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Abstract

A mixed graph MG is obtained from an unoriented simple graph G by giving directions to some edges of G. The Hermitian
adjacency matrix of the second kind of MG is defined as N(MG) = (nij), in which nij = nji = 1+

√
3i

2
if vi → vj , nij = 1 if

vi ↔ vj and 0 otherwise. The Hermitian Laplacian matrix (Hermitian quasi-Laplacian matrix) of the second kind of MG

is defined as L(MG) = D(MG) − N(MG) (Q(MG) = D(MG) + N(MG), respectively), where D(MG) is the degree diagonal
matrix of the underlying graph G of MG. In this paper, we derive some necessary and sufficient conditions for the singularity
of L(MG) and Q(MG). We also characterize the principal minor version of Matrix-Tree theorem based on L(MG) and Q(MG).
As a consequence, we give the explicit expressions for the determinants of two matrices L(MG) and Q(MG) for MG.
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1. Introduction

We only consider simple and finite connected graphs in this paper. Let G be an unoriented graph with the vertex set
V = {v1, v2, . . . , vn} and edge set E, in which |V | = n and |E| = m. The degree di of a vertex vi in G is the number of edges
incident with vi. A mixed graph MG is obtained from an unoriented graph G by giving directions to some edges in G. So
G is often referred to the underlying graph of MG. A mixed MG′ is called a mixed subgraph of MG if G′ is a subgraph of
G and the direction of all the edges of MG′ is the same as in MG. For two adjacent vertices vi and vj of MG, we denote an
oriented edge from vi to vj by vi → vj or vj ← vi. Similarly, we denote by vi ↔ vj an unoriented edge between vi and vj .
Usually, we also use MC to represent a mixed cycle.

Until now the research on spectral theories of mixed graphs has been paid more and more attention. Recall that, for a
mixed graph MG, its Hermitian adjacency matrix of the first kind H(MG) = (hij) was proposed by Guo and Mohar [5] and
independently by Liu and Li [8], in which hij = i if vi → vj , hij = −i if vi ← vj , 1 if vi ↔ vj , and 0 otherwise. For this matrix
associated to the mixed graph, some basic spectral properties were also established in [5, 8]. In 2015, Yu and Qu [15]
introduced the incident matrix and Hermitian Laplacian matrix of the first kind for a mixed graph MG and determined
the positive of MG. Subsequently, Yu et al. [14] characterized the singularity of the Hermitian (quasi-)Laplacian matrix
of the first kind for MG and gave the concise expressions of the determinants of these two matrices. In 2017, an analytical
expression for the principal minors of the Hermitian (quasi-)Laplacian matrix of the first kind was derived in [16].

Recently, a Hermitian adjacency matrix of the second kind, denoted by N(MG), for mixed graphs was proposed by
Mohar [9], in which nij is the sixth root of unity ω = 1+

√
3i

2 if vi → vj , ω = 1−
√
3i

2 if vi ← vj , 1 if vi ↔ vj , and 0 otherwise.
It is clear that N(MG) is Hermitian, so its eigenvalues are all real. At the same time, Mohar [9] pointed out the necessity
of studying this novel matrix and gave some basic spectral results in spectral graph theory. The main reason is that the
sixth root of unity satisfies ω · ω = 1 and ω + ω = 1, which makes it more natural to study the relationship between
eigenvalues and combinatorial properties. Moreover, the sixth root of unity also appears across applications, such as
in the definition Eisenstein integers [10, 13], Quantum Field Theory [6] and so on. In 2022, Li and Yu [7] studied the
characteristic polynomial of this matrix and obtained an upper bound on its spectral radius. Using switching equivalence,
they also studied properties of mixed graphs that are cospectral based on this matrix. For more details about this matrix,
we refer readers to [7,9].

In this paper we give two incidence matrices of the second kind for a mixed graph MG, denoted by S(MG) and T (MG)

hereinafter. Using these two matrices, we introduce the concept of Hermitian Laplacian matrix of the second kind (resp.
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Hermitian quasi-Laplacian matrix of the second kind) for a mixed graph MG, which is represented by L(MG) = D(MG)−
N(MG) (resp. Q(MG) = D(MG) + N(MG)), where D(MG) is the degree diagonal matrix of MG. Bapat et al. [1] proposed
a real Laplacian matrix for mixed graphs and obtained matrix tree theorem of mixed graphs in 1999. Inspired by this
research and [16], we characterize the principal minor version of the matrix tree theorem based on the (quasi-)Hermitian
Laplacian matrix of the second kind for MG. In addition, we also give the explicit expressions about the determinants of
these two matrices L(MG) and Q(MG) for the mixed graph MG and present some necessary and sufficient conditions for
the Hermitian Laplacian matrix of the second kind L(MG) to be singular.

It is worth noting that the spectral theories of mixed graphs arising from the Hermitian matrices of first and second
kind can be both embodied in the theory of gain graphs. The Hermitian matrix of the first kind for a mixed graph MG

is the (Hermitian) adjacency matrix associated to the gain graph Γ′ obtained from G by choosing the weight eπ2 i for each
oriented edge vivj , and the weight 1 for all the unoriented edges. Similarly, the Hermitian matrix of the second kind for
a mixed graph MG is the (Hermitian) adjacency matrix associated to the gain graph Γ′′ obtained from G by choosing the
weight eπ6 i for each oriented edge vivj , and the weight 1 for all the unoriented edges. It turns out that many results in this
paper could be alternatively deduced from the correspondent results involving complex unit gain graphs and quaternion
unit gain graphs (see [2–4, 11, 12]). Our proofs ignore the overlapping of the two contexts; thus, no knowledge on gain
graphs is required to understand them.

2. Hermitian Laplacian matrix of the second kind for mixed graphs

Suppose that MG is a mixed graph of order n and size m. An incidence matrix of the second kind of MG is an n×m matrix
S(MG) = (sie) with entries

sie =



−sje, if vi ↔ vj ;

− 1+
√
3i

2 sje, if vi → vj ;

− 1−
√
3i

2 sje, if vi ← vj ;

0, otherwise,

(1)

where sje is a complex number such that |sje| = 1. Notice that we say “an” incidence matrix of the second kind of MG

because S(MG) is not unique.
The following lemma is a particular case of Lemma 3.1 in [11]. Considering that the details of the proof are different,

we give a complete proof below.

Lemma 2.1. Let MG be a mixed graph of order n with edge set E. Then L(MG) = S(MG)S(MG)∗, where S(MG) is as
described in (1) and S(MG)∗ denotes the conjugate transpose of S(MG).

Proof. First we let S(MG)S(MG)∗ = (σij)n×n. It is easy to see that σij =
∑
e∈E sie · sje. And then we just need to compare

the entries between two matrices L(MG) and S(MG)S(MG)∗. We divide it into the following two cases.

Case 1: i 6= j. For two vertices vi and vj , σij = 0 if vi is not adjacent to vj . If vi is adjacent to vj , then σij = siesje.
Now we consider this value according to the direction of the edge between vi and vj . If vi ↔ vj , then sie = −sje and
σij = siesje = −1 = −nij . If vi → vj , then sie = − 1+

√
3i

2 sje and σij = − 1+
√
3i

2 · sjesje = − 1+
√
3i

2 = −nij . Finally, if vi ← vj ,
then sie = − 1−

√
3i

2 sje and σij = − 1−
√
3i

2 · sjesje = − 1−
√
3i

2 = −nij .

Case 2: i = j. In this case, it is clear that σij =
∑
e∈E siesje =

∑
e∈E |sie|2 = di = nii.

Based on the discussion above, we obtain L(MG) = S(MG)S(MG)∗.

The above lemma further implies that L(MG) is a positive semidefinite matrix.
Let W = vi1vi2 · · · vik be a mixed walk of length k, and its weight is denoted by n(W ) = ni1i2ni2i3 · · ·nik−1ik , in which nij

is the element in the i-th row and j-th column of the Hermitian adjacency matrix of the second kind. It is easy to verify
that, if the weight of W is λ for one given direction, then the weight is λ after the directions of all edges are reversed.
Furthermore, let n(MC) = n12n23 · · ·nn−1,nnn1 be the weight of a mixed cycle MC with n vertices. Next we consider four
different types of mixed cycles depending on their weights. If n(MC) = 1, then MC is called a positive cycle. If n(MC) = −1,
then MC is called a negative cycle. Similarly, if n(MC) = 1±

√
3i

2 , then MC is called a semi-positive cycle. If n(MC) = −1±
√
3i

2 ,
then MC is called a semi-negative cycle. Moreover, we call a mixed graph MG to be positive whenever each mixed cycle of
MG is positive.
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Lemma 2.2. Let MG be a mixed graph with n vertices and m edges. Then the matrix L(MG) is singular if and only
if any walk W = vi1vi2 · · · vik has the same weight for 1 ≤ k ≤ n. And at this time, there exists an eigenvector η =

(1, n(W12), n(W13), . . . , n(W1n))> such that L(MG)η = 0, where W1k is a walk from v1 to vk in MG.

