Research Article On the local antimagic chromatic number of the lexicographic product of graphs

Gee-Choon Lau¹, Wai Chee Shiu², Premalatha Kanthavadivel³, Ruixue Zhang^{4,*}, Nalliah Movirichettiar⁵

¹College of Computing, Informatics & Media, Universiti Teknologi MARA (Johor Branch, Segamat Campus), Malaysia

²Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

³National Centre for Advanced Research in Discrete Mathematics, Kalasalingam Academy of Research and Education, Krishnankoil, India

⁴School of Mathematics and Statistics, Qingdao University, Qingdao, China

⁵Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India

(Received: 3 September 2022. Received in revised form: 9 November 2022. Accepted: 19 January 2023. Published online: 3 February 2023.)

© 2023 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G = (V, E) be a connected simple graph. A bijection $f : E \to \{1, 2, \ldots, |E|\}$ is said to be a local antimagic labeling of G if $f^+(u) \neq f^+(v)$ holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and $f^+(u) = \sum_{e \in E(u)} f(e)$. A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted $\chi_{la}(G)$, is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for $\chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$. Consequently, we give examples of G and H such that $\chi_{la}(G[H]) = \chi(G)\chi(H)$, where $\chi(G)$ is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that $\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H)$, and (ii) for $k \geq 1$, $\chi_{la}(G[H]) = \chi(G)\chi(H)$ if and only if $\chi(G)\chi(H) = 2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil$, where 2k + 1 is the length of a shortest odd cycle in G.

Keywords: lexicographic product; regular; local antimagic chromatic number.

2020 Mathematics Subject Classification: 05C78, 05C69.

1. Introduction

Let G = (V, E) be a connected simple graph of order p and size q. A bijection $f : E \to \{1, 2, ..., q\}$ is called a *local antimagic labeling* of G if $f^+(u) \neq f^+(v)$ holds for any two adjacent vertices u and v, where $f^+(u) = \sum_{e \in E(u)} f(e)$, and E(u) is the set of edges incident to u. Clearly, a local antimagic labeling induces a proper coloring of G. The function f is called a *local antimagic t-coloring* of G if f induces a proper t-coloring of G, and we say c(f) = t. The *local antimagic chromatic number* of G, denoted by $\chi_{la}(G)$, is the minimum number of c(f), where f takes over all local antimagic labelings of G [1]. Interested readers may refer to [6, 7, 11] for results related to local antimagic chromatic numbers of graphs.

Let G and H be two disjoint graphs. The *lexicographic product* G[H] of graphs G and H is a graph such that its vertex set is the cartesian product $V(G) \times V(H)$, and any two vertices (u, u') and (v, v') are adjacent in G[H] if and only if either $uv \in E(G)$ or u = v and $u'v' \in E(H)$. In [10], the first two authors studied the exact value of $\chi_{la}(G[O_n])$, where O_n is a null graph of order $n \ge 2$. Motivated by the above result, we investigate the sharp upper bound of $\chi_{la}(G[H])$ for any two disjoint non-null graphs G and H in this paper. We present the sufficient conditions for

$$\chi_{la}(G[H]) \le \chi_{la}(G)\chi_{la}(H).$$

Further, we conjecture that (i) there are infinitely many graphs G and H with $\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H)$, where $\chi(G)$ is the chromatic number of G; and (ii) for any positive integer k, $\chi_{la}(G[H]) = \chi(G)\chi(H)$ if and only if $\chi(G)\chi(H) = 2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil$, where 2k + 1 is the length of the shortest odd cycle in G. We refer to [3] for all undefined notation.

2. Bounds of $\chi_{la}(G[H])$

Before presenting our main results, we introduce some necessary notation and known results which will be used in this section.

Let $[a,b] = \{n \in \mathbb{Z} \mid a \leq n \leq b\}$ and $S \subseteq \mathbb{Z}$. Let S^- and S^+ be a decreasing sequence and an increasing sequence of S, respectively.

^{*}Corresponding author (ruixuezhang7@163.com).

Lemma 2.1 (see [8, Lemma 2.2]). For positive integers q and p, let $S_p(a) = [p(a-1) + 1, pa], 1 \le a \le q$. Then,

- (i) $\{S_p(a) \mid 1 \le a \le q\}$ is a partition of [1, pq];
- (ii) when a < b, every term of $S_p(a)$ is less than that of $S_p(b)$;
- (iii) for each $1 \le i \le p$, the sum of the *i*-th term of $S_p^+(a)$ and that of $S_p^-(b)$ is independent of *i*, where $1 \le a, b \le q$;

(iv) for any positive integer k and each $1 \le i \le p$, $\sum_{l=1}^{k} (i$ -th term of $S_p^+(a_l)) + \sum_{l=1}^{k} (i$ -th term of $S_p^-(b_l))$ is independent of i, where $1 \le a_l, b_l \le q$.

Note that the proof of Lemma 2.1 in [8] shows that the sum of *i*-term of $S_p^+(a)$ and that of $S_p^-(b)$ is p(a + b - 1) + 1. According to the definitions of $S_p^+(a)$ and $S_p^-(a)$, we shall write the sequence $S_p^+(a)$ and $S_p^-(a)$ as column vectors in this paper. Now we are ready to present our first main result.

Theorem 2.1. Suppose *H* admits a local antimagic *t*-coloring *f* that satisfies the following conditions:

- (a) for each vertex, the number of even incident edge labels equals the number of odd incident edge labels under f;
- (b) when $f^+(u) = f^+(v)$, $\deg(u) = \deg(v)$;

(c) when $f^+(u) \neq f^+(v)$, $pf^+(u) - \frac{1}{2} \deg(u)(p-1) \neq pf^+(v) - \frac{1}{2} \deg(v)(p-1)$ holds for a fixed integer p.

Then
$$\chi_{la}(pH) \leq t$$
.

Proof. Let $V(H) = \{x_1, \ldots, x_n\}$ and L be the labeling matrix of H according to f (for definition of labeling matrix, please see [5, 12]). Now we define a guide matrix $^{\dagger} \mathcal{M}$ by adding a '+' sign to all odd entries and a '-' sign to all even entries in L. We define a matrices $L_{i} = -L_{i}$ as follows. For each $1 \le i \le n$ the (i, k)-entry of L_{i} is the *i*-th term of $S^+(a)$ (resp. $S^-(a)$)

We define p matrices L_1, \ldots, L_p as follows. For each $1 \le i \le p$, the (j, k)-entry of L_i is the *i*-th term of $S_p^+(a)$ (resp. $S_p^-(a)$) if the corresponding (j, k)-entry of \mathcal{M} is +a (resp. -a), where $1 \le a \le |E(H)|$.

From the condition (a), for each row of L, the number of odd entries equals that of even entries. Thus, let a_1, \ldots, a_s denote the odd numerical entries of the *j*-th row of L and b_1, \ldots, b_s denote the even numerical entries of the *j*-th row of L, where *s* is a positive integer. Now,

$$r_j(L_i) = \sum_{l=1}^{s} [i\text{-th term of } S_p^+(a_l)] + \sum_{l=1}^{s} [i\text{-th term of } S_p^-(b_l)].$$

By Lemma 2.1 (iv), $r_j(L_i)$ is constant for a fixed *j*. Actually, it is

$$p\sum_{l=1}^{s}(a_{l}+b_{l})-ps+s=pr_{j}(L)-k(p-1)=pf^{+}(x_{j})-\frac{1}{2}\deg(x_{j})(p-1).$$

By conditions (a) and (b), the diagonal block matrix

$$\begin{pmatrix} L_1 & \star & \cdots & \star \\ \star & L_2 & \cdots & \star \\ \vdots & \vdots & \ddots & \vdots \\ \star & \star & \cdots & L_p \end{pmatrix}$$

is a local antimagic labeling of pH. Thus

$$\chi_{la}(pH) \le t.$$

It is known that $\chi_{la}(K_{1,2n}) = 2n + 1$ and $\chi_{la}(mK_{1,2n}) = 2nm + 1$ [2, Corollary 3]. Clearly, the upper bound stated in Theorem 2.1 is not sharp. From Theorem 2.1, we obtain the following result immediately.

Corollary 2.1. If *H* is an *r*-regular graph $(r \ge 2)$ with a local antimagic *t*-coloring *f* satisfying the condition (a) of Theorem 2.1, then $\chi_{la}(pH) \le t$ holds for any positive integer *p*.

[†]A guide matrix \mathcal{M} is an $(n-r) \times n$ matrix in which (j, k)-th entry is $(\mathcal{S})_{j,k}(\mathcal{M}')_{j,k}$, where $1 \leq j \leq n-r$, $1 \leq k \leq n$, \mathcal{S} is an $(n-r) \times n$ matrix obtained from \mathcal{S}_n (\mathcal{S}_n is a 'sign matrix', refer to [8]) by removing the last r rows, and \mathcal{M}' is also an $(n-r) \times n$ matrix in which $(\mathcal{M}')_{j,k} = (\mathcal{M}')_{k,j}$ for $1 \leq j < k \leq n-r$, the upper part of the off-diagonal entries is the increasing sequence [1, (n-r)(n+r-1)/2] and the entries of the main diagonal is [(n-r)(n+r-1)/2 + 1, (n-r)(n+r-1)/2 + (n-r)] in natural order.

