satisfying conditions (i) and (ii) of
Theorem 2.2.

Proof. Let V (C2m) = {ui | 1 ≤ i ≤ 2m} and V (O2n) = {vj | 1 ≤ j ≤ 2n}. We separate C2m ∨ O2n into two edge-disjoint
graphs, C2m and O2m ∨O2n, where V (O2m) = V (C2m).

Firstly, define a labeling f for C2m. Let f : V (C2m)→ [1, 2m] such that f(uiui+1) = i, where 1 ≤ i ≤ 2m and u2m+1 = u1.
Thus, f+(u1) = 2m+ 1, f+(ui) = 2i− 1 for 2 ≤ i ≤ 2m.

Next, we define a labeling g for O2m ∨ O2n
∼= K2m,2n. The labeling matrix of g is

(
F B
BT F

)
under the vertex lists

V (O2m) = {u1, u3, . . . , u2m−1, u2, . . . , u2m} and V (O2n) = {v1, v2, . . . , v2n}. So we only need to fill the integers in [2m +

1, 2m+ 4mn] into the matrix B.
LetM be a guide matrix as follows:

(
−2 −3 + 2 − 2n− 1 + 3 −(2n− 1) + 5 −(2n− 3) · · · + 2n− 3 −5

− 2n+ 1 − 2n −(2n+ 1) +4 −(2n) + 4 −(2n− 2) + 6 · · · −6 + 2n− 2

)
.

We replace each entry ofM by a column vector according to the rules:

(1) replace −a by 2S−m(a)− Jm,1; replace +a by 2S+
m(a)− Jm,1, where Jm,1 is an m× 1 matrix with all entries 1;

(2) replace − a by 2S−m(a); replace + a by 2S+
m(a).

Let
(
B1

B2

)
be the resulting matrix, where B1 and B2 are m× 2n matrices. The row sums of B1 in column matrix is

(2S−m(2)− Jm,1) + (2S−m(3)− Jm,1) + 2S+
m(2) + 2S−m(2n− 1) +

n−2∑
i=1

2S+
m(2i+ 1) +

n−1∑
j=2

[2S−m(2j + 1)− Jm,1]

= 4S−m(2n− 1) + 2[S−m(2) + S+
m(2)] + 2

n−2∑
i=1

[S+
m(2i+ 1) + S−m(2i+ 1)]− nJm,1

= 4S−m(2n− 1) + 2(3m+ 1)Jm,1 + 2

n−2∑
i=1

[m(4i+ 1) + 1]Jm,1 − nJm,1

= 4S−m(2n− 1) + [4mn2 − 10mn+ 10m+ n− 2]Jm,1 = A1.
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Clearly, the entries of the column matrixA1 form a decreasing sequence with common difference 4. Now the first column
of B1 is the vector 2S−m(2)− Jm,1. We shift each entry of this vector downward to 1 and move the last entry of this vector to
the top, i.e., increase the entries by 2 except the (1, 1)-entry and subtract the (1, 1)-entry by 2(m− 1). Let this new matrix
be B′1. Now, the first column of B′1 has entries 2m + 1, 4m − 1, 4m − 3, . . . , 2m + 3 so that the second entry up to the last
entry of the first column of B′1 form a decreasing sequence with common difference 2 and the difference between the first
entry and second entry is 2− 2m.

Similarly the row sums of B2 in column matrix is

4S−m(2n+ 1) + 4S−m(2n) + 4S+
m(4) + 2

n−1∑
i=3

[S+
m(2i) + S−m(2i)]− nJm,1

= 4S−m(2n+ 1) + 4(m(2n+ 3) + 1)Jm,1 + [2m(n− 3)(2n+ 3) + 2(n− 3)]Jm,1 − nJm,1
= 4S−m(2n+ 1) + [4mn2 + 2mn− 6m+ n− 2]Jm,1 = A2.

It is clear that the entries of the column matrix A2 form a decreasing sequence with common difference 4.
Combining the labelings f and g, we have a labeling φ for the whole graph C2m ∨O2n. One may check that φ+(u2j−1) =

f+(u2j−1)+rj(B
′
1) = 4mn2−2mn+6m+n+1 for each 1 ≤ j ≤ m; and φ+(u2i) = f+(u2i)+ri(B2) = 4mn2+10mn−2m+n+1

for each 1 ≤ i ≤ m. Hence φ+(u2i) > φ+(u2j−1) for 1 ≤ i, j ≤ m.

Clearly, the column sum of
(
B′1
B2

)
is (4mn+ 4m+ 1)m. So φ+(vl) = (4mn+ 4m+ 1)m.

φ+(u2j−1)− φ+(vl) = 4mn2 − 4m2n− 4m2 − 2mn+ 5m+ n+ 1

= 4mn(n−m− 1)− 4m2 + 2mn+ 5m+ n+ 1. (1)

If n ≥ m+ 2, then φ+(u2i)− φ+(vl) > φ+(u2j−1)− φ+(vl) ≥ 4mn− 4m2 + 2mn+ 5m+ n+ 1 > 0.

φ+(vl)− φ+(u2i) = 4m2n− 4mn2 + 4m2 − 10mn+ 3m− n− 1

= 4mn(m− n− 2) + 4m2 − 2mn+ 3m− n− 1. (2)

If m ≥ n+ 2, then φ+(vl)− φ+(u2j−1) > φ+(vl)− φ+(u2i) > 0.

1) If n = m + 1, then φ+(u2j−1) − φ+(vl) = −2m2 + 8m + 2 6= 0 (since the discriminant is not a prefect square) and
φ+(u2i)− φ+(vl) = 10m2 + 12m+ 2 > 0

2) If n = m, then φ+(u2j−1)− φ+(vl) = −6m2 + 6m+ 1 < 0 and φ+(u2i)− φ+(vl) = 6m2 − 2m+ 1 > 0.

