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Abstract
LetG be a graph of order n. Denote byA the adjacency matrix ofG and byD = diag(d1, . . . , dn) the diagonal matrix of vertex
degrees of G. The Laplacian matrix of G is defined as L = D − A. Let µ1, µ2, · · · , µn−1, µn be eigenvalues of L satisfying
µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0. The Laplacian-energy–like invariant is a graph invariant defined as LEL(G) =

∑n−1
i=1

√
µi.

Improved upper bounds for LEL(G) are obtained and compared when G has a tree structure.
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1. Introduction

Let G = (V,E) be a graph of order n and size m with the sequence of vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, where
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. In addition, we will use the following notations ∆2 = d2, δ2 = dn−2, and
δp = dn−p, where p is an integer in the range 1 ≤ p ≤ n − 1. The diagonal matrix of vertex degrees of G is denoted as
D = diag(d1, d2, . . . , dn). Obviously detD =

∏n
i=1 di.

Denote by A (G) the (0, 1)-adjacency matrix of a graph G. The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of A (G) represent the
eigenvalues of G. The sum of absolute values of these eigenvalues is defined to be the (ordinary) energy of G [4], that is

E(G) =

n∑
i=1

|λi| .

The Laplacian matrix ofG is L = D−A. Eigenvalues of L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0, form the Laplacian spectrum
of G. The Laplacian-energy–like invariant is a graph invariant defined in terms of Laplacian eigenvalues as [10]

LEL(G) =

n−1∑
i=1

√
µi .

If vertex vi is incident with edge ej in G, it will be denoted as vi ∼ ej . The incidence matrix B = (bij) of order n×m, of
graph G is defined as

bij =

1, if vi ∼ ej

0, otherwise .

The signless Laplacian matrix of G is defined as L = B ·BT = D +A. The eigenvalues of matrix L, q1 ≥ q2 ≥ · · · ≥ qn ≥ 0,
are signless Laplacian eigenvalues of G. The corresponding incidence graph energy defined in terms of these eigenvalues
is

IE(G) =

n∑
i=1

√
qi .

IfG is a bipartite graph, then IE(G) coincides with LEL(G), that is IE(G) = LEL(G) [5]. Since any tree is bipartite graph,
this means that

IE(T ) = LEL(T ) .

More on the mathematical properties of various graph energies can be found in monographs [6,9], reviews [1,14] and
the references cited therein. In this paper we determine new upper bounds on LEL(G), that is IE(G), when G has a tree
structure.
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2. Preliminaries

In this section we recall some results from literature regarding LEL(G) and analytical inequalities that are of interest for
the present paper.

Lemma 2.1. [10,11] If ∆ = d1 ≥ · · · ≥ dn = δ > 0 are degrees of vertices of G, then

LEL(G) ≤
√
d1 + 1 +

√
d2 + · · ·+

√
dn−1 +

√
dn − 1 , (1)

with equality if and only if G ∼= K1,n−1.

Lemma 2.2. [2] If G is a connected, non–complete graph, with at least three vertices, then

LEL(G) ≤
√

1 + ∆ +
√
δ +

√
(n− 3)(2m−∆− δ − 1) , (2)

with equality if and only if G ∼= K1,n−1, G ∼= 2K1

∨
Kn−2 or G ∼= (K1 ∪Kn−2)

∨
K1.

More on the bounds of type (1) and (2) can be found in the review [14] and the papers cited therein.

Remark 2.1. As can be seen, whenG ∼= K1,n−1 in (1) and (2) equalities occur. Therefore the above inequalities are interesting
for the present paper particulary when G ∼= T . Since any tree T with n ≥ 3 vertices, has at least two vertices of degree 1,
dn−1 = dn = δ = 1, the above inequalities can be considered as

LEL(T ) ≤ 1 +
√

1 + ∆ +
n−2∑
i=2

√
di , (3)

and
LEL(T ) ≤ 1 +

√
1 + ∆ +

√
(n− 3)(2(n− 2)−∆) , (4)

with equalities if and only if T ∼= K1,n−1.

Lemma 2.3. [3] Let T be a tree of order n with maximum degree ∆. Then

LEL(T ) ≤
√
n+

√
(n− 3)(2n−∆− 3) + (n− 2)

(
n

∆ + 1

) 1
n−2

. (5)

Equality holds if and only if T ∼= K1,n−1.