Theorem 2.2. Let G be a graph of order p admitting a local antimagic $\chi_{la}(G)$ -coloring g and H be a graph of order n admitting a local antimagic $\chi_{la}(H)$ -coloring h. Suppose h satisfies the following conditions:

(*i*) For each vertex, the number of even incident edge labels equals the number of odd incident edge labels under h;

(ii) when
$$h^+(u) = h^+(v)$$
, $\deg_H(u) = \deg_H(v)$;

(iii) when $h^+(u) \neq h^+(v)$, $ph^+(u) - \frac{1}{2} \deg_H(u)(p-1) \neq ph^+(v) - \frac{1}{2} \deg_H(v)(p-1)$.

Moreover, g satisfies the following conditions:

(iv) when $g^+(u) = g^+(v)$, $\deg_G(u) = \deg_G(v)$, and

(v) when $q^+(u) \neq q^+(v)$, $q^+(u)n^3 - \frac{(n^3-n)\deg_G(u)}{2} \neq q^+(v)n^3 - \frac{(n^3-n)\deg_G(v)}{2}$.

Then $\chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$.

Proof. Let q(G) and q(H) denote the sizes of G and H respectively. Clearly, G[H] is a graph of order pn and size $pq(H) + q(G)n^2$. Suppose that $\{u_1, \ldots, u_p\}$ and $\{x_1, \ldots, x_n\}$ are the vertex lists of G and H respectively. According to these vertex lists, we define that A_G and A_H are the adjacency matrices of G and H respectively. Thus the adjacency matrix of G[H] can be expressed as

$$A_G \otimes J_n + I_p \otimes A_H$$

where J_n is an $n \times n$ matrix whose entries are all 1, I_p is an identity matrix of order p, and $A_G \otimes J_n$ is the Kronecker product of A_G and J_n . Note that $A_G \otimes J_n$ is the adjacency matrix of $G[O_n]$ and $I_p \otimes A_H$ is the adjacency matrix of $O_p[H]$, where O_n and O_p are null graphs of orders n and p. Therefore, the diagonal blocks of $A_G \otimes J_n$ are zero matrices and only the diagonal blocks of $I_p \otimes A_H$ are non-zero matrices.

Now we shall label the edges of $O_p[H]$ and $G[O_n]$ separately. According to the definition, $O_p[H] \cong pH$. By Theorem 2.1, pH has a local antimagic $\chi_{la}(H)$ -coloring, say ϕ , by using integers in [1, pq(H)] such that for each vertex (u_i, x_j) in $O_p[H]$, $\phi^+(u_i, x_j)$ is independent of i, where $1 \le i \le p$. The labeling matrix of ϕ is denoted by \mathcal{M}_1 .

Next we shall label $G[O_n]$ by integers in $[1, q(G)n^2]$. This labeling was constructed in the proof of [10, Theorem 2.1]. For completeness, we list the outline of the construction.

Let M_g be the labeling matrix of G corresponding to g. Suppose Ω is a magic square of order n. Let $\Omega_i = \Omega + (i-1)n^2 J_n$, where $1 \le i \le q(G)$ and ψ_0 be the labeling of $G[O_n]$ such that its labeling matrix \mathscr{M} is defined by replacing each entry of M_G with an $n \times n$ matrix as follows:

- (1) replace * by \bigstar which is an $n \times n$ matrix whose entries are *;
- (2) replace *i* by Ω_i , if *i* lies in the upper triangular part of M_q ;
- (3) replace *i* by Ω_i^T , if *i* lies in the lower triangular part of M_q , where Ω_i^T is the transpose of Ω_i .

For each vertex $(u_l, x_j) \in V(G[O_n])$, the row sum of \mathcal{M}_1 corresponding to the vertex (u_l, x_j) is

$$\psi_0^+(u_l, x_j) = g^+(u_l)n^3 - \frac{(n^3 - n)\deg_G(u_l)}{2},$$

which is independent of j. By condition (i), ψ_0 is a local antimagic labeling of $G[O_n]$. According to condition (v), there are at most $\chi(G)$ distinct row sums of \mathscr{M} . Let \mathscr{M}_2 be the matrix obtained from \mathscr{M} by adding all numerical entries with pq(H) and ψ be the corresponding labeling. Then, $\psi^+(u_l, x_j) = \psi_0^+(u_l, x_j) + npq(H)$, which is independent of j.

Therefore, $\mathcal{M}_1 + \mathcal{M}_2$ is a labeling matrix that corresponds to a local antimagic labeling of G[H], where * is treated as 0. Hence $\chi_{la}(G[H]) \leq \chi_{la}(G)\chi_{la}(H)$.

The following is an example of Theorem 2.2.

