www.dmlett.com

Research Article

Some observations on the Laplacian-energy-like invariant of trees

Marjan Matejić ${ }^{1}$, Ş. B. Bozkurt Altındaǧ ${ }^{2}$, Igor Milovanović ${ }^{1, *}$, Emina Milovanović ${ }^{1}$
${ }^{1}$ Faculty of Electronic Engineering, University of Niš, Niš, Serbia
${ }^{2}$ Department of Mathematics, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey

(Received: 20 June 2022. Received in revised form: 27 September 2022. Accepted: 11 November 2022. Published online: 23 November 2022.)
© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a graph of order n. Denote by A the adjacency matrix of G and by $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ the diagonal matrix of vertex degrees of G. The Laplacian matrix of G is defined as $L=D-A$. Let $\mu_{1}, \mu_{2}, \cdots, \mu_{n-1}, \mu_{n}$ be eigenvalues of L satisfying $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \mu_{n}=0$. The Laplacian-energy-like invariant is a graph invariant defined as $L E L(G)=\sum_{i=1}^{n-1} \sqrt{\mu_{i}}$. Improved upper bounds for $L E L(G)$ are obtained and compared when G has a tree structure.

Keywords: Laplacian eigenvalues; energy of graphs; trees.
2020 Mathematics Subject Classification: 15A18, 05C50.

1. Introduction

Let $G=(V, E)$ be a graph of order n and size m with the sequence of vertex degrees $\Delta=d_{1} \geq d_{2} \geq \cdots \geq d_{n}=\delta$, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. In addition, we will use the following notations $\Delta_{2}=d_{2}, \delta_{2}=d_{n-2}$, and $\delta_{p}=d_{n-p}$, where p is an integer in the range $1 \leq p \leq n-1$. The diagonal matrix of vertex degrees of G is denoted as $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Obviously $\operatorname{det} D=\prod_{i=1}^{n} d_{i}$.

Denote by $A(G)$ the (0,1)-adjacency matrix of a graph G. The eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ of $A(G)$ represent the eigenvalues of G. The sum of absolute values of these eigenvalues is defined to be the (ordinary) energy of G [4], that is

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The Laplacian matrix of G is $L=D-A$. Eigenvalues of $L, \mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \mu_{n}=0$, form the Laplacian spectrum of G. The Laplacian-energy-like invariant is a graph invariant defined in terms of Laplacian eigenvalues as [10]

$$
L E L(G)=\sum_{i=1}^{n-1} \sqrt{\mu_{i}}
$$

If vertex v_{i} is incident with edge e_{j} in G, it will be denoted as $v_{i} \sim e_{j}$. The incidence matrix $B=\left(b_{i j}\right)$ of order $n \times m$, of graph G is defined as

$$
b_{i j}= \begin{cases}1, & \text { if } v_{i} \sim e_{j} \\ 0, & \text { otherwise }\end{cases}
$$

The signless Laplacian matrix of G is defined as $\mathcal{L}=B \cdot B^{T}=D+A$. The eigenvalues of matrix $\mathcal{L}, q_{1} \geq q_{2} \geq \cdots \geq q_{n} \geq 0$, are signless Laplacian eigenvalues of G. The corresponding incidence graph energy defined in terms of these eigenvalues is

$$
\operatorname{IE}(G)=\sum_{i=1}^{n} \sqrt{q_{i}}
$$

If G is a bipartite graph, then $I E(G)$ coincides with $L E L(G)$, that is $I E(G)=L E L(G)$ [5]. Since any tree is bipartite graph, this means that

$$
I E(T)=L E L(T)
$$

More on the mathematical properties of various graph energies can be found in monographs [6, 9], reviews [1, 14] and the references cited therein. In this paper we determine new upper bounds on $L E L(G)$, that is $I E(G)$, when G has a tree structure.

2. Preliminaries

In this section we recall some results from literature regarding $L E L(G)$ and analytical inequalities that are of interest for the present paper.

Lemma 2.1. [10,11] If $\Delta=d_{1} \geq \cdots \geq d_{n}=\delta>0$ are degrees of vertices of G, then

$$
\begin{equation*}
L E L(G) \leq \sqrt{d_{1}+1}+\sqrt{d_{2}}+\cdots+\sqrt{d_{n-1}}+\sqrt{d_{n}-1} \tag{1}
\end{equation*}
$$

with equality if and only if $G \cong K_{1, n-1}$.
Lemma 2.2. [2] If G is a connected, non-complete graph, with at least three vertices, then

$$
\begin{equation*}
L E L(G) \leq \sqrt{1+\Delta}+\sqrt{\delta}+\sqrt{(n-3)(2 m-\Delta-\delta-1)}, \tag{2}
\end{equation*}
$$

with equality if and only if $G \cong K_{1, n-1}, G \cong 2 K_{1} \bigvee K_{n-2}$ or $G \cong\left(K_{1} \cup K_{n-2}\right) \bigvee K_{1}$.
More on the bounds of type (1) and (2) can be found in the review [14] and the papers cited therein.
Remark 2.1. As can be seen, when $G \cong K_{1, n-1}$ in (1) and (2) equalities occur. Therefore the above inequalities are interesting for the present paper particulary when $G \cong T$. Since any tree T with $n \geq 3$ vertices, has at least two vertices of degree 1 , $d_{n-1}=d_{n}=\delta=1$, the above inequalities can be considered as

$$
\begin{equation*}
L E L(T) \leq 1+\sqrt{1+\Delta}+\sum_{i=2}^{n-2} \sqrt{d_{i}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
L E L(T) \leq 1+\sqrt{1+\Delta}+\sqrt{(n-3)(2(n-2)-\Delta)}, \tag{4}
\end{equation*}
$$

with equalities if and only if $T \cong K_{1, n-1}$.
Lemma 2.3. [3] Let T be a tree of order n with maximum degree Δ. Then

$$
\begin{equation*}
L E L(T) \leq \sqrt{n}+\sqrt{(n-3)(2 n-\Delta-3)+(n-2)\left(\frac{n}{\Delta+1}\right)^{\frac{1}{n-2}}} . \tag{5}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Lemma 2.4. [8] Let $a=\left(a_{i}\right), i=1,2, \ldots, n$, be a sequence of positive real numbers. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} \sqrt{a_{i}}\right)^{2} \leq(n-1) \sum_{i=1}^{n} a_{i}+n\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}} \tag{6}
\end{equation*}
$$

Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
Lemma 2.5. [13] Let $x=\left(x_{i}\right)$ and $a=\left(a_{i}\right), i=1,2, \ldots, n$, be two sequences of positive real numbers. Then, for any real r, $r \geq 0$, we have that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{r+1}}{\left(\sum_{i=1}^{n} a_{i}\right)^{r}} \tag{7}
\end{equation*}
$$

Equality holds if and only if $r=0$, or $\frac{x_{1}}{a_{1}}=\cdots=\frac{x_{n}}{a_{n}}$.
Remark 2.2. It is not difficult to observe that inequality (7) is valid if and only if $r \leq-1$ or $r \geq 0$, and equality is attained if and only if either $r=-1$, or $r=0$, or $\frac{x_{1}}{a_{1}}=\cdots=\frac{x_{n}}{a_{n}}$. When $-1 \leq r \leq 0$, the opposite inequality is valid in (7).

3. Main results

Let T be a tree of order $n \geq 3$ with $p, 2 \leq p \leq n-1$, pendant vertices. In the next theorem we establish an upper bound on $L E L(T)(I E(T))$ in terms of n, p, maximum degree Δ, second maximum degree Δ_{2} and δ_{p}.

Theorem 3.1. Let T be a tree of order $n \geq 3$ and $p, 2 \leq p \leq n-1$, pendant vertices. Then

$$
\begin{equation*}
L E L(T) \leq p-1+\sqrt{1+\Delta}+\sqrt{(n-p-1)\left(\left(2(n-1)-p-\Delta-\frac{1}{2}\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{p}}\right)^{2}\right)\right.} . \tag{8}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.

Proof. Let T be a tree of order $n \geq 3$ and $p, 2 \leq p \leq n-1$, pendant vertices. Then $d_{n-p+1}=\cdots=d_{n}=\delta=1$. If $p=n-1$, then $T \cong K_{1, n-1}$ and equality occurs in (8). Therefore, without affecting the generality, assume that $2 \leq p \leq n-2$. In that case, according to (3) we obtain that

$$
\begin{equation*}
L E L(T) \leq p-1+\sqrt{1+\Delta}+\sum_{i=2}^{n-p} \sqrt{d_{i}} \tag{9}
\end{equation*}
$$

On the other hand, based on the Lagrange's identity (see e.g. [12]), we have that

$$
\begin{aligned}
& (n-p-1) \sum_{i=2}^{n-p} d_{i}-\left(\sum_{i=2}^{n-p} \sqrt{d_{i}}\right)^{2}=\sum_{2 \leq i<j \leq n-p}\left(\sqrt{d_{i}}-\sqrt{d_{j}}\right)^{2} \\
\geq & \left(\sqrt{d_{2}}-\sqrt{d_{n-p}}\right)^{2}+\sum_{i=3}^{n-p-1}\left(\left(\sqrt{d_{2}}-\sqrt{d_{i}}\right)^{2}+\left(\sqrt{d_{i}}-\sqrt{d_{n-p}}\right)^{2}\right) \\
\geq & \left(\sqrt{\Delta_{2}}-\sqrt{\delta_{p}}\right)^{2}+\frac{1}{2} \sum_{i=3}^{n-p-1}\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{p}}\right)^{2}=\frac{n-p-1}{2}\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{p}}\right)^{2},
\end{aligned}
$$

and therefore

$$
\begin{align*}
\sum_{i=2}^{n-p} \sqrt{d_{i}} & \leq \sqrt{(n-p-1)(2(n-1)-\Delta-p)-\frac{n-p-1}{2}\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{p}}\right)^{2}} \tag{10}\\
& =\sqrt{(n-p-1)\left(2(n-1)-\Delta-p-\frac{1}{2}\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{p}}\right)^{2}\right)}
\end{align*}
$$

From the above and inequality (9) we arrive at (8).
Equality in (10) holds if and only if $\sqrt{d_{3}}=\cdots=\sqrt{d_{n-p-1}}=\frac{\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}}{2}$, and in (9) if and only if $T \cong K_{1, n-1}$, which implies that equality in (8) holds if and only if $T \cong K_{1, n-1}$.

Since $\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{p}}\right)^{2} \geq 0$, we have the following corollary of Theorem 3.1.
Corollary 3.1. Let T be a tree of order $n \geq 3$ with $p, 2 \leq p \leq n-1$, pendant vertices. Then

$$
\begin{equation*}
L E L(T) \leq p-1+\sqrt{1+\Delta}+\sqrt{(n-p-1)(2(n-1)-p-\Delta)} . \tag{11}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
The proof of the next theorem is analogous to that of Theorem 3.1, hence omitted.
Theorem 3.2. Let T be a tree with $n \geq 3$ vertices. Then

$$
\begin{equation*}
L E L(T) \leq 1+\sqrt{1+\Delta}+\sqrt{(n-3)\left(2(n-2)-\Delta-\frac{1}{2}\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{2}}\right)^{2}\right)} . \tag{12}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Remark 3.1. Since $\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{2}}\right)^{2} \geq 0$, the following inequalities are valid

$$
\begin{aligned}
\operatorname{LEL}(T) & \leq 1+\sqrt{1+\Delta}+\sqrt{(n-3)\left(2(n-2)-\Delta-\frac{1}{2}\left(\sqrt{\Delta_{2}}-\sqrt{\delta_{2}}\right)^{2}\right)} \\
& \leq 1+\sqrt{1+\Delta}+\sqrt{(n-3)(2(n-2)-\Delta)}
\end{aligned}
$$

which means that inequality (12) is stronger than (4).
In the next theorem we determine an upper bound on $L E L(T)(I E(T))$ in terms of n, $\operatorname{det} D, \Delta$ and p.
Theorem 3.3. Let T be a tree of order $n \geq 3$ with $p, 2 \leq p \leq n-1$, pendant vertices. Then

$$
\begin{equation*}
L E L(T) \leq p-1+\sqrt{1+\Delta}++\sqrt{(n-p-2)(2(n-1)-p-\Delta)+(n-p-1)\left(\frac{\operatorname{det} D}{\Delta}\right)^{\frac{1}{n-p-1}}} \tag{13}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.

Proof. If $p=n-1$, then $T \cong K_{1, n-1}$ and equality occurs in (13). Therefore, without affecting the generality, assume that $2 \leq p \leq n-2$. The inequality (6) can be considered in the following form

$$
\left(\sum_{i=2}^{n-p} \sqrt{a_{i}}\right)^{2} \leq(n-p-2) \sum_{i=2}^{n-p} a_{i}+(n-p-1)\left(\prod_{i=2}^{n-p} a_{i}\right)^{\frac{1}{n-p-1}}
$$

For $a_{i}=d_{i}, i=2, \ldots, n-p$, the above inequality becomes

$$
\left(\sum_{i=2}^{n-p} \sqrt{d_{i}}\right)^{2} \leq(n-p-2) \sum_{i=2}^{n-p} d_{i}+(n-p-1)\left(\prod_{i=2}^{n-p} d_{i}\right)^{\frac{1}{n-p-1}}
$$

that is

$$
\begin{equation*}
\left(\sum_{i=2}^{n-p} \sqrt{d_{i}}\right)^{2} \leq(n-p-2)(2(n-1)-p-\Delta)+(n-p-1)\left(\frac{\operatorname{det} D}{\Delta}\right)^{\frac{1}{n-p-1}} \tag{14}
\end{equation*}
$$

From the above and inequality (9) we arrive at (13).
Equality in (14) holds if and only if $\Delta_{2}=d_{2}=\cdots=d_{n-p}=\delta_{p}$, whereas in (9) if and only if $T \cong K_{1, n-1}$, which implies that equality in (13) holds if and only if $T \cong K_{1, n-1}$.

Remark 3.2. According to arithmetic-geometric mean inequality (AGM) (see e.g. [12]) we have that

$$
(n-p-1)\left(\prod_{i=2}^{n-p} d_{i}\right)^{\frac{1}{n-p-1}} \leq \sum_{i=2}^{n-p} d_{i}=2(n-1)-p-\Delta
$$

Therefore

$$
\begin{aligned}
\operatorname{LEL}(T) & \leq p-1+\sqrt{1+\Delta}+\sqrt{(n-p-2)(2(n-1)-p-\Delta)+(n-p-1)\left(\frac{\operatorname{det} D}{\Delta}\right)^{\frac{1}{n-p-1}}} \\
& \leq p-1+\sqrt{1+\Delta}+\sqrt{(n-p-2)(2(n-1)-p-\Delta)+2(n-1)-p-\Delta} \\
& =p-1+\sqrt{1+\Delta}+\sqrt{(n-p-1)(2(n-1)-p-\Delta)}
\end{aligned}
$$

which means that inequality (13) is stronger than (11).
The proof of the next Theorem is analogous to that of Theorem 3.3, thus omitted.
Theorem 3.4. Let T be a tree with $n \geq 4$ vertices. Then

$$
\begin{equation*}
L E L(T) \leq 1+\sqrt{1+\Delta}+\sqrt{(n-4)(2(n-2)-\Delta)+(n-3)\left(\frac{\operatorname{det} D}{\Delta}\right)^{\frac{1}{n-3}}} \tag{15}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Remark 3.3. Similarly as in the case of Remark 3.2, the following can be proved

$$
\begin{aligned}
L E L(T) & \leq 1+\sqrt{1+\Delta}+\sqrt{(n-4)(2(n-2)-\Delta)+(n-3)\left(\frac{\operatorname{det} D}{\Delta}\right)^{\frac{1}{n-3}}} \\
& \leq 1+\sqrt{1+\Delta}+\sqrt{(n-3)(2(n-2)-\Delta)}
\end{aligned}
$$

This means that inequality (15) is stronger than (4).

The zeroth order Randić index is a degree based graph invariant introduced in [7] as

$$
{ }^{0} R(G)=\sum_{i=1}^{n} \frac{1}{\sqrt{d_{i}}}
$$

In the next theorem we determine an upper bound on $L E L(T)$ in terms of ${ }^{0} R(T)$.
Theorem 3.5. Let T be a tree of order $n \geq 5$ with $p, 2 \leq p \leq n-1$, pendant vertices. Then

$$
\begin{equation*}
L E L(T) \leq p-1+\sqrt{1+\Delta}+(n-p-1)\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}\right)-\sqrt{\Delta_{2} \delta_{p}}\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-p\right) \tag{16}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.

Proof. For every $i, i=2, \ldots, n-p$, holds

$$
\begin{align*}
& \left(\sqrt{d_{i}}-\sqrt{\Delta_{2}}\right)\left(\sqrt{d_{i}}-\sqrt{\delta_{p}}\right) \leq 0 \\
& \sqrt{d_{i}}+\frac{\sqrt{\Delta_{2} \delta_{p}}}{\sqrt{d_{i}}} \leq \sqrt{\Delta_{2}}+\sqrt{\delta_{p}} \tag{17}
\end{align*}
$$

After summation over $i, i=2, \ldots, n-p$, of the above inequality, we get

$$
\sum_{i=2}^{n-p} \sqrt{d_{i}}+\sqrt{\Delta_{2} \delta_{p}} \sum_{i=2}^{n-p} \frac{1}{\sqrt{d_{i}}} \leq(n-p-1)\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}\right)
$$

that is

$$
\sum_{i=2}^{n-p} \sqrt{d_{i}} \leq(n-p-1)\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}\right)-\sqrt{\Delta_{2} \delta_{p}}\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-p\right)
$$

Now, from the above and inequality (9) we obtain (16).
Equality in (17) holds if and only if $d_{i} \in\left\{\Delta_{2}, \delta_{p}\right\}$, for $i=2, \ldots, n-p$. On the other hand, equality in (9) holds if and only if $T \cong K_{1, n-1}$, which implies that equality in (16) holds under same condition.

Corollary 3.2. Let T be a tree of order $n \geq 5$ with $p, 2 \leq p \leq n-1$, pendant vertices. Then

$$
\begin{equation*}
L E L(T) \leq p-1+\sqrt{1+\Delta}+\frac{(n-p-1)^{2}\left(\sqrt[4]{\frac{\Delta_{2}}{\delta_{p}}}+\sqrt[4]{\frac{\delta_{p}}{\Delta_{2}}}\right)^{2}}{4\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-p\right)} \tag{18}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Proof. According to AGM inequality we have that

$$
\begin{aligned}
2 \sqrt{\sqrt{\Delta_{2} \delta_{p}}\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-p\right) \sum_{i=2}^{n-p} \sqrt{d_{i}}} & \leq \sum_{i=2}^{n-p} \sqrt{d_{i}}+\sqrt{\Delta_{2} \delta_{p}}\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-p\right) \\
& \leq(n-p-1)\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}\right)
\end{aligned}
$$

that is

$$
\sum_{i=2}^{n-p} \sqrt{d_{i}} \leq \frac{(n-p-1)^{2}\left(\sqrt[4]{\frac{\Delta_{2}}{\delta_{p}}}+\sqrt[4]{\frac{\delta_{p}}{\Delta_{2}}}\right)^{2}}{4\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-p\right)}
$$

From the above and inequality (9) we obtain (18).
Similarly as in the case of Theorem 3.5 the following theorem can be proved.
Theorem 3.6. Let T be a tree with $n \geq 5$ vertices. Then

$$
\begin{equation*}
L E L(T) \leq 1+\sqrt{1+\Delta}+(n-3)\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{2}}\right)-\sqrt{\Delta_{2} