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Abstract

We study structural properties of linear codes over the ring Rk which is defined by R[v1, v2, . . . , vk] with conditions v2i = vi
for i = 1, 2, . . . , k, where R is any finite commutative Frobenius ring. We describe these linear codes in terms of necessary
and sufficient conditions involving Gray maps, and we use these characterizations to construct Hermitian and Euclidean
self-dual linear codes of this ring of arbitrary given length. We also derive MacWilliams-type relations for these codes with
respect to Hamming weight enumerator as well as complete and symmetrized weight enumerators. As an application of the
obtained results, we construct several optimal linear codes over Z4.

Keywords: commutative Frobenius rings; linear codes; complete weight enumeration; symmetrized weight enumeration;
MacWilliams-type relations; optimal codes.
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1. Introduction

Coding theory deals with designs of error-correcting codes for the reliable transmission of information across noisy chan-
nels. It was founded in 1948 with the publication of Shannon’s paper [16]. Shannon demonstrated the existence of excellent
codes among other things there. However, the proof of Shannon’s theorem is not constructive. One of the main problems
in coding theory is constructing good codes, namely codes with good parameters.

Linear codes over finite rings have been of interest since the work of Hammons, Kumar, Calderbank, Sloane and Solé
in 1994 [9] where they proved, among other things, that certain good nonlinear binary codes can be constructed from linear
codes over Z4 via a Gray map. Recently, many people consider some special cases of linear codes over the ring of the form
R[v1, v2, . . . , vk], where v2

i = vi for all i = 1, 2, . . . , k, where k ≥ 1 and R is a certain finite commutative ring. Among the
reasons why it attracts the attention of many researchers in coding theory is because codes over such kind of rings have a
lot of nice structures. For example, skew-cyclic codes over the rings F2 +vF2,Fp+vFp and Fpr [v1, v2, . . . , vk] were considered
in [1,6,11–13] and [14], respectively. Moreover, in [5], [8], [7], and [15] the structures of linear codes over F2[v1, v2 . . . , vk],

Z4 + vZ4, Z9 + vZ9, and Z2m + vZ2m (with v2 = v) were studied respectively, such as MacWilliams-type relations, self-dual
codes, cyclic codes, constacyclic codes, etc. Also, we can find a construction of good and new Z4-linear codes in [8] (c.f. [4]).

In this paper, we investigate the structures of linear codes over the ring R[v1, v2, . . . , vk], where R is any finite commu-
tative Frobenius ring with additional conditions that v2

i = vi, for all i = 1, 2, . . . , k. This is a very general ring which covers
the rings mentioned above. We define two kind of Gray maps. Several structural properties related to linear codes over
the ring are observed. We also derive MacWilliams-type relations for complete and symmetrized weight enumerators. As
an application, we construct several optimal linear codes over Z4.

We follow standard books of coding theory (for instance, see [10]) for undefined terms.

2. Automorphisms and Gray map

Let R be a finite commutative Frobenius ring. For k ∈ N, let Rk denote the ring

R[v1, v2, . . . , vk]/
〈
v2
i − vi

〉k
i=1

.

The ring Rk can be viewed as a free module over R with dimension 2k. We have the following immediate property.

Lemma 2.1. The ring Rk has cardinality |R|2k and characteristic equals to char(R).
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Proof. As we can see, every element α ∈ Rk can be written as

α =

2k∑
i=1

αSivSi ,

for some αSi ∈ R, where Si ⊆ {1, 2, . . . , k} and vSi =
∏
j∈Si vj , for all 1 ≤ i ≤ 2k. Therefore we have that |Rk| = |R|2

k

.

Let Θi be a map on Rk such that

Θi(α) =

{
1− vi, α = vi,

α, otherwise.