Lemma 2.4. [8] Let a = (ai), i = 1, 2, . . . , n, be a sequence of positive real numbers. Then(
n∑
i=1

√
ai

)2

≤ (n− 1)

n∑
i=1

ai + n

(
n∏
i=1

ai

) 1
n

. (6)

Equality holds if and only if a1 = a2 = · · · = an.

Lemma 2.5. [13] Let x = (xi) and a = (ai), i = 1, 2, . . . , n, be two sequences of positive real numbers. Then, for any real r,
r ≥ 0, we have that

n∑
i=1

xr+1
i

ari
≥

(
∑n
i=1 xi)

r+1

(
∑n
i=1 ai)

r . (7)

Equality holds if and only if r = 0, or x1

a1
= · · · = xn

an
.

Remark 2.2. It is not difficult to observe that inequality (7) is valid if and only if r ≤ −1 or r ≥ 0, and equality is attained
if and only if either r = −1, or r = 0, or x1

a1
= · · · = xn

an
. When −1 ≤ r ≤ 0, the opposite inequality is valid in (7).

3. Main results

Let T be a tree of order n ≥ 3 with p, 2 ≤ p ≤ n− 1, pendant vertices. In the next theorem we establish an upper bound on
LEL(T ) (IE(T )) in terms of n, p , maximum degree ∆, second maximum degree ∆2 and δp.

Theorem 3.1. Let T be a tree of order n ≥ 3 and p, 2 ≤ p ≤ n− 1, pendant vertices. Then

LEL(T ) ≤ p− 1 +
√

1 + ∆ +

√
(n− p− 1)

(
(2(n− 1)− p−∆− 1

2
(
√

∆2 −
√
δp)2

)
. (8)

Equality holds if and only if T ∼= K1,n−1.
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Proof. Let T be a tree of order n ≥ 3 and p, 2 ≤ p ≤ n− 1, pendant vertices. Then dn−p+1 = · · · = dn = δ = 1. If p = n− 1,
then T ∼= K1,n−1 and equality occurs in (8). Therefore, without affecting the generality, assume that 2 ≤ p ≤ n− 2. In that
case, according to (3) we obtain that

LEL(T ) ≤ p− 1 +
√

1 + ∆ +

n−p∑
i=2

√
di . (9)

On the other hand, based on the Lagrange’s identity (see e.g. [12]), we have that

(n− p− 1)

n−p∑
i=2

di −

(
n−p∑
i=2

√
di

)2

=
∑

2≤i<j≤n−p

(√
di −

√
dj

)2

≥
(√

d2 −
√
dn−p

)2

+

n−p−1∑
i=3

((√
d2 −

√
di

)2

+
(√

di −
√
dn−p

)2
)

≥
(√

∆2 −
√
δp

)2

+
1

2

n−p−1∑
i=3

(√
∆2 −

√
δp

)2

=
n− p− 1

2

(√
∆2 −

√
δp

)2

,

and therefore
n−p∑
i=2

√
di ≤

√
(n− p− 1)(2(n− 1)−∆− p)− n− p− 1

2

(√
∆2 −

√
δp

)2

=

√
(n− p− 1)

(
2(n− 1)−∆− p− 1

2

(√
∆2 −

√
δp

)2
)
.

(10)

From the above and inequality (9) we arrive at (8).
Equality in (10) holds if and only if

√
d3 = · · · =

√
dn−p−1 =

√
∆2+
√
δp

2 , and in (9) if and only if T ∼= K1,n−1, which implies
that equality in (8) holds if and only if T ∼= K1,n−1.

Since (
√

∆2 −
√
δp)

2 ≥ 0, we have the following corollary of Theorem 3.1.

Corollary 3.1. Let T be a tree of order n ≥ 3 with p, 2 ≤ p ≤ n− 1, pendant vertices. Then

LEL(T ) ≤ p− 1 +
√

1 + ∆ +
√

(n− p− 1)(2(n− 1)− p−∆) . (11)

Equality holds if and only if T ∼= K1,n−1.

The proof of the next theorem is analogous to that of Theorem 3.1, hence omitted.

Theorem 3.2. Let T be a tree with n ≥ 3 vertices. Then

LEL(T ) ≤ 1 +
√

1 + ∆ +

√
(n− 3)

(
2(n− 2)−∆− 1

2
(
√

∆2 −
√
δ2)2

)
. (12)

Equality holds if and only if T ∼= K1,n−1.

Remark 3.1. Since (
√

∆2 −
√
δ2)2 ≥ 0, the following inequalities are valid

LEL(T ) ≤ 1 +
√

1 + ∆ +

√
(n− 3)

(
2(n− 2)−∆− 1

2
(
√

∆2 −
√
δ2)2

)
≤ 1 +

√
1 + ∆ +

√
(n− 3)(2(n− 2)−∆)

which means that inequality (12) is stronger than (4).

In the next theorem we determine an upper bound on LEL(T ) (IE(T )) in terms of n, detD, ∆ and p.

Theorem 3.3. Let T be a tree of order n ≥ 3 with p, 2 ≤ p ≤ n− 1, pendant vertices. Then

LEL(T ) ≤ p− 1 +
√

1 + ∆ + +

√
(n− p− 2)(2(n− 1)− p−∆) + (n− p− 1)

(
detD

∆

) 1
n−p−1

. (13)

Equality holds if and only if T ∼= K1,n−1.
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Proof. If p = n− 1, then T ∼= K1,n−1 and equality occurs in (13). Therefore, without affecting the generality, assume that
2 ≤ p ≤ n− 2. The inequality (6) can be considered in the following form(

n−p∑
i=2

√
ai

)2

≤ (n− p− 2)

n−p∑
i=2

ai + (n− p− 1)

(
n−p∏
i=2

ai

) 1
n−p−1

.

For ai = di, i = 2, . . . , n− p, the above inequality becomes(
n−p∑
i=2

√
di

)2

≤ (n− p− 2)

n−p∑
i=2

di + (n− p− 1)

(
n−p∏
i=2

di

) 1
n−p−1

,

that is (
n−p∑
i=2

√
di

)2

≤ (n− p− 2)(2(n− 1)− p−∆) + (n− p− 1)

(
detD

∆

) 1
n−p−1

. (14)

From the above and inequality (9) we arrive at (13).
Equality in (14) holds if and only if ∆2 = d2 = · · · = dn−p = δp, whereas in (9) if and only if T ∼= K1,n−1, which implies

that equality in (13) holds if and only if T ∼= K1,n−1.

Remark 3.2. According to arithmetic–geometric mean inequality (AGM) (see e.g. [12]) we have that

(n− p− 1)

(
n−p∏
i=2

di

) 1
n−p−1

≤
n−p∑
i=2

di = 2(n− 1)− p−∆ .

Therefore

LEL(T ) ≤ p− 1 +
√

1 + ∆ +

√
(n− p− 2)(2(n− 1)− p−∆) + (n− p− 1)

(
detD

∆

) 1
n−p−1

≤ p− 1 +
√

1 + ∆ +
√

(n− p− 2)(2(n− 1)− p−∆) + 2(n− 1)− p−∆

= p− 1 +
√

1 + ∆ +
√

(n− p− 1)(2(n− 1)− p−∆) ,

which means that inequality (13) is stronger than (11).

The proof of the next Theorem is analogous to that of Theorem 3.3, thus omitted.

Theorem 3.4. Let T be a tree with n ≥ 4 vertices. Then

LEL(T ) ≤ 1 +
√

1 + ∆ +

√
(n− 4)(2(n− 2)−∆) + (n− 3)

(
detD

∆

) 1
n−3

. (15)

Equality holds if and only if T ∼= K1,n−1.

Remark 3.3. Similarly as in the case of Remark 3.2, the following can be proved

LEL(T ) ≤ 1 +
√

1 + ∆ + +

√
(n− 4)(2(n− 2)−∆) + (n− 3)

(
detD

∆

) 1
n−3

≤ 1 +
√

1 + ∆ +
√

(n− 3)(2(n− 2)−∆) .

This means that inequality (15) is stronger than (4).

The zeroth order Randić index is a degree based graph invariant introduced in [7] as

0R(G) =

n∑
i=1

1√
di
.