3) If n = m − 1, then φ+(u2j−1) − φ+(vl) = −10m2 + 12m < 0, but φ+(u2i) − φ+(vl) = 2m2 − 8m 6= 0 when m 6= 4. So, for
n = m− 1 = 3, we have to find another labeling for C8 ∨O6.

Label the edges of C8 by 1, 8, 3, 2, 5, 4, 7, 6 in the natural order. Let this labeling be f . So the induced vertex labels of
u1, u2, . . . , u8 are 7, 9, 11, 5, 7, 9, 11, 13.

We start from a 8 × 6 magic rectangle Ω (shown below). Increase each entry by 8 and swap some entries within the
same column (indicated in italic). We have

Ω =



1 44 9 36 29 28
2 43 10 35 30 27
3 42 11 34 31 26
4 41 12 33 32 25
45 8 37 16 17 24
46 7 38 15 18 23
47 6 39 14 19 22
48 5 40 13 20 21


−→

7
11
7
11
9
9
13
5



9 52 17 44 37 36
10 51 18 43 38 31
11 50 19 42 39 34
12 49 20 41 40 29
53 16 45 24 27 32
54 15 46 23 26 33
55 14 47 22 25 30
56 13 48 21 28 35



202
202
202
202
206
206
206
206

This matrix forms a labeling matrix of a labeling g of K8,6 under the vertex list {u1, u3, u5, u7, u2, u6,
u8, u4} of C8, The column in front of the matrix is the corresponding induced vertex labels under f on C8, and the column
behind of the matrix is the induced vertex labels of the labeling φ for C8 ∨O6. Thus φ+(u2i−1) = 202, φ+(u2i) = 206 and
φ+(vj) = 260 for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 6.

Clearly, all labels are used. So φ is a local antimagic 3-coloring for C2m ∨ O2n. Moreover, the number of even incident
edge labels equals the number of odd incident edge labels for each vertex. Hence φ satisfies conditions (i) and (ii) of
Theorem 2.2
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Corollary 2.5. If G = C3 ×K2 and H = C2m ∨O2n, m ≥ 2, n ≥ 1, then χla(G[H]) = 9.

Proof. Keep all notation defined in the proof of Theorem 2.3. Now degH(ui) = 2n + 2, degH(vl) = 2m and p = 6. By
Theorems 2.2 and 2.3, it suffices to check condition (iii) of Theorem 2.2, i.e., 6[φ+(u1) − φ+(v1)] − 5(n + 1 − m) 6= 0 and
6[φ+(v1)− φ+(u2)]− 5(m− n− 1) 6= 0.

By (1), we have

6[4mn(n−m− 1)− 4m2 + 2mn+ 5m+ n+ 1]− 5(n+ 1−m)

= −24m2 + 24mn2 − 24m2n− 12mn+ 35m+ n+ 1

= 24mn(n−m)− 24m(m− 1)− 12mn+ 11m+ n+ 1. (3)

Clearly (3) is less than zero for n ≥ m. When n ≥ m + 2, (3) ≥ 36mn − 24m2 + 35m + n + 1 > 0. When n = m + 1,
(3) = 12mn− 24m2 + 35m+ n+ 1 = −12m2 + 48m+ 2 6= 0 since the discriminant is 2400 which is not a prefect square.

By (2), we have

6[4mn(m− n− 2) + 4m2 − 2mn+ 3m− n− 1]− 5(m− n− 1)

= 24m2 + 24m2n− 24mn2 − 60mn+ 13m− n− 1

= 24mn(m− n− 2) + 12m(m− n) + 12m2 + 13m− n− 1. (4)

Clearly (4) is greater than 0 form ≥ n+2. Whenm ≤ n, (4) ≤ −48mn+12m2+13m−n−1 = 12m(m−4n+1)+m−n−1 < 0.
When m = n+ 1, then H is regular so condition (iii) holds. The proof is complete.

Example 2.3. Let V (C6) = {u1, u3, u5, u2, u4, u6} and V (O8) = {vj | 1 ≤ j ≤ 8} be the vertex lists of C6 and O8. According
to the proof of Theorem 2.2 we label the edges of C6 by 1 to 6 in natural order. So the induced vertex labels are 7, 3, 5, 7, 9,
11. Then

7
5
9
3
7
11


7 17 8 42 14 41 26 29
11 15 10 40 16 39 28 27
9 13 12 38 18 37 30 25
54 48 53 19 47 20 35 32
52 46 51 21 45 22 33 34
50 44 49 23 43 24 31 36


191
191
191
311
311
311

The column in front of the matrix is the corresponding induced vertex labels under fon C6, and the column behind of the
matrix is the induced vertex labels of the labeling φ for C6 ∨ O8. One may check that the column sum of the matrix is 183,
which is φ+(vj) for all j.

Corollary 2.5 shows that there are infinite numbers of graphs H such that χla(G[H]) = χla(G)χla(H) = χ(G)χ(H),
where G = C3 ×K2.

We shall end the article by proposing the following conjectures and problem regarding the local antimagic chromatic
number of the lexicographic product of graphs for further study.

Conjecture 2.1. There exist infinite numbers of graphs G and H, respectively, such that

χla(G[H]) = χla(G)χla(H) = χ(G)χ(H).

Conjecture 2.2. For graphs G and H, χla(G[H]) = χ(G)χ(H) if and only if χ(G)χ(H) = 2χ(H) + dχ(H)
k e, where k ≥ 1 and

2k + 1 is the length of a shortest odd cycle in G.

Problem 2.1. Characterize the graphs that satisfy the upper bounds of Theorems 2.1 and 2.2 respectively.
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