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Abstract
A “harmonic variant” of Zeilberger’s algorithm is utilized to improve upon the results introduced by Wang and Chu
[Ramanujan J. 52 (2020) 641–668]. Wang and Chu’s coefficient-extraction methodologies yielded evaluations for Ramanujan-
like series involving summand factors of the form H3

n+3HnH
(2)
n +2H

(3)
n , where Hn denotes a harmonic number and H

(x)
n is a

generalized harmonic number. However, it is unclear as to how Wang and Chu’s techniques could be applied to improve upon
such results by separately evaluating the series obtained upon the expansion of the summands according to the terms of
the factor H3

n+3HnH
(2)
n +2H

(3)
n . In this note, we succeed in applying Zeilberger’s algorithm toward this problem, providing

explicit evaluations for the series with a factor of the form H
(3)
n obtained from the aforementioned expansion. Our approach

toward generalizing Zeilberger’s algorithm to non-hypergeometric expressions may be applied much more broadly. The
series obtained by replacing H

(3)
n with H

(2)
n were highlighted as especially beautiful motivating examples in Wang and

Chu’s article. These H
(2)
n -series motivate our main results, which are natural higher-order extensions of these H

(2)
n -series.

Keywords: creative telescoping; Zeilberger’s algorithm; harmonic-type number; difference equation; Ramanujan-like
series.

2020 Mathematics Subject Classification: 33F10, 39A10.

1. Introduction

This article is mainly devoted to the application of a variant of Zeilberger’s algorithm [14, §6] based on non-hypergeometric
sums, in order to improve upon the following symbolic evaluations introduced by Wang and Chu [16]:

∞∑
n=1

(
2n
n

)2 (
H3
n + 3HnH

(2)
n + 2H

(3)
n

)
16n(2n− 1)

=
8

π

(
π2 − 2π2 ln 2 + 16 ln3 2− 24 ln2 +24 ln 2 + 6ζ(3)− 12

)
(1)

and
∞∑
n=1

(
2n
n

)2 (
H3
n + 3HnH

(2)
n + 2H

(3)
n

)
16n(2n− 1)2

=
8

π

(
4π2 ln 2− 96 ln 2 + 72 ln2 2− 32 ln3 2− 3π2 − 12ζ(3) + 60

)
, (2)

letting Hn = 1 + 1
2 + · · ·+ 1

n to denote the nth harmonic number and writing H(x)
n = 1 + 1

2x + · · ·+ 1
nx to denote generalized

harmonic numbers, and recalling the Riemann zeta function ζ(x) = 1+ 1
2x + 1

3x + · · · . Wang and Chu proved the closed-form
formulas in (1) and (2) by extracting the coefficient of x3 across both sides of the special case

2F1

[
1
2 − µ,

1
2 − ν

1− x

∣∣∣∣∣ 1

]
= Γ

[
1− x, µ+ ν − x

1
2 + µ− x, 1

2 + ν − x

]
(3)

of the Gauss summation theorem [2, §1.3], letting generalized hypergeometric series [2, §2.5] be denoted as

p+1Fp

[
a0, a1, . . . , ap+1

b1, b2, . . . , bp

∣∣∣∣∣ z
]

=

∞∑
n=0

(a0)n (a1)n · · · (ap+1)n
n! (b1)n (b2)n · · · (bp)n

zn,

and writing
Γ(x) :=

∫ ∞
0

ux−1e−u du

for <(x) > 0, with

Γ

[
α, β, . . . , γ

A,B, . . . , C

]
=

Γ(α)Γ(β) · · ·Γ(γ)

Γ(A)Γ(B) · · ·Γ(C)
,
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and where the Pochhammer symbol (x)n satisfies (x)n = Γ(n+x)
Γ(x) . It is far from clear as to how the techniques from [16]

may be applied to improve upon the Ramanujan-inspired formulas in (1) and (2), by providing separate evaluations for
series obtained by expanding the summands of (1) and (2) according to the summand factor H3

n + 3HnH
(2)
n + 2H

(3)
n . We

succeed in applying Zeilberger’s algorithm toward this problem, by proving the following formulas, and related results,
letting G =

∑∞
k=0

(−1)k

(2k+1)2 to denote Catalan’s constant:

∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(3)
k

2k − 1
= −2ζ(3)

π
+

32G

π
− 16

π
− 16 log(2) + 8, (4)

∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(3)
k

(2k − 1)2
=

4ζ(3)

π
− 96G

π
+

80

π
+ 48 log(2)− 32. (5)

The identities
∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(2)
k

2k − 1
= 4− π

3
− 8

π
(6)

and
∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(2)
k

(2k − 1)2
=

2π

3
− 12 +

32

π
(7)

are highlighted as especially beautiful [16] motivating examples in [16], which greatly adds to the interest in our new
formulas on display in (4) and (5): We see that the series in (4) and (5) are precisely the series obtained by replacing
summand factor H(2)

k with H
(3)
k in (6) and (7), respectively. So, (4) and (5) are natural higher-order extensions of the

Wang–Chu formulas in (6) and (7) that are highlighted as especially beautiful applications of the techniques from [16].
Since these past techniques introduced in [16] do not seem to apply to (4) and (5), this, in conjunction with the foregoing
considerations, emphasizes the remarkable nature about the main results and techniques that we introduce.

Although the main results in this article are our formulas in (4) and (5) along with our proofs for these formulas, the
way we extend Zeilberger’s algorithm to non-hypergeometric sums, as in Section 2 below, is of interest in its own right. It
seems that this “harmonic Zeilberger” approach may be applied quite broadly to further improve upon (1) and (2) and to
generalize (4) and (5); for the sake of brevity, we leave a full exploration along these lines for a separate project.

Evaluations as in (1) and (2) are inspired by Ramanujan’s series for 1
π (cf. [4]). Apart from the famous 17 series for 1

π

due to Ramanujan [15] (cf. [3, pp. 352–354]) and Ramanujan’s 4F3(−1)-series for 1
π included in his first letter to Hardy,

the Ramanujan-inspired series as in [4,16] are such natural extensions, as recently explored in [7], of Ramanujan’s sums
of the form

S(r) =

∞∑
k=0

(
1

16

)k (
2k

k

)2
1

k + r
;

see [1]. Our application of Zeilberger’s algorithm to prove the Ramanujan-inspired series in (4) and (5) is very much
inspired by Zeilberger’s famous proof [8] via the Wilf–Zeilberger method [14] of Ramanujan’s formula

2

π
=

∞∑
k=0

(
− 1

64

)k (
2k

k

)3

(4k + 1).

In our recent publication [6], we had solved some open problems given by Wang and Chu in the 2022 article [17],
which concerned series involving harmonic-type numbers such as the odd harmonic numbers Ok = 1 + 1

3 + · · ·+ 1
2k−1 . We

had applied the WZ method in [6] to derive a 3F2(1)-identity, and the application of differential operators to this identity
resulted in a linear relation among series considered in [17]. In contrast, instead of applying parameter derivatives to
obtain harmonic or harmonic-type numbers from hypergeometric formulas, we instead use telescoping arguments for
expressions involving H(3)

k .
As below, we are to often use the following hypergeometric evaluation, which has been proved in a variety of different

ways in [5,9,13]:

4F3

[
1
2 ,

1
2 , 1, 1

2, 2, 2

∣∣∣∣∣ 1

]
=

∞∑
k=0

(
2k
k

)2
16k(k + 1)3

= 16 log 2 +
48

π
− 32G

π
− 16. (8)

Following [5], one way of going about proving the evaluation in (8) relies on the following moment formula for the sequence
of Catalan numbers: (

2n
n

)
n+ 1

=
1

2π

∫ 4

0

xn
√

4− x
x

dx.

8
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Again, following [5], we can use this moment formula to show that the 4F3(1)-series in (8) is equal to

1

2π

∫ 4

0

−8
√

4− x

(
1

x

)3/2(
− 2 +

√
4− x+ 2 ln(2)− 2 ln

(
1 +

√
1− x

4

))
dx.

A dilogarithmic form for the corresponding indefinite integral is provided in [5], and this antiderivative evaluation may be
used in a direct way to obtain the symbolic form in (8).

In order to apply Zeilberger’s algorithm, we employ its implementation in Maple. In this regard, we input

with(SumTools[Hypergeometric]):

and then specify a hypergeometric expression T to which we want to apply Zeilberger’s algorithm, and then input the
following.

Zpair := Zeilberger(T, n, k, En):

The hypergeometric function G obtained by Zeilberger’s algorithm may then be obtained by inputting the following.

G := Zpair[2]

The polynomial identity satisfied by T may be computed with the following.

L := Zpair[1]

It is useful, with regard to our formulation of the proof of Theorem 2.1, to provide references for the classical series
shown in (9) and (10) below, following the exposition in [12]. The closed form for what is referred to as Forsyth’s series

∞∑
k=0

(
2k
k

)2
16k(2k − 1)2

=
4

π
(9)

dates back to 1883 (see [10]), and Glaisher’s formula

∞∑
k=0

(
2k
k

)2
16k(k + 1)

=
4

π
(10)

was introduced in 1905 [11] (cf. [12]).

2. Main results

Theorem 2.1. The symbolic evaluations shown in (4) and (5) hold true.

Proof. Set F (n, k) =
(
n
k

)2. Using Zeilberger’s algorithm, this gives us the companion function

G(n, k) =
2k2

(
k − 3n

2 −
3
2

) (
n
k

)2
(k − n− 1)2

,

and we find that the pair (F,G) satisfies the following difference equation:

(n+ 1)F (n+ 1, k) + (−4n− 2)F (n, k) = G(n, k + 1)−G(n, k).

We multiply both sides of the above equality by H(3)
k :

((n+ 1)F (n+ 1, k) + (−4n− 2)F (n, k))H
(3)
k = G(n, k + 1)H

(3)
k −G(n, k)H

(3)
k .

According to the relation H(3)
k+1 = H

(3)
k + 1

(k+1)3 , we obtain that

((n+ 1)F (n+ 1, k) + (−4n− 2)F (n, k))H
(3)
k +G(n, k + 1)

1

(k + 1)3
= G(n, k + 1)H

(3)
k+1 −G(n, k)H

(3)
k ,

so that the right-hand side telescopes upon the application of summation operators over indices k ∈ N0. Now, set n = 1
2 in

the above displayed equality, and apply
∑∞
k=0 · to both sides of the resultant equality, noting that

G(1/2, k) =
2(4k − 9)k2

(2k − 3)2

(
1/2

k

)2

.

9
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By the telescoping of the series
∑∞
k=0(G(n, k + 1)H

(3)
k+1 − G(n, k)H

(3)
k ), this is easily seen to vanish. So, we have applied

Zeilberger’s algorithm to prove the following:

∞∑
k=0

−4

( 1
2

k

)2

+
3
( 3

2
k

)2
2

H
(3)
k = −

∞∑
k=0

G
(

1
2 , k + 1

)
(k + 1)3

= −1

2

∞∑
k=0

(
1

16

)k (
2k

k

)2
4k − 5

(2k − 1)2(k + 1)3

= −1

2

∞∑
k=0

(
1

16

)k (
2k

k

)2(
40

27(2k − 1)
− 8

9(2k − 1)2
− 20

27(k + 1)
− 8

9(k + 1)2
− 1

(k + 1)3

)
.

So, by expanding the above summand, we obtain a Q-linear combination of the 4F3-series in (8), Ramanujan’s S-function
evaluated at 1 (see [1,7,12]), Ramanujan’s S-function evaluated at − 1

2 (see [1,7,12]), Forsyth’s series as shown in (9), and
the limit of either side of the following partial sum identity:

n−1∑
k=0

(
1

16

)k (
2k
k

)2
(k + 1)2

= 4
(4n+ 1)

(
2n
n

)2
16n

− 4. (11)

Simplifying the linear combination of the corresponding closed forms for all of these series, this gives us the following:
∞∑
k=0

(
1

16

)k (
2k

k

)2(
27

8(2k − 1)
− 5

8(2k − 1)2
− 27

8(2k − 3)
+

27

8(2k − 3)2

)
H

(3)
k = −16G

π
− 88

9
+

968

27π
+ 8 log(2).

Now, we set F (n, k) = (2k − 1)
(
n
k

)2, and we again apply Zeilberger’s algorithm, which provides the following companion to
F :

G(n, k) =
k2
(
k2(4n+ 2)− 2k(n+ 2)(3n+ 1) + 3(n+ 1)(3n+ 1)

) (
n
k

)2
(n− k + 1)2

.

Zeilberger’s algorithm gives us the discrete difference equation shown below:(
n2 − 1

)
F (n+ 1, k) +

(
−4n2 − 2n

)
F (n, k) = G(n, k + 1)−G(n, k).

Again, we multiply both sides by H(3)
k , and then use the recurrence H(3)

k+1 = H
(3)
k + 1

(k+1)3 so as to once again obtain an
expression of the form

G(n, k + 1)H
(3)
k+1 −G(n, k)H

(3)
k , (12)

so that this expression again telescopes upon the application of
∑∞
k=0 ·. So, setting n = 1

2 , and then following through with
the telescoping argument indicated in the preceding sentence, we obtain that:

∞∑
k=0

(
−2(2k − 1)

( 1
2

k

)2

− 3

4
(2k − 1)

( 3
2

k

)2
)
H

(3)
k = −

∞∑
k=0

G
(

1
2 , k + 1

)
(k + 1)3

.

The right-hand side may be rewritten as:

−1

4

∞∑
k=0

(
1

16

)k (
2k

k

)2(
− 56

27(2k − 1)
+

16

9(2k − 1)2
+

28

27(k + 1)
+

10

9(k + 1)2
+

5

(k + 1)3

)
.

Again, we obtain a linear combination of the same 4F3(1)-series as before, Forsyth’s series, S(1), S
(
− 1

2

)
, and the sum of

the squares of normalized Catalan numbers. So, we may obtain that
∞∑
k=0

(
1

16

)k (
2k

k

)2(
− 59

16(2k − 1)
+

27

16(2k − 3)
− 27

8(2k − 3)2

)
H

(3)
k =

40G

π
+

190

9
− 1844

27π
− 20 log(2).

Now, we set F (n, k) = (2k − 1)2
(
n
k

)2, and we again apply Zeilberger’s algorithm. This gives us the following companion
function G(n, k) given by the following Maple output:

(k^3-1/2*(3*n^2+8*n-1)/n*k^2+1/4*(36*n^5+78*n^4+60*n^3+42*n^2+9*n-4)/n/(2*n^3+2*n^2+2*n+1)*k-

1/8*(54*n^5+90*n^4+60*n^3+29*n^2+n-4)/n/(2*n^3+2*n^2+2*n+1))*k^2/(-n+k-1)^2*binomial(n,k)^2*(16*n^3+

16*n^2+16*n+8)

10



J. M. Campbell / Discrete Math. Lett. 11 (2023) 7–13 11

Zeilberger’s algorithm gives us that the following difference equation holds true:(
2n4 − 2n3 + 3n− 1

)
F (n+ 1, k) +

(
−8n4 − 4n3 − 4n2 + 2

)
F (n, k) = G(n, k + 1)−G(n, k).

Once again, we multiply both sides by H(3)
k , and, as before, manipulate the resultant equality so as to obtain an expression

as in (12) that telescopes as we sum over k ∈ N0. So, by applying
∑m
k=0 ·, we find that

m∑
k=0

((
2n4 − 2n3 + 3n− 1

)
F (n+ 1, k) +

(
−8n4 − 4n3 − 4n2 + 2

)
F (n, k)

)
H

(3)
k +

m∑
k=0

G(n, k + 1)

(k + 1)3
(13)

is equal toG(n,m+1)H
(3)
m+1−G(n, k)H

(3)
0 , lettingm ∈ N0. By setting n = 1

2 , we can show that the limit ofG(n,m+1)H
(3)
m+1−

G(n, k)H
(3)
0 as m→∞ is 11ζ(3)

2π , if we restrict m to integer values. More specifically, by writing

G

(
1

2
,m+ 1

)
H

(3)
m+1 −G

(
1

2
, k

)
H

(3)
0 =

π(4m(11m(4m− 3)− 2) + 3)H
(3)
m+1

32Γ
(

3
2 −m

)2
Γ(m+ 1)2

,

since lim
m→∞

H
(3)
m+1 = ζ(3), it remains to evaluate

lim
m→∞

(3 + 4m(11m(4m− 3)− 2))πζ(3)

32Γ
(

3
2 −m

)2
Γ(m+ 1)2

,

again with m restricted to N. For ` ∈ N0, we have that

Γ

(
1

2
− `
)

=
(−4)`

√
π(

2`
`

)
`!

,

so it remains to evaluate

lim
m→∞

2−4m−1(4m(11m(4m− 3)− 2) + 3)ζ(3)
(

2(m−1)
m−1

)2
m2

,

which is easily seen to reduce to 11ζ(3)
2π using Stirling’s approximation, giving us the value of (13) as m → ∞. As for the

series
∞∑
k=0

G
(

1
2 , k + 1

)
(k + 1)3

required for our evaluation, we find that this is equivalent to

11

2

∞∑
k=0

(
1

16

)k (
2k

k

)2(
16

297(2k − 1)
− 8

99(2k − 1)2
− 8

297(k + 1)
+

97

99(k + 1)2
− 3

4(k + 1)3

)
.

Once again, we obtain a linear combination of the 4F3(1)-series in (8), the Forsyth series, S(1), S
(

1
2

)
, and (11). This gives

us that
∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(3)
k

(2k − 3)2
= −352G

9π
+

44ζ(3)

27π
− 3200

243
+

24784

729π
+

176 log(2)

9
.

Now, we set F (n, k) = (2k + 1)2
(
n
k

)2, and we again apply Zeilberger’s algorithm. The G-function in this case is as in the
Maple output shown below.

(k^3-1/2*(3*n^2+4*n+1)/n*k^2+1/4*(12*n^5+70*n^4+156*n^3+170*n^2+93*n+20)/n/(2*n^3+10*n^2+14*n+5)*k-

1/8*(6*n^5+34*n^4+88*n^3+121*n^2+81*n+20)/n/(2*n^3+10*n^2+14*n+5))*k^2/(-n+k-

1)^2*binomial(n,k)^2*(16*n^3+80*n^2+112*n+40)

Zeilberger’s algorithm gives us that the following difference equation holds:(
2n4 + 6n3 + 4n2 − n− 1

)
F (n+ 1, k) +

(
−8n4 − 36n3 − 36n2 + 8n+ 10

)
F (n, k) = G(n, k + 1)−G(n, k).

We again employ our harmonic Zeilberger technique, in much the same way as before, giving us that
m∑
k=0

((
2n4 + 6n3 + 4n2 − n− 1

)
F (n+ 1, k) +

(
−8n4 − 36n3 − 36n2 + 8n+ 10

)
F (n, k)

)
H

(3)
k +

m∑
k=0

G(n, k + 1)

(k + 1)3

with n = 1
2 and m→∞ reduces to 59ζ(3)

2π . This, together with
∞∑
k=0

G
(

1
2 , k + 1

)
(k + 1)3

11
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being equal to

59

2

∞∑
k=0

(
1

16

)k (
2k

k

)2(
112

1593(2k − 1)
− 32

531(2k − 1)2
− 56

1593(k + 1)
+

511

531(k + 1)2
− 185

236(k + 1)3

)
,

can be used to show that
∞∑
k=0

(
1

16

)k (
2k

k

)2(
27

4(2k − 1)
+

27

8(2k − 1)2
− 27

4(2k − 3)
+

27

2(2k − 3)2

)
H

(3)
k = −740G

π
+

59ζ(3)

2π
− 2308

9
+

18122

27π
+ 370 log(2).