In the next theorem we determine an upper bound on LEL(T ) in terms of 0R(T ).

Theorem 3.5. Let T be a tree of order n ≥ 5 with p, 2 ≤ p ≤ n− 1, pendant vertices. Then

LEL(T ) ≤ p− 1 +
√

1 + ∆ + (n− p− 1)(
√

∆2 +
√
δp)−

√
∆2δp

(
0R(T )− 1√

∆
− p
)
. (16)

Equality holds if and only if T ∼= K1,n−1.
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Proof. For every i, i = 2, . . . , n− p, holds
(
√
di −

√
∆2)(

√
di −

√
δp) ≤ 0 ,√

di +

√
∆2δp√
di

≤
√

∆2 +
√
δp . (17)

After summation over i, i = 2, . . . , n− p, of the above inequality, we get
n−p∑
i=2

√
di +

√
∆2δp

n−p∑
i=2

1√
di
≤ (n− p− 1)(

√
∆2 +

√
δp) ,

that is
n−p∑
i=2

√
di ≤ (n− p− 1)(

√
∆2 +

√
δp)−

√
∆2δp

(
0R(T )− 1√

∆
− p
)
.

Now, from the above and inequality (9) we obtain (16).
Equality in (17) holds if and only if di ∈ {∆2, δp}, for i = 2, . . . , n− p. On the other hand, equality in (9) holds if and only

if T ∼= K1,n−1, which implies that equality in (16) holds under same condition.

Corollary 3.2. Let T be a tree of order n ≥ 5 with p, 2 ≤ p ≤ n− 1, pendant vertices. Then

LEL(T ) ≤ p− 1 +
√

1 + ∆ +

(n− p− 1)2

(
4

√
∆2

δp
+ 4

√
δp
∆2

)2

4
(

0R(T )− 1√
∆
− p
) . (18)

Equality holds if and only if T ∼= K1,n−1.

Proof. According to AGM inequality we have that

2

√√√√√∆2δp

(
0R(T )− 1√

∆
− p
) n−p∑
i=2

√
di ≤

n−p∑
i=2

√
di +

√
∆2δp

(
0R(T )− 1√

∆
− p
)

≤ (n− p− 1)(
√

∆2 +
√
δp) ,

that is
n−p∑
i=2

√
di ≤

(n− p− 1)2

(
4

√
∆2

δp
+ 4

√
δp
∆2

)2

4
(

0R(T )− 1√
∆
− p
) .

From the above and inequality (9) we obtain (18).

Similarly as in the case of Theorem 3.5 the following theorem can be proved.

Theorem 3.6. Let T be a tree with n ≥ 5 vertices. Then

LEL(T ) ≤ 1 +
√

1 + ∆ + (n− 3)(
√

∆2 +
√
δ2)−

√
∆2δ2

(
0R(T )− 1√

∆
− 2

)
. (19)

Equality holds if and only if T ∼= K1,n−1.

Corollary 3.3. Let T be a tree with n ≥ 5 vertices. Then

LEL(T ) ≤ 1 +
√

1 + ∆ +
(n− 3)2

(
4

√
∆2

δ2
+ 4

√
δ2
∆2

)2

4
(

0R(T )− 1√
∆
− 2
) .

Equality holds if and only if T ∼= K1,n−1.

Theorem 3.7. Let T be a tree of order n ≥ 4 with p pendent vertices. When p = n− 1, then

LEL(T ) = n− 2 +
√
n .

When 0 ≤ p ≤ n− 2, then

LEL(T ) ≤ p− 1 +
√

1 + ∆ +
2(n− 1)−∆− p√

∆2δp

(√
∆2 +

√
δp −

√
2(n− 1)−∆− p

n− p− 1

)
. (20)
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Proof. After multiplying (17) by di and summation over i, for i = 2, . . . , n− p, we obtain

n−p∑
i=2

d
3/2
i +

√
∆2δp

n−p∑
i=2

√
di ≤

(√
∆2 +

√
δp

) n−p∑
i=2

di ,

that is
n−p∑
i=2

d
3/2
i +

√
∆2δp

n−p∑
i=2

√
di ≤

(√
∆2 +

√
δp

)
(2(n− 1)−∆− p) . (21)

On the other hand, the inequality (7) can be considered in the following form

n−p∑
i=2

xr+1
i

ari
≥

(∑n−p
i=2 xi

)r+1

(∑n−p
i=2 ai

)r , 0 ≤ p ≤ n− 2 .

For r = 1
2 , xi = di, ai = 1, i = 2, . . . , n− p, the above inequality becomes

n−p∑
i=2

d
3/2
i ≥

(∑n−p
i=2 di

)3/2

(∑n−p
i=2 1

)1/2
=

(2(n− 1)−∆− p)3/2

(n− p− 1)1/2
.

From the above and inequality (21) we obtain

n−p∑
i=2

√
di ≤

2(n− 1)−∆− p√
∆2δp

(√
∆2 +

√
δp −

√
2(n− 1)−∆− p

n− p− 1

)
.

Now, from the above and inequality (21) we arrive at (20).

The proof the next theorem is analogous to that of Theorem 3.7, hence omitted.

Theorem 3.8. Let T be a tree with n ≥ 4 vertices. Then

LEL(T ) ≤ 1 +
√

1 + ∆ +
2(n− 2)−∆√

∆2δ2

(√
∆2 +

√
δ2 −

√
2(n− 2)−∆

n− 3

)
. (22)

Equality holds if and only if T ∼= K1,n−1.

Corollary 3.4. Let T be a tree with n ≥ 4 vertices. Then

LEL(T ) ≤ 1 +
√

1 + ∆ +
(2(n− 2)−∆)(

√
∆2 +

√
δ2 − 1)√

∆2δ2
. (23)

Equality holds if and only if T ∼= K1,n−1.

Proof. Since 2(n− 2)−∆ ≥ n− 3 , from the above and (22) we obtain (23).

4. Comparison and discussion

In this section we compare the upper bounds for LEL(T ) obtained by inequalities (12), (15), (19) and (5) and give some
numerical results.

Let T = Pn, n ≥ 3. In that case the bounds (15) and (19) coincide, and are equal to

LEL(T ) ≤ 1 +
√

3 +
√

2(n− 3) .

The upper bounds determined by (12) and (19) are incomparable. Namely, when T = Pn, n ≥ 3, the bound (12) is
stronger than (19). However, if T is a tree with the vertex degree sequence(n

2
,
n

2
, 1, . . . , 1︸ ︷︷ ︸

n−2

)
,

then for n ≥ 6, the bound (19) is stronger than (12).
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Table 1: Numerical values of the bounds (12), (15), (19) and (5) when T ∼= Pn.
n Eq. (12) Eq. (15) Eq. (19) Eq. (5)
5 5.5300 5.5605 5.5605 5.9180
10 12.6012 12.6315 12.6315 13.8534
20 26.7433 26.7737 26.7737 29.2713
50 69.1698 69.2001 69.2001 74.2715
100 139.8800 139.9110 139.9110 147.9010

Table 2: Numerical values of the bounds (12), (15), (19) and (5) when T has the degree sequence (n2 ,
n
2 ,

n−2︷ ︸︸ ︷
1, . . . , 1 ).

n Eq. (12) Eq. (15) Eq. (19) Eq. (5)
10 11.9143 12.0987 11.6856 12.7814
20 24.3730 25.1844 23.4789 26.3264
30 36.5527 38.1036 34.8730 39.5747
50 60.5141 63.6866 57.0990 65.660
100 119.3820 126.9560 111.2120 129.8240

Table 1 gives the numerical values for LEL(T ) (i.e. IE(T )) obtained by inequalities (12), (15), (19) and (5) when tree is
a path, T ∼= Pn, that is for trees defined by the vertex degrees

( 2, . . . , 2︸ ︷︷ ︸
n−2

, 1, 1)

for n = 5, 10, 20, 50, 100.
Table 2 gives numerical values for the trees with the vertex degrees (n2 ,

n
2 , 1, . . . , 1︸ ︷︷ ︸

n−2

) for n = 10, 20, 30, 50, 100.

According to Tables 1 and 2 we conclude that the upper bounds on LEL(T ) obtained by (12), (15) and (19) are stronger
than the one obtained by (5). However, the open question is whether this is true for any tree T .
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