Proof. First, assume that the matrix L(MG) is singular. Then there exists a non-zero vector ξ> = (ξ1, ξ2, . . . , ξn) such that
L(MG)ξ = 0, which implies that S(MG)∗ξ = 0. Now, by some calculations, one has

(S(MG)∗ξ)e = sieξi + sjeξj =


(ξi − ξj)sie, if vi ↔ vj ;

(ξi − 1+
√
3i

2 ξj)sie, if vi → vj ;

(ξi − 1−
√
3i

2 ξj)sie, if vi ← vj .

(2)

Since S(MG)∗ξ = 0, then ξi = nijξj for each edge e = vivj of MG. It follows that

ξi1 = ni1i2ξi2 = ni1i2ni2i3ξi3 = · · · = ni1i2ni2i3 · · ·nik−1ikξik = n(Wi1ik)ξik . (3)

Hence, any walk W = vi1vi2 · · · vik has the same weight for 1 ≤ k ≤ n. Furthermore,

ξ> = (ξ1, ξ2, . . . , ξn) = (ξ1, n(W12)ξ1, n(W13)ξ1, . . . , n(W1n)ξ1) = ξ1η
>. (4)

This also implies that ξ1 6= 0 and L(MG)η = 1
ξ1
S(MG)S(MG)∗ξ = 0.

Conversely, since any walk W = vi1vi2 · · · vik has the same weight for 1 ≤ k ≤ n, then we may let ζ = (ζ1, ζ2, . . . , ζn)> be
a vector such that ζi = nijζj for each edge e = vivj . Thus, it is easy to see that

ζ∗L(MG)ζ =
∑

e∈E(MG)

|ζi − nijζj |2 =
∑

e∈E(MG)

|nijζj − nijζj |2 = 0. (5)

Therefore, L(MG) is a singular matrix.

Observe that, by some careful checking, we find that Theorem 4 in [15] still holds in our discussion. Thus we have the
following theorem from Theorem 4 in [15] and Lemma 2.2. Remark that we can also draw this theorem from Proposition
2.1 in [4].

Theorem 2.1. A mixed graph MG is positive if and only if L(MG) is singular.

The following lemma can be easily deduced from Lemma 6.7 in [3], but here we give a different proof according to the
method of determinant expansion.

Lemma 2.3. LetMC be a mixed cycle with vertex set V = {v1, v2, . . . , vn} and edge setE = {e1, e2, . . . , en}. Then detL(MC) =

2− (n(MC) + n(MC)).

Proof. Remark that the proof is similar to that of Theorem 6 in [14]. Without loss of generality, assume that the edge
ei = vivi+1 for 1 ≤ i ≤ n − 1 and en = vnv1 in the underlying graph of MC . Clearly, S(MC) is a square matrix. Then
expanding along the first row, one has

detS(MC) =

n∏
i=1

siei + (−1)n+1s1en

n∏
i=2

siei−1
, (6)

and
detS(MC)∗ =

n∏
i=1

siei + (−1)n+1s1en

n∏
i=2

siei−1
. (7)

From the definition of S(MC), one has siesje = −nij for any edge e = vivj . Thus it follows from (6) and (7) that

detL(MC) = detS(MC) · detS(MC)∗

= 2 + (−1)n+1s1en

n∏
i=1

siei

n∏
i=2

siei−1 + (−1)n+1s1en

n∏
i=2

siei−1

n∏
i=1

siei

= 2 + (−1)n+1s1e1s2e1 · · · snens1en + (−1)n+1s2e1s1e1 · · · s1ensnen
= 2 + (−1)n+1(−1)nn12n23 · · · nn1 + (−1)n+1(−1)nn21 · · · n1n
= 2− [n(MC) + n(MC)].

This completes the proof.
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The following statement is analogous to an existing result related to the Hermitian Laplacian matrix of the first kind
of mixed graphs (see Theorem 5 in [14]), and it can also be obtained from Proposition 2.1 in [4].

Theorem 2.2. Let MG be a connected mixed graph. Then L(MG) is singular if and only if L(MC) is singular for every
mixed cycle MC in MG. In particular, the Hermitian Laplacian matrix of the second kind of a mixed tree is always singular.

Proof. Lemma 2.3 implies that, for a mixed cycle MC , L(MC) is singular if and only if MC is positive. Then, from Theorem
2.1, we get the required result.

Combining the proof of Theorem 3.1 in [2] with Lemma 2.2 in [12], we can easily get the following conclusion, so we
ignore this proof here.

Theorem 2.3. Suppose that MG is a mixed unicyclic graph with n vertices and MC is the unique cycle in MG. Then
detL(MG) = detL(MC) = 2− [n(MC) + n(MC)].

Next we turn our attention to the principal minor version of matrix tree theorem in Hermitian Laplacian matrix of
the second kind for mixed graphs. Before that, we introduce some definitions, which are similar to the ones in [1]. A
subgraph Γ of a connected mixed graph MG is called essential Laplacian spanning subgraph of MG if MG is positive and
Γ is a spanning tree of its underlying graph G; or MG is not positive, Γ has the same vertices as MG, its components are
unicyclic mixed graphs and the Hermitian Laplacian matrix of the second kind of each cycle is non-singular. An r-reduced
Laplacian spanning substructure R ofMG is defined as follows: R is a subgraph ofMG with n−r vertices and no Laplacian
singular cycles, and the number of vertices and edges in each component of R is the same. It is clear that each component
of R is either a rootless tree or a Laplacian non-singular unicyclic graph. Furthermore, we can establish a one-to-one
correspondence between R and Γ, in which one vertex is deleted in each positive component of Γ.

The following two lemmas and their proofs are similar to Lemma 2 and Theorem 1 in [16], we ignore some details here.

Lemma 2.4 (see [16]). For a mixed graph MG, if a substructure R of MG is a rootless tree, then |detS(R)| = 1.

Lemma 2.5 (see [16]). Let R be a substructure of a connected mixed graph with equal number of vertices and edges. Then
the following statements hold:

1. If there exists a component of R with distinct numbers of vertices and edges, then detS(R) = 0.

2. If every component R has an equal number of vertices and edges, then every component of R is an unicyclic graph or a
rootless tree.

3. If some component of R is a Laplacian singular unicyclic graph, then detS(R) = 0; Otherwise, detS(R) 6= 0.

Given a mixed graph MG with vertex set V , let L[Vn−r, Vn−r] denote principal submatrix of L(MC) relative to vertex
subset Vn−r, where Vn−r is obtained by deleting r vertices in V .

Theorem 2.4. Let MG be a mixed graph with vertex set V and edge set E. Then

detL[Vn−r, Vn−r] =
∑
R

3ε1(R) · 4ε2(R),

where the summation runs over all r-reduced Laplacian spanning substructures R of MG, and ε1(R), ε2(R) are the numbers
of semi-negative cycles, negative cycles of R, respectively.

Proof. According to the Cauchy-Binet Theorem and L(MG) = S(MG)S(MG)∗, we have

detL[Vn−r, Vn−r] =
∑
En−r

detS[Vn−r, En−r] · detS[Vn−r, En−r]
∗ =

∑
R

|detS(R)|2,

where En−r is a subset of E with n− r edges and R is the substructure with the pair (Vn−r, En−r).
In the following, we consider the contribution of a substructureR to

∑
R |detS(R)|2. Since each component ofR is either

a rootless tree, or a Laplacian non-singular unicyclic graph. Thus we will discuss the following two cases.

Case 1: A rootless tree, denoted by R′, is a component of R. In this case, we have |detS(R′)| = 1 by Lemma 2.4.

Case 2: A non-singular unicyclic graph, denoted by R′′, is a component of R. Now let MC be the cycle in R′′. Theorem 2.3
implies that detL(R′′) = detL(MC) = 2− [n(MC) +n(MC)]. If MC is a positive cycle, n(MC) = 1, then detL(R′′) = 0. If MC

is a negative cycle, n(MC) = −1, then detL(R′′) = 4. If MC is a semi-positive cycle, n(MC) = 1±
√
3i

2 , then detL(R′′) = 1.
Finally, if MC is a semi-negative cycle, n(MC) = −1±

√
3i

2 , then detL(R′′) = 3.
Based on the discussion above, we get that a rootless tree contributes 1, and each non-singular unicyclic graph con-

tributes 1, 3 or 4 to the value of determinant. Hence, the required result follows.
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Theorem 2.5. Let MG be a connected mixed graph with vertex set V and edge set E, then

detL(MG) =
∑
τ1,τ2

3τ14τ2qτ1,τ2 ,

where qτ1,τ2 is the number of essential Laplacian spanning subgraphs which contain τ1 semi-negative cycles, τ2 negative
cycles and and we stipulate that q0,0 = 0.

Proof. If MG is a mixed tree, then the result holds by Theorem 2.2. Next assume that MG contains mixed cycles. Then the
Cauchy-Binet Theorem implies that L(MG) = S(MG)S(MG)∗ =

∑
E′ detS[V,E′] · detS[V,E′]∗, in which E′ is a subset of E

with |E′| = |V |. It can be verified that all the subgraphs with vertex set V and edge set E′ belong to elementary Laplacian
spanning subgraph Γ. Hence the required result follows by Theorem 2.4.

3. Hermitian quasi-Laplacian matrix of the second kind for mixed graphs

Suppose that MG is a mixed graph of order n and size m. A quasi-incidence matrix of the second kind of MG is an n ×m
matrix T (MG) = (tie) with entries

tie =



tje, if vi ↔ vj ;

1+
√
3i

2 tje, if vi → vj ;

1−
√
3i

2 tje, if vi ← vj ;

0, otherwise,

(8)

where tje is a complex number such that |tje| = 1. Notice that we say “an” quasi-incidence matrix of the second kind of MG

as T (MG) is not unique.
Similar to the proof of Lemma 2.1, we obtain the following lemma.

Lemma 3.1. Let MG be a mixed graph of order n with edge set E. Then Q(MG) = T (MG)T (MG)∗ is a positive semidefinite
matrix, where Q(MG) is as described in (8).

Theorem 3.1. Let MG be a mixed graph with n vertices and m edges. Then the matrix Q(MG) is singular if and only if all
walks W = vi1vi2 · · · vik with the same parity have the same weights for 1 ≤ k ≤ n, otherwise they have the opposite weights.

Proof. First assume that the matrix Q(MG) is singular. Then there exists a non-zero vector ξ> = (ξ1, ξ2, . . . , ξn) such that
Q(MG)ξ = 0, which implies that T (MG)∗ξ = 0. By some calculations, one obtains

(T ((MG)∗ξ)e = tieξi + tjeξj =


(ξi + ξj)tie, if vi ↔ vj ;

(ξi + 1+
√
3i

2 ξj)tie, if vi → vj ;

(ξi + 1−
√
3i

2 ξj)tie, if vi ← vj .

(9)

Since T (MG)∗ξ = 0, then ξi = −nijξj for each edge e = vivj of MG. It follows that

ξi1 = −ni1i2ξi2 = (−1)2ni1i2ni2i3ξi3 = · · · = (−1)kni1i2ni2i3 · · ·nik−1ikξik = (−1)kn(Wi1ik)ξik ,

implying that the result holds.
Conversely, assume that any two walksW = vi1vi2 · · · vik with the same parity have the same weight for 1 ≤ k ≤ n. Now

let ζ = (ζ1, ζ2, . . . , ζn)> be a vector such that ζi = −nijζj for each edge e = vivj . Thus, it is easy to verify that

ζ∗Q(MG)ζ =
∑

e∈E(MG)

|ζi + nijζj |2 =
∑

e∈E(MG)

| − nijζj + nijζj |2 = 0.

Therefore, Q(MG) is a singular matrix.

Lemma 3.2. LetMC be a mixed cycle with vertex set V = {v1, v2, . . . , vn} and edge setE = {e1, e2, . . . , en}. Then detQ(MC) =

2 + (−1)n+1[n(MC) + n(MC)].

Proof. Similar to the proof of Lemma 2.3, we can get

detT (MC) =

n∏
i=1

tiei + (−1)n+1t1en

n∏
i=2

tiei−1
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and
detT (MC)∗ =

n∏
i=1

tiei + (−1)n+1t1en

n∏
i=2

tiei−1
.

The definition of T (MC) implies that tietje = nij for any edge e = vivj . So we have

detQ(MC) = detT (MC) · detT (MC)∗

= 2 + (−1)n+1t1en

n∏
i=1

tiei

n∏
i=2

tiei−1 + (−1)n+1t1en

n∏
i=2

tiei−1

n∏
i=1

tiei

= 2 + (−1)n+1t1e1t2e1 · · · tnent1en + (−1)n+1t2e1t1e1 · · · t1entnen

= 2 + (−1)n+1n12n23 · · ·nn1 + (−1)n+1n21 · · ·n1n

= 2 + (−1)n+1[n(MC) + n(MC)].

(10)

This completes the proof.

Theorem 3.2. Suppose that MG is a mixed unicyclic graph with n vertices and MC is the unique cycle in MG. Then
detQ(MG) = detQ(MC) = 2 + (−1)n+1[n(MC) + n(MC)].

Proof. By the same argument as the proof of Theorem 2.3, we get the required result.

Next we consider the principal minor of Hermitian quasi-Laplacian matrix of the second kind for mixed graphs. First
we introduce some definitions. A subgraph Γ of a connected mixed graph MG is called essential quasi-Laplacian spanning
subgraph of MG if MG is positive and Γ is a spanning tree of its underlying graph G; or MG is not positive, Γ has the same
vertices as MG, its components are unicyclic mixed graphs and the Hermitian quasi-Laplacian matrix of the second kind
of each cycle is non-singular. An r-reduced quasi-Laplacian spanning substructure R of MG is defined as follows: R is a
subgraph of MG with n− r vertices and no quasi-Laplacian singular cycles, and the number of vertices and edges in each
component of R is the same. It is clear that each component of R is either a rootless tree or a quasi-Laplacian non-singular
unicyclic graph. Furthermore, we can establish a one-to-one correspondence between R and Γ, in which one vertex is
deleted in each positive component of Γ.

Theorem 3.3. Let MG be a mixed graph with vertex set V and edge set E. Also let Vn−r be a subset obtained by deleting r
vertices from V . Then

detQ[Vn−r, Vn−r] =
∑
R

3ε1(R)+ε2(R) · 4ε3(R)+ε4(R),

where the summation runs over all r-reduced quasi-Laplacian spanning substructuresR ofMG, and ε1(R), ε2(R), ε3(R), ε4(R)

are the numbers of semi-positive odd cycles, semi-negative even cycles , positive odd cycles, negative even cycles of R, respec-
tively.

Proof. According to the Cauchy-Binet Theorem and Q(MG) = T (MG)T (MG)∗, we have

detQ[Vn−r, Vn−r] =
∑
En−r

detT [Vn−r, En−r] · detT [Vn−r, En−r]
∗ =

∑
R

|detT (R)|2, (11)

where En−r is a subset of E with n− r edges and R is the substructure with the pair (Vn−r, En−r).
In the following, we consider the contribution of a substructure R to

∑
R |detT (R)|2. Since each component of R is

either a rootless tree, or a quasi-Laplacian non-singular unicyclic graph, so we will discuss the following two cases.

Case 1: A rootless tree R′ is a component of R. In this case, we have |detT (R′)| = 1.

Case 2: A non-singular unicyclic graph R′′ is a component of R. Now let MC be the cycle in R′′. Theorem 3.2 implies that
detQ(R′′) = detQ(MC) = 2 + (−1)n+1[n(MC) + n(MC)]. If MC is a positive odd cycle, n(MC) = 1, then detQ(R′′) = 4. If
MC is a negative even cycle, n(MC) = −1, then detQ(R′′) = 4. If MC is a semi-positive cycle, n(MC) = 1±

√
3i

2 , then

detQ(R′′) = 2 + (−1)n+1 =

{
1, if n is even;

3, if n is odd.

Finally, if MC is a semi-negative cycle, n(MC) = −1±
√
3i

2 , then

detQ(R′′) = 2 + (−1)n =

{
3, if n is even;

1, if n is odd.
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According to the discussion above, we get that a rootless tree contributes 1, and each non-singular unicyclic graph con-
tributes 1, 3 or 4 to the value of determinant. It follows from (11) that the result holds.

The following statement is a direct result of Theorem 3.3, and we ignore its proof.

Theorem 3.4. Let MG be a connected mixed graph with vertex set V and edge set E, then

detQ(MG) =
∑

τ1,τ2,τ3,τ4

3τ1+τ24τ3+τ4qτ1,τ2,τ3,τ4 ,

where qτ1,τ2,τ3,τ4 is the number of essential quasi-Laplacian spanning subgraphs which contain τ1 semi-positive odd cycles,
τ2 semi-negative even cycles, τ3 positive odd cycles, τ4 negative even cycles and we stipulate that q0,0,0,0 = 0.
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