Example 2.1. Let G be the one point union of two 4-cycles and H be the one point union of two 3-cycles. Figure 1 shows the local antimagic 3-colorings of G and H.

Note that $\chi_{la}(G) = \chi_{la}(H) = 3$. It is easy to check that the above local antimagic 3-colorings of G and H satisfy the conditions of Theorem 2.2 respectively. Thus, the labeling matrices of G and H are shown below:

$$M_{g} = \begin{pmatrix} * & * & * & * & 8 & * & 1 \\ * & * & * & * & 2 & * & 7 \\ * & * & * & * & * & 6 & 3 \\ * & * & * & * & * & * & 4 & 5 \\ 8 & 2 & * & * & * & * & * \\ * & * & 6 & 4 & * & * & * \\ 1 & 7 & 3 & 5 & * & * & * \end{pmatrix}, \qquad M_{h} = \begin{pmatrix} * & * & 6 & * & 1 \\ * & * & * & 5 & 2 \\ 6 & * & * & * & 3 \\ * & 5 & * & * & 4 \\ 1 & 2 & 3 & 4 & * \end{pmatrix}.$$

Figure 1: Local antimagic 3-colorings of graphs *G* and *H*.

Let

$$L_{1} = \begin{pmatrix} * & * & 42 & * & 1 \\ * & * & * & 29 & 14 \\ 42 & * & * & * & 15 \\ * & 29 & * & * & 28 \\ 1 & 14 & 15 & 28 & * \end{pmatrix}, \quad L_{2} = \begin{pmatrix} * & * & 41 & * & 2 \\ * & * & * & 30 & 13 \\ 41 & * & * & * & 16 \\ * & 30 & * & * & 27 \\ 2 & 13 & 16 & 27 & * \end{pmatrix}, \quad L_{3} = \begin{pmatrix} * & * & 40 & * & 3 \\ * & * & * & 31 & 12 \\ 40 & * & * & * & 17 \\ * & 31 & * & * & 26 \\ 3 & 12 & 17 & 26 & * \end{pmatrix}$$
$$L_{4} = \begin{pmatrix} * & * & 39 & * & 4 \\ * & * & * & 32 & 11 \\ 39 & * & * & * & 18 \\ * & 32 & * & * & 25 \\ 4 & 11 & 18 & 25 & * \end{pmatrix}, \quad L_{5} = \begin{pmatrix} * & * & 38 & * & 5 \\ * & * & * & 33 & 10 \\ 38 & * & * & * & 19 \\ * & 33 & * & * & 24 \\ 5 & 10 & 19 & 24 & * \end{pmatrix}, \quad L_{6} = \begin{pmatrix} * & * & 37 & * & 6 \\ * & * & * & 34 & 9 \\ 37 & * & * & * & 20 \\ * & 34 & * & * & 23 \\ 6 & 9 & 20 & 23 & * \end{pmatrix}$$
$$L_{7} = \begin{pmatrix} * & * & 36 & * & 7 \\ * & * & * & 35 & 8 \\ 36 & * & * & * & 21 \\ * & 35 & * & * & 22 \\ 7 & 8 & 21 & 22 & * \end{pmatrix}.$$

Obviously, for each $1 \le i \le 7$, the row sums of L_i are 43, 43, 57, 57, 58 respectively. Let Ω be a magic square of order 5 with row sum 65 and $\Omega_i = \Omega + 25(i-1)J_5$, where $1 \le i \le 8$. For each $1 \le i \le 8$, let $\Psi_i = \Omega_i + 42J_5$. Then, the labeling matrix of G[H] is

(L_1)	\star	\star	\star	Ψ_8	\star	Ψ_1
\star	L_2	\star	\star	Ψ_2	\star	Ψ_7
\star	\star	L_3	\star	\star	Ψ_6	Ψ_3
\star	\star	\star	L_4	\star	Ψ_4	Ψ_5
Ψ_8^T	Ψ_2^T	\star	\star	L_5	\star	\star
\star	\star	\star	Ψ_6^T	Ψ_4^T	L_6	\star
$\langle \Psi_1^T \rangle$	Ψ_7^T	Ψ_3^T	Ψ_5^T	\star	\star	L_7

By calculating the row sums of the above matrix, we obtain that the distinct row sums are 1468, 1482, 1483, 1593, 1607, 1608, 2643, 2657, 2658. Thus, $\chi_{la}(G[H]) \leq 9$.

In [4], N. Čižek and S. Klavžar gave the lower bound of chromatic number of the lexicographic product as follows.

Corollary 2.2 (see [4, Corollary 3]). Let G be a non-bipartite graph. Then for any graph H, $\chi(G[H]) \ge 2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil$, where $k \ge 1$ and 2k + 1 is the length of a shortest odd cycle in G.

Combining Theorem 2.2 and Corollary 2.2, we obtain the following results.

Corollary 2.3. Suppose G and H are graphs satisfying the conditions listed in Theorem 2.2. If the length of a shortest odd cycle in G is 2k + 1, then $2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil \le \chi(G[H]) \le \chi_{la}(G[H]) \le \chi_{la}(G)\chi_{la}(H)$. In particular, if C_3 is a subgraph of G, then $3\chi(H) \le \chi_{la}(G[H]) \le \chi_{la}(G)\chi_{la}(H)$.

Proof. $\chi(G[H]) \leq \chi_{la}(G[H])$ is trivial. The lower bound follows from Corollary 2.2 and the upper bound follows from Theorem 2.2.

Corollary 2.4. Let *G* and *H* be regular graphs and *H* admit a local antimagic $\chi_{la}(H)$ -coloring *h*. Suppose for each vertex of *H*, the number of even incident edge labels equals the number of odd incident edge labels under *h*. If the length of a shortest odd cycle in *G* is 2k + 1, then $2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil \le \chi(G[H]) \le \chi_{la}(G[H]) \le \chi_{la}(G)\chi_{la}(H)$. In particular, if C_3 is a subgraph of *G*, then $3\chi(H) \le \chi_{la}(G[H]) \le \chi_{la}(G)\chi_{la}(H)$.

By applying Corollary 2.4, we can obtain $\chi_{la}(G[H])$ for some graphs *G* and *H*. An example is shown in Example 2.2.

Example 2.2. Let $G = C_3 \times K_2$ and H be the octahedral graph. Figure 2 presents their local antimagic 3-colorings which are shown in [9].

Figure 2: Local antimagic 3-colorings of graphs *G* and *H*.

It is easy to verify that G and H satisfy the conditions of Corollary 2.4, which implies that

$$3\chi(H) \le \chi_{la}(G[H]) \le \chi_{la}(G)\chi_{la}(H).$$

Since $\chi_{la}(G) = \chi_{la}(H) = 3$, $\chi_{la}(G[H]) = 9$.

In [7, Theorem 3.3], the first two authors proved that $\chi_{la}(C_{2m} \vee O_{2n}) = 3$ for $m \ge 2, n \ge 1$, where $C_{2m} \vee O_{2n}$ is the join of graphs C_{2m} and O_{2n} . In the following, we give another local antimagic 3-coloring of $C_{2m} \vee O_{2n}$ that satisfies the conditions (i) and (ii) of Theorem 2.2.

Theorem 2.3. For $m \ge 2$ and $n \ge 1$, there is a local antimagic 3-coloring of $C_{2m} \lor O_{2n}$ satisfying conditions (i) and (ii) of Theorem 2.2.

Proof. Let $V(C_{2m}) = \{u_i \mid 1 \leq i \leq 2m\}$ and $V(O_{2n}) = \{v_j \mid 1 \leq j \leq 2n\}$. We separate $C_{2m} \vee O_{2n}$ into two edge-disjoint graphs, C_{2m} and $O_{2m} \vee O_{2n}$, where $V(O_{2m}) = V(C_{2m})$.

Firstly, define a labeling f for C_{2m} . Let $f: V(C_{2m}) \to [1, 2m]$ such that $f(u_i u_{i+1}) = i$, where $1 \le i \le 2m$ and $u_{2m+1} = u_1$. Thus, $f^+(u_1) = 2m + 1$, $f^+(u_i) = 2i - 1$ for $2 \le i \le 2m$.

Next, we define a labeling g for $O_{2m} \vee O_{2n} \cong K_{2m,2n}$. The labeling matrix of g is $\begin{pmatrix} \bigstar & B \\ B^T & \bigstar \end{pmatrix}$ under the vertex lists $V(O_{2m}) = \{u_1, u_3, \ldots, u_{2m-1}, u_2, \ldots, u_{2m}\}$ and $V(O_{2n}) = \{v_1, v_2, \ldots, v_{2n}\}$. So we only need to fill the integers in [2m + 1, 2m + 4mn] into the matrix B.

Let ${\mathcal M}$ be a guide matrix as follows:

$$\begin{pmatrix} -2 & -3 \\ -2n+1 & -2n \\ -2n+1 & -2n \\ -(2n+1) & +4 \\ -(2n) & +4 \\ -(2n) & +4 \\ -(2n-2) & +6 \\ -(2n-3) & \cdots \\ -6 & +2n-2 \\ -6 & +2n-2 \\ \end{pmatrix}.$$

We replace each entry of \mathcal{M} by a column vector according to the rules:

(1) replace -a by $2S_m^-(a) - J_{m,1}$; replace +a by $2S_m^+(a) - J_{m,1}$, where $J_{m,1}$ is an $m \times 1$ matrix with all entries 1;

(2) replace -a by $2S_m^-(a)$; replace +a by $2S_m^+(a)$.

Let $\begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$ be the resulting matrix, where B_1 and B_2 are $m \times 2n$ matrices. The row sums of B_1 in column matrix is

$$(2S_m^-(2) - J_{m,1}) + (2S_m^-(3) - J_{m,1}) + 2S_m^+(2) + 2S_m^-(2n-1) + \sum_{i=1}^{n-2} 2S_m^+(2i+1) + \sum_{j=2}^{n-1} [2S_m^-(2j+1) - J_{m,1}]$$

= $4S_m^-(2n-1) + 2[S_m^-(2) + S_m^+(2)] + 2\sum_{i=1}^{n-2} [S_m^+(2i+1) + S_m^-(2i+1)] - nJ_{m,1}$
= $4S_m^-(2n-1) + 2(3m+1)J_{m,1} + 2\sum_{i=1}^{n-2} [m(4i+1) + 1]J_{m,1} - nJ_{m,1}$
= $4S_m^-(2n-1) + [4mn^2 - 10mn + 10m + n - 2]J_{m,1} = A_1.$

Clearly, the entries of the column matrix A_1 form a decreasing sequence with common difference 4. Now the first column of B_1 is the vector $2S_m^-(2) - J_{m,1}$. We shift each entry of this vector downward to 1 and move the last entry of this vector to the top, i.e., increase the entries by 2 except the (1, 1)-entry and subtract the (1, 1)-entry by 2(m - 1). Let this new matrix be B'_1 . Now, the first column of B'_1 has entries $2m + 1, 4m - 1, 4m - 3, \ldots, 2m + 3$ so that the second entry up to the last entry of the first column of B'_1 form a decreasing sequence with common difference 2 and the difference between the first entry and second entry is 2 - 2m.

Similarly the row sums of B_2 in column matrix is

$$4S_m^-(2n+1) + 4S_m^-(2n) + 4S_m^+(4) + 2\sum_{i=3}^{n-1} [S_m^+(2i) + S_m^-(2i)] - nJ_{m,1}$$

= $4S_m^-(2n+1) + 4(m(2n+3)+1)J_{m,1} + [2m(n-3)(2n+3) + 2(n-3)]J_{m,1} - nJ_{m,1}$
= $4S_m^-(2n+1) + [4mn^2 + 2mn - 6m + n - 2]J_{m,1} = A_2.$

It is clear that the entries of the column matrix A_2 form a decreasing sequence with common difference 4.

Combining the labelings f and g, we have a labeling ϕ for the whole graph $C_{2m} \vee O_{2n}$. One may check that $\phi^+(u_{2j-1}) = f^+(u_{2j-1}) + r_j(B'_1) = 4mn^2 - 2mn + 6m + n + 1$ for each $1 \leq j \leq m$; and $\phi^+(u_{2i}) = f^+(u_{2i}) + r_i(B_2) = 4mn^2 + 10mn - 2m + n + 1$ for each $1 \leq i \leq m$. Hence $\phi^+(u_{2i}) > \phi^+(u_{2j-1})$ for $1 \leq i, j \leq m$.

Clearly, the column sum of
$$\binom{B_1'}{B_2}$$
 is $(4mn + 4m + 1)m$. So $\phi^+(v_l) = (4mn + 4m + 1)m$.
 $\phi^+(u_{2j-1}) - \phi^+(v_l) = 4mn^2 - 4m^2n - 4m^2 - 2mn + 5m + n + 1$

$$=4mn(n-m-1)-4m^{2}+2mn+5m+n+1.$$
(1)

If
$$n \ge m+2$$
, then $\phi^+(u_{2i}) - \phi^+(v_l) > \phi^+(u_{2j-1}) - \phi^+(v_l) \ge 4mn - 4m^2 + 2mn + 5m + n + 1 > 0$.

$$\phi^{+}(v_{l}) - \phi^{+}(u_{2i}) = 4m^{2}n - 4mn^{2} + 4m^{2} - 10mn + 3m - n - 1$$

= 4mn(m - n - 2) + 4m^{2} - 2mn + 3m - n - 1. (2)

If $m \ge n+2$, then $\phi^+(v_l) - \phi^+(u_{2j-1}) > \phi^+(v_l) - \phi^+(u_{2i}) > 0$.