We define s1–s4 as below:

s1 =

∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(3)
k

(2k − 3)2
,

s2 =

∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(3)
k

2k − 3
,

s3 =

∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(3)
k

(2k − 1)2
,

s4 =

∞∑
k=0

(
1

16

)k (
2k

k

)2
H

(3)
k

2k − 1
.

So, using Zeilberger’s algorithm, we have shown that
27
8 − 27

8 − 5
8

27
8

− 27
8

27
16 0 − 59

16

1 0 0 0

27
2 − 27

4
27
8

27
4

 .


s1

s2

s3

s4

 =


− 16G

π −
88
9 + 968

27π + 8 log(512)
9

40G
π + 190

9 −
1844
27π − 20 log(2)

− 352G
9π + 44ζ(3)

27π −
3200
243 + 24784

729π + 176 log(2)
9

− 740G
π + 59ζ(3)

2π − 2308
9 + 18122

27π + 370 log(2)

 .

The 4× 4 matrix shown above is invertible. So, we find that:
s1

s2

s3

s4

 =


0 0 1 0

− 59
148 − 1

2
775
1184 − 295

3996

− 16
37 0 − 54

37
8
37

− 27
148 − 1

2 − 729
1184 − 5

148

 .


− 16G

π −
88
9 + 968

27π + 8 log(512)
9

40G
π + 190

9 −
1844
27π − 20 log(2)

− 352G
9π + 44ζ(3)

27π −
3200
243 + 24784

729π + 176 log(2)
9

− 740G
π + 59ζ(3)

2π − 2308
9 + 18122

27π + 370 log(2)

 .

Computing the above matrix product, this gives us our desired symbolic forms for s3 and s4.

3. A harmonic Zeilberger method

It seems that our harmonic Zeilberger approach applied above may also be applied to many variants and extensions of
series as in (4) and (5). For example, we encourage the application of our methods to the series obtained by replacing
H

(3)
k with H

(4)
k , by replacing H

(3)
k with H3

k , by replacing
(

1
16

)k (2k
k

)2 with higher powers of normalized central binomial
coefficients, etc. For the sake of brevity, we leave this for a future project. We broadly describe our harmonic Zeilberger
method as follows, letting F (n, k) be hypergeometric, and such that, informally, inputting n = 1

2 or some other specified
value yields an expression “resembling” the summand of a series that is to be evaluated.

Step 1: Apply Zeilberger’s algorithm to obtain a difference equation of the form
m∑
i=0

pi(n)F (n+ i, k) = G(n, k + 1)−G(n, k), (14)

for polynomials p.

Step 2: Let (∆(k) : k ∈ N0) denote a sequence of harmonic-type numbers such that ∆(k+ 1)−∆(k) is a rational expression
1

r(k+1) . Multiply both sides of (14) by ∆(k), and then manipulate this equality to obtain that:
m∑
i=0

pi(n)F (n+ i, k)∆(k)−G(n, k + 1)
1

r(k + 1)
= G(n, k + 1)∆(k + 1)−G(n, k)∆(k).

12
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Step 3: Sum both sides over k ∈ N0, so that the right-hand side telescopes. Evaluate the limit of this telescoping series
symbolically. Apply partial fraction decomposition to evaluate, if possible,

∑∞
k=0G(n, k + 1) 1

r(k+1) .

Step 4: Simplify the summand of
∑m
i=0 pi(n)F (n + i, k)∆(k) and apply partial fraction decomposition so as to obtain a

linear combination of series involving ∆(k) as a summand factor.

Step 5: Repeat the above steps with different choices for F , so as to ideally obtain an invertible system of linear equations,
given by the linear combinations obtained from Step 4.

We have successfully applied this kind of setup, as in the proof of our main result. Subsequent to the submission of
this article, the author had contacted Ce Xu in regard to the formula (4) introduced in this article. Afterwards, Xu and
Jianqiang Zhao formulated a remarkably different proof of the formula shown in (4), using an integration-based approach
concerning the theory of colored multiple zeta values [18]. We greatly encourage the application of the above procedure,
as given by Steps 1–5, in conjunction with the CMZV-based techniques from [18].
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