Then define
ΘS :=

∏
i∈S

Θi = Θi1 ◦Θi2 ◦ · · · ◦Θi|S| ,

where S ⊆ {1, 2, . . . , k}.
Also, let S1, S2 ⊆ {1, 2, . . . , k}, where |S1| = |S2|, and φS1,S2

: {1, 2, . . . , k} → {1, 2, . . . , k} be a map such that it is a
bijection from S1 to S2 and φS1,S2(j) = j, for all j 6∈ S1. Define a map ΦS1,S2 on Rk, where

ΦS1,S2
(αvj) = ϑ(α)vφS1,S2 (j),

for some automorphism ϑ of R.
We note that the maps ΘS and ΦS1,S2 are both automorphisms on the ring Rk, as are their compositions. In this paper

we consider automorphism ϑ as a composition of ΘS or ΦS1,S2
(or both of them).

Now, we define two Gray maps from the ring Rk. First, for j ≥ 1, any element α in Rj can be written as α = α1 + α2vj ,

for some α1, α2 ∈ Rj−1. For some integer lj ≥ 2, define a map ϕj : Rj −→ R
lj
j−1 by

α1 + α2vj 7−→
(
α1, β1α1 + β′1α2, β2α1 + β′2α2, . . . , βlj−1α1 + β′lj−1α2

)
,

where βi, β′i are some elements in Rj−1, for all 1 ≤ i ≤ lj − 1, with β′lj−1
is a unit in Rj−1. The following lemma shows that

ϕj is an injective map and also a module homomorphism.

Lemma 2.2. The map ϕj is an injective and also a Rj−1-module homomorphism from Rj to Rljj−1, for all 1 ≤ j ≤ k.

Proof. For injectivity, take any α and α′ in Rj , where ϕj(α) = ϕj(α
′). Now, let α = α1 + α2vj and α′ = α′1 + α′2vj , for some

α1, α2, α
′
1, and α′2 in Rj−1. Since ϕj(α) = ϕj(α

′), we have α1 = α′1. Using the previous fact and by considering the last
coordinate of the images under ϕj , we have β′ljα2 = β′ljα

′
2. Since β′lj is a unit in Rj−1, we also have α2 = α′2 as required.

Now, take any α and α′ in Rj and any λ in Rj−1. Let α = α1 + α2vj and α′ = α′1 + α′2vj , for some α1, α2, α
′
1 and α′2 in

Rj−1. Consider

ϕj(α+ α′) =
(
α1 + α′1, β1(α1 + α′1) + β′1(α2 + α′2), β2(α1 + α′1) + β′2(α2 + α′2), . . . , βlj−1(α1 + α′1) + β′lj−1(α2 + α′2)

)
= ϕj(α) + ϕj(α

′),

and
ϕj(λα) =

(
λα1, β1λα1 + β′1λα2, β2λα1 + β′2λα2, . . . , βlj−1λα1 + β′lj−1λα2

)
= λϕj(α).

Therefore, the map ϕj is an Rj−1-module homomorphism for all 1 ≤ j ≤ k.

We combine the maps ϕj and ϕj−1 to get a map ϕj−1 ◦ ϕj from Rj to Rlj×lj−1

j−2 as

ϕj−1 ◦ ϕj(α1 + α2vj) =
(
ϕj−1 (α1) , ϕj−1 (β1α1 + β′1α2) , ϕj−1 (β2α1 + β′2α2) , . . . , ϕj−1(βlj−1α1 + β′lj−1α2)

)
.

By doing it inductively, we will have a Gray map Φk := ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕk from Rk to Rlk×lk−1×···×l1 .

We can extend the map ϕj to get a map ϕj from Rnj to Rnljj−1, naturally, by mapping

(α1,1 + α1,2vj , . . . , αn,1 + αn,2vj)

to (
α1,1, . . . , αn,1, β1α1,1 + β′1α1,2, . . . , β1αn,1 + β′1αn,2, . . . , βlj−1α1,1 + β′lj−1α1,2, . . . , βlj−1αn,1 + β′lj−1αn,2

)
.
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We combine ϕj and ϕj−1 to get a map from Rnj to Rnlj lj−1

j−2 , and inductively, to get a Gray map Φk from Rnk to Rnlk···l1 .
The map ϕj and its extensions are a generalization of Gray maps in [5], and also in [14].