- 1) If n = m + 1, then $\phi^+(u_{2j-1}) \phi^+(v_l) = -2m^2 + 8m + 2 \neq 0$ (since the discriminant is not a prefect square) and $\phi^+(u_{2i}) \phi^+(v_l) = 10m^2 + 12m + 2 > 0$
- 2) If n = m, then $\phi^+(u_{2j-1}) \phi^+(v_l) = -6m^2 + 6m + 1 < 0$ and $\phi^+(u_{2i}) \phi^+(v_l) = 6m^2 2m + 1 > 0$.
- 3) If n = m 1, then $\phi^+(u_{2j-1}) \phi^+(v_l) = -10m^2 + 12m < 0$, but $\phi^+(u_{2i}) \phi^+(v_l) = 2m^2 8m \neq 0$ when $m \neq 4$. So, for n = m 1 = 3, we have to find another labeling for $C_8 \vee O_6$.

Label the edges of C_8 by 1, 8, 3, 2, 5, 4, 7, 6 in the natural order. Let this labeling be f. So the induced vertex labels of u_1, u_2, \ldots, u_8 are 7, 9, 11, 5, 7, 9, 11, 13.

We start from a 8×6 magic rectangle Ω (shown below). Increase each entry by 8 and swap some entries within the same column (indicated in italic). We have

$$\Omega = \begin{pmatrix} 1 & 44 & 9 & 36 & 29 & 28 \\ 2 & 43 & 10 & 35 & 30 & 27 \\ 3 & 42 & 11 & 34 & 31 & 26 \\ 4 & 41 & 12 & 33 & 32 & 25 \\ 45 & 8 & 37 & 16 & 17 & 24 \\ 46 & 7 & 38 & 15 & 18 & 23 \\ 47 & 6 & 39 & 14 & 19 & 22 \\ 48 & 5 & 40 & 13 & 20 & 21 \end{pmatrix} \longrightarrow \begin{bmatrix} 7 \\ 11 \\ 7 \\ 7 \\ 9 \\ 51 \\ 11 \\ 7 \\ 9 \\ 9 \\ 13 \\ 5 \end{bmatrix} \begin{pmatrix} 9 & 52 & 17 & 44 & 37 & 36 \\ 10 & 51 & 18 & 43 & 38 & 31 \\ 11 & 50 & 19 & 42 & 39 & 34 \\ 12 & 49 & 20 & 41 & 40 & 29 \\ 53 & 16 & 45 & 24 & 27 & 32 \\ 54 & 15 & 46 & 23 & 26 & 33 \\ 55 & 14 & 47 & 22 & 25 & 30 \\ 56 & 13 & 48 & 21 & 28 & 35 \end{pmatrix} \begin{bmatrix} 202 \\ 202 \\ 202 \\ 202 \\ 206 \\ 206 \\ 206 \\ 206 \end{bmatrix}$$

This matrix forms a labeling matrix of a labeling g of $K_{8,6}$ under the vertex list $\{u_1, u_3, u_5, u_7, u_2, u_6, u_8, u_4\}$ of C_8 , The column in front of the matrix is the corresponding induced vertex labels under f on C_8 , and the column behind of the matrix is the induced vertex labels of the labeling ϕ for $C_8 \vee O_6$. Thus $\phi^+(u_{2i-1}) = 202$, $\phi^+(u_{2i}) = 206$ and $\phi^+(v_j) = 260$ for $1 \le i \le 4$ and $1 \le j \le 6$.

Clearly, all labels are used. So ϕ is a local antimagic 3-coloring for $C_{2m} \vee O_{2n}$. Moreover, the number of even incident edge labels equals the number of odd incident edge labels for each vertex. Hence ϕ satisfies conditions (i) and (ii) of Theorem 2.2

Corollary 2.5. If $G = C_3 \times K_2$ and $H = C_{2m} \vee O_{2n}$, $m \ge 2$, $n \ge 1$, then $\chi_{la}(G[H]) = 9$.

Proof. Keep all notation defined in the proof of Theorem 2.3. Now $\deg_H(u_i) = 2n + 2$, $\deg_H(v_l) = 2m$ and p = 6. By Theorems 2.2 and 2.3, it suffices to check condition (iii) of Theorem 2.2, i.e., $6[\phi^+(u_1) - \phi^+(v_1)] - 5(n + 1 - m) \neq 0$ and $6[\phi^+(v_1) - \phi^+(u_2)] - 5(m - n - 1) \neq 0$.

By (1), we have

$$6[4mn(n-m-1) - 4m^{2} + 2mn + 5m + n + 1] - 5(n+1-m)$$

= $-24m^{2} + 24mn^{2} - 24m^{2}n - 12mn + 35m + n + 1$
= $24mn(n-m) - 24m(m-1) - 12mn + 11m + n + 1.$ (3)

Clearly (3) is less than zero for $n \ge m$. When $n \ge m + 2$, (3) $\ge 36mn - 24m^2 + 35m + n + 1 > 0$. When n = m + 1, (3) $= 12mn - 24m^2 + 35m + n + 1 = -12m^2 + 48m + 2 \ne 0$ since the discriminant is 2400 which is not a prefect square. By (2), we have

$$6[4mn(m-n-2) + 4m^{2} - 2mn + 3m - n - 1] - 5(m - n - 1)$$

= $24m^{2} + 24m^{2}n - 24mn^{2} - 60mn + 13m - n - 1$
= $24mn(m - n - 2) + 12m(m - n) + 12m^{2} + 13m - n - 1.$ (4)

Clearly (4) is greater than 0 for $m \ge n+2$. When $m \le n$, (4) $\le -48mn+12m^2+13m-n-1 = 12m(m-4n+1)+m-n-1 < 0$. When m = n + 1, then H is regular so condition (iii) holds. The proof is complete.

Example 2.3. Let $V(C_6) = \{u_1, u_3, u_5, u_2, u_4, u_6\}$ and $V(O_8) = \{v_j \mid 1 \le j \le 8\}$ be the vertex lists of C_6 and O_8 . According to the proof of Theorem 2.2 we label the edges of C_6 by 1 to 6 in natural order. So the induced vertex labels are 7, 3, 5, 7, 9, 11. Then

7	1	7	17	8	42	14	41	26	29 \	191
5		11	15	10	40	16	39	28	27	191
9		9	13	12	38	18	37	30	25	191
3		54	48	53	19	47	20	35	32	311
7		52	46	51	21	45	22	33	34	311
11	l	50	44	49	23	43	24	31	36 /	311

The column in front of the matrix is the corresponding induced vertex labels under fon C_6 , and the column behind of the matrix is the induced vertex labels of the labeling ϕ for $C_6 \vee O_8$. One may check that the column sum of the matrix is 183, which is $\phi^+(v_i)$ for all j.

Corollary 2.5 shows that there are infinite numbers of graphs H such that $\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H)$, where $G = C_3 \times K_2$.

We shall end the article by proposing the following conjectures and problem regarding the local antimagic chromatic number of the lexicographic product of graphs for further study.

Conjecture 2.1. There exist infinite numbers of graphs G and H, respectively, such that

$$\chi_{la}(G[H]) = \chi_{la}(G)\chi_{la}(H) = \chi(G)\chi(H).$$

Conjecture 2.2. For graphs G and H, $\chi_{la}(G[H]) = \chi(G)\chi(H)$ if and only if $\chi(G)\chi(H) = 2\chi(H) + \lceil \frac{\chi(H)}{k} \rceil$, where $k \ge 1$ and 2k + 1 is the length of a shortest odd cycle in G.

Problem 2.1. Characterize the graphs that satisfy the upper bounds of Theorems 2.1 and 2.2 respectively.

Acknowledgement

The fourth author acknowledges the support of the National Science Foundation of China (Grant Number 12101347) and the National Science Foundation of Shandong Province of China (Grant Number ZR2021QA085).

References

- [1] S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017) 275-285.
- [2] M. Bača, A. Semaničová-Feňovčíková, T. M. Wang, Local antimagic chromatic number for copies of graphs, Mathematics 9 (2021) #1230.
- [3] J. A. Bondy, U. S. R. Murty, Graph theory with applications, MacMillan, New York, 1976.
- [4] N. Čižek, S. Klavžar, On the chromatic number of the lexicographic product and the Cartesian sum of graphs, Discrete Math. 134 (1994)17-24.
- [5] G. C. Lau, H. K. Ng, W. C. Shiu, Cartesian magicness of 3-dimensional boards, Malaya J. Mat. 8 (2020) 1175–1185.
- [6] G. C. Lau, H. K. Ng, W. C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36 (2020) 1337–1354.
- [7] G. C. Lau, H. K. Ng, W. C. Shiu, On local antimagic chromatic number of cycle-related join graphs, Discuss. Math. Graph Theory 41 (2021) 133-152.
- [8] G. C. Lau, W. C. Shiu, On local antimagic total labeling of amalgamation graphs, (2022) arXiv:2203.06337 [math.CO].
- [9] G. C. Lau, W. C. Shiu, On join product and local antimagic chromatic number of regular graphs, Acta Math. Hungar., To appear.
- [10] G. C. Lau, W. C. Shiu, On local antimagic chromatic number of lexicographic product graphs, Acta Math. Hungar, To appear.
- [11] G. C. Lau, W. C. Shiu, H. K. Ng, On local antimagic chromatic number of graphs with cut-vertices, Iran. J. Math. Sci. Inform., To appear.
- [12] W. C. Shiu, P. C. B. Lam, S-M. Lee, Edge-magicness of the composition of a cycle with a null graph, Congr. Numer. 132 (1998) 9-18.