Now, let us define a second Gray map. Any α in Rk can be written as α =
∑2k

i=1 αSivSi , for some αSi in R, where
Si ⊆ {1, 2, . . . , k} and vSi =

∏
t∈Si vt, for all 1 ≤ i ≤ 2k. Define a map Ψ as follows.

Ψ : Rk −→ R2k∑2k

i=1 αSivSi 7−→
(∑

S⊆S1
αS , . . . ,

∑
S⊆S

2k
αS

) .

We can check that the map Ψ is a bijection. Moreover, we can also check that the map Ψ is an isomorphism, which implies

Rk ∼= R×R× · · · ×R︸ ︷︷ ︸
2k

.

This means Rk is also a finite commutative Frobenius ring.
Let Ψ : Rnk → R2k×n be a map such that

Ψ(a1, . . . , an) = (Ψ(a1), . . . ,Ψ(an)) .

Then, we can see that Ψ is also a bijective map because Ψ is bijective. Let ΣS and ΓS1,S2
be two maps such that Ψ◦ΘS = ΣS◦Ψ

and Ψ◦ΦS1,S2
= ΓS1,S2

◦Ψ. As we can see, the maps ΣS and ΓS1,S2
are bijective maps induced by ΘS and ΦS1,S2

, respectively.

3. Linear and self-dual codes

In this section, we describe linear codes over Rk using the Gray maps defined in Section 2. The theorems below describe
the image of a linear code under the gray maps ϕj and Ψ. The following theorem provide the image of a linear code under
the map ϕj .

Theorem 3.1. A code C is a linear code of length n over Rj if and only if the image ϕj(C) is a linear code of length nlj over
Rj−1.

We have the following consequence (due to the first Gray map Φk).

Corollary 3.1. A code C is a linear code of length n over Rk if and only if the code

Φk = ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕk(C)

is a linear code of length nl1 · · · lk over R.

The following theorem describes the image of a linear code under the second Gray map Ψ.

Theorem 3.2. A code C is a linear code of length n over Rk if and only if there exist linear codes, C1, C2, . . . , C2k , of length
n over R such that C = Ψ

−1
(C1, C2, . . . , C2k).

Proof. Similar to the proof of [13, Lemma 16].

Now, let us consider Euclidean and Hermitian self-dual codes. Let ΘS be an automorphism in the ringRk as in Section 2,
where S = {1, 2, . . . , k}. For any c = (c1, . . . , cn) and c′ = (c′1, . . . , c

′
n) in Rnk , define the Hermitian product as follows,

[c, c′] =

n∑
i=1

cic′i =

n∑
i=1

ciΘS(c′i).

Let CH = {c′ : [c, c′] = 0 ∀c ∈ C}. A code C is called Hermitian self-orthogonal if C ⊆ CH , and C is called Hermitian
self-dual ifC = CH .Also, for any c = (c1, . . . , cn) and c′ = (c′1, . . . , c

′
n), define the Euclidean product as the following rational

sum,

c · c′ =

n∑
i=1

cic
′
i.

Let C⊥ = {c′ : c ·c′ = 0 ∀c ∈ C}. A code C is called Euclidean self-orthogonal if C ⊆ C⊥, and C is called Euclidean self-dual
if C = C⊥. The next theorem shows the existence of Hermitian self-dual codes over Rk.

Theorem 3.3. If S 6= ∅, then there exist Hermitian self-dual codes over Rk for all lengths.
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Proof. Take i in S. Let C1 = 〈vi〉, then we have CH1 = 〈vi〉 = C1, because vi(1 − vi) = 0. So, Hermitian self-dual codes of
length 1 over Rk exist. Now, for any length n, define

C = C1 × C1 × · · · × C1︸ ︷︷ ︸
n

.

As we can see, CH = C, which means C is an Hermitian self-dual code of length n.

Note that, the ringRk can be written asRk = vkRk−1 + (1− vk)Rk−1. Consequently, any code C of length n overRk can
be written as C = vkC1 + (1− vk)C2, where C1 and C2 are codes of length n over Rk−1.

Proposition 3.1. If C is a Hermitian self-dual code of length n over R1, then C is isomorphic to C1 × C⊥1 , where C1 is a
code of length n over R.

Proof. Remember that C can be written as C = vC1 + (1− v)C2, where C1 and C2 are codes of length n over R. Consider

[c, c′] =
∑
i

cic′i

=
∑
i

(vc1i + (1− v)c2i) (vc′1i + (1− v)c′2i)

=
∑
i

(vc1i + (1− v)c2i) ((1− v)c′1i + vc′2i)

= v
∑
i

c1ic
′
2i + (1− v)

∑
i

c2ic
′
1i,

(1)

where (cj1, cj2, . . . , cjn) is in Cj , for j = 1, 2. If Equation (1) is equal to 0, then it requires
∑
i c1ic

′
2i = 0 and

∑
i c2ic

′
1i = 0.

Since C is self dual, we have C1 = C⊥2 and C2 = C⊥1 . Therefore, C is isomorphic to C1 × C⊥1 .

Using the above property, we have the theorem below.

Theorem 3.4. If C is a Hermitian self-dual code of length n over Rk, then, with proper arrangement of indices, C is
isomorphic to

C1 × C⊥1 × · · · × C2k−1 × C⊥2k−1 ,

where C1, . . . , C2k−1 are codes of length n over R.

Proof. We can write C = vkC
′ + (1− vk)C ′′, where C ′ and C ′′ are codes of length n over Rk−1. Consider

[c1, c2] =
∑
i

c1ic2i

=
∑
i

(vkc
′
1i + (1− vk)c′′1i) (vkc′2i + (1− vk)c′′2i)

=
∑
i

(vkc
′
1i + (1− vk)c′′1i)

(
(1− vk)c′2i + vkc′′2i

)
= vk

∑
i

c′1ic
′′
2i + (1− vk)

∑
i

c′2ic
′′
1i,

(2)

where (c′j1, c
′
j2, . . . , c

′
jn) is in C ′ and (c′′j1, c

′′
j2, . . . , c

′′
jn) is in C ′′, for j = 1, 2. If Equation (2) is equal to 0, then it requires∑

i

c′1ic
′′
2i = 0 (3)

and ∑
i

c′2ic
′′
1i = 0. (4)

If we continue a similar process on Equations (3) and (4), we will have 2k equations similar to Equation (1) over R. By
Proposition 3.1, 2k equations give 2k−1 pairs of Euclidean dual over R. Therefore, we have that C is isomorphic to

C1 × C⊥1 × · · · × C2k−1 × C⊥2k−1 ,

where C1, C2, . . . , C2k−1 are codes of length n over R.

Regarding the Euclidean self-dual codes, we have the necessary and sufficient conditions as follows.
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Theorem 3.5. A code C is an Euclidean self-dual code of length n over Rk if and only if C = Ψ
−1

(C1, C2, . . . , C2k), where
C1, . . . , C2k are also Euclidean self-dual codes over R.

Proof. Similar to the proof of [12, Proposition 4.1].

As an immediate consequence, we have the following.

Corollary 3.2. Euclidean self-dual codes of length n over Rk exist if and only if Euclidean self-dual codes of length n over
R exist.

4. Weights and MacWilliams-type relations

Let wtH(c) be a Hamming weight of codeword c. Let dH(C) be the Hamming distance of a code C. The following proposition
gives the Hamming distance for codes over the ring Rk.

Proposition 4.1. If C = Ψ
−1

(C1, . . . , C2k), is a code of length n over Rk, then dH(C) = min
1≤i≤2k

dH(Ci).

Proof. Let dH(Cj) = min
1≤i≤2k

dH(Ci), for some j. Also, let cj be a codeword in Cj such that wt(cj) = dH(Cj). Then we have
that

dH(C) = wt
(

Ψ
−1

(0, . . .0, cj ,0, . . . ,0)
)

= dH(Cj).

Let
WC(X,Y ) =

∑
c∈C

Xn−wtH(c)Y wtH(c),

be the Hamming weight enumerator of a code C. We have the following relation between Hamming weight enumerator of
a code C and its dual.

Proposition 4.2. If C is a code of length n over Rk, then

WC⊥(X,Y ) =
1

|C|
WC

(
X + (|R|2

k

− 1)Y,X − Y
)
.

Now, let wtL(α) be the Lee weight of any element α in R. Let a =
∑
S⊆{1,2,...,k} αSvS be any element in Rk. Define

WtL(a) =

2k∑
i=1

wtL

∑
S⊆Si

αS


be the Lee weight of a. For any a = (a1, . . . , an) in Rnk , define the Lee weight of a as follows,

WtL(a) =

n∑
j=1

WtL(aj).

Then we have the following result.

Proposition 4.3. If C = Ψ
−1

(C1, . . . , C2k) is a code of length n over Rk, then

dL(C) = min
1≤i≤2k

dL(Ci).

Proof. Let dL(Cj) = min1≤i≤2k dL(Ci), for some j, and let cj be a codeword in Cj such that WtL(cj) = dL(Cj). We have that

dL(C) = WtL

(
Ψ
−1

(0, . . .0, cj ,0, . . . ,0)
)

= dL(Cj).

Since the ring Rk is isomorphic to R2k , the generating character for R̂k is the product of generating character for R̂.
Now, if χ is a generating character for R, such that

χ(x) = ξwtL(x),
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for any x ∈ R, then the generating character χ for Rk is

χ1(β) = ξWtL(Ψ(β)),

for any β ∈ Rk.
Define the matrix T indexed by α, β ∈ Rk, as follows

Tα,β = χα(β) = χ(αβ),

and the matrix TH as follows
(TH)α,β = χα(β) = χ(αβ),

where β is the conjugate of β induced by ΘS , for some S ⊆ {1, 2, . . . , k}.
Also, define the complete weight enumerator for a code C as follows,

cweC(X) =
∑
c∈C

∏
b∈Rk

X
nb(c)
b ,

where nb(c) is the number of occurrences of the element b in c. Then, by applying Corollary 8.2 in [18], we have the following
result.

Theorem 4.1. If C is a linear code over Rk, then

cweC⊥(X) =
1

|C|
cweC(T ·X) (5)

and
cweCH (X) =

1

|C|
cweC(TH ·X) (6)

Proof. This theorem is a consequence of [18, Corollary 8.2].

Note that T is a |R|2k by |R|2k matrix indexed by the elements of Rk. Let R×k be the group of units in the ring Rk and
let α ∼ α′ if α′ = uα, for some u ∈ G, where G is a subgroup of R×k . It can be seen that the relation ∼ is an equivalence
relation, so we define A = {α1, . . . , αt} be the set of representatives. Let S be the t by t matrix indexed by the elements in
A. Also, define Sα,β =

∑
γ∼β Tα,γ . We have the following lemma.

Lemma 4.1. If α ∼ α′ then the row Sα is equal to the row Sα′ .

Proof. If α ∼ α′ then for any column β we have

Sα′,β =
∑
γ∼β

Tα′,γ =
∑
γ∼β

ξWtL(Ψ(α′γ)).

Since Ψ(αγ) = Ψ(α)Ψ(γ), where the multiplication in the right side of equal sign carried out coordinate-wise, we have that∑
γ∼β

Tα′,γ =
∑
γ∼β

ξWtL(Ψ(α)Ψ(u)Ψ(γ))

=
∑
γ′∼β

ξWtL(Ψ(α)Ψ(γ′))

=
∑
γ′∼β

Tα,γ′

= Sα,β .

Therefore, Sα = Sα′ when α ∼ α′.

Now, define the symmetrized weight enumerator for a code C to be

sweC(YA) =
∑
c∈C

∏
α∈A

Y swcα(c)
α ,

where swcα(c) =
∑
α′∼α nα′(c). Again, by using Theorem 8.4 in [18], we have the following theorem.

Theorem 4.2. If C is a linear code over Rk, then

sweC⊥ =
1

|C|
sweC(S ·YA).

Remark 4.1. Theorem 4.1 and 4.2 are Macwilliams-type relations for complete and symmetrized weight enumerators,
respectively.
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5. An application

As application, in this section, we use the map ϕ1 to obtain linear codes over Z4 from the codes over R1 = Z4 + vZ4, where
v2 = v. For any element x = (x1, . . . , xn) in Zn4 , the Lee weight of x, denoted by wL(x), is defined as

wL(x) =

n∑
i=1

min{|xi|, |4− xi|}. (7)

Using the above weight, we define the Lee distance dL(C) of a code C as

dL(C) = min
c∈C
c6=0

wL(c).

We will give some examples of codes over Z4 with the highest known maximum Lee distance (see [2], [3]), constructed using
the map ϕ1.

Example 5.1. Define a map ϕ1 as follows.

ϕ1 : Z4 + vZ4 −→ Z2
4

α+ vβ 7−→ (α, 2α+ β).

Let C = 〈1 + v〉 = {0, 1 + v, 2 + 2v, 3 + 3v, 2v, 2, 1 + 3v, 3 + v} be a code of length 1 over R1 = Z4 + vZ4, where v2 = v. We have,

ϕ1(1 + v) = (1, 3), ϕ1(2 + 2v) = (2, 2),
ϕ1(3 + 3v) = (3, 1), ϕ1(2v) = (0, 2),
ϕ1(2) = (2, 0), ϕ1(1 + 3v) = (1, 1),
ϕ1(3 + v) = (3, 3).

We can see that dL(ϕ1(C)) = 2 and |ϕ1(C)| = 8.

Example 5.2. Define a map ϕ1 as follows.

ϕ1 : Z4 + vZ4 −→ Z3
4

α+ vβ 7−→ (α, β, α+ β).

Let C = 〈2〉 = {0, 2, 2v, 2 + 2v}. We have that

ϕ1(2) = (2, 0, 2), ϕ1(2v) = (0, 2, 2), ϕ1(2 + 2v) = (2, 2, 0).

So, dL(ϕ1(C)) = 4 and |ϕ1(C)| = 4.

Example 5.3. Define a map ϕ1 as follows.

ϕ1 : Z4 + vZ4 −→ Z5
4

α+ vβ 7−→ (α, β, α+ β, α, α+ β).

Let C = 〈2〉. We can see that,
ϕ1(2) = (2, 0, 2, 0, 2), ϕ1(2v) = (0, 2, 2, 0, 2),
ϕ1(2 + 2v) = (2, 2, 0, 2, 0).

Therefore, we have dL(ϕ1(C)) = 6 and |ϕ1(C)| = 4.

6. Conclusion

In this paper, we considered several aspects of linear codes over a very general ring, Rk = R[v1, v2, . . . , vk]/
〈
v2
i − vi

〉k
i=1

,

where R is a finite commutative Frobenius ring. MacWilliams-type relations with respect to complete weight as well as
symmetrized weight enumerators are proved. As an application, we provide examples to constructed optimal linear codes
over Z4. Other concrete examples of linear codes constructed in this way can be found, for examples, in [4,8,15].

There are several directions for further investigation. We are now working on investigating structural properties of
cyclic, quasi-cyclic and skew cyclic codes over the ring Rk, together with applications in constructing quantum error-
correcting codes from the codes over rings (c.f. [17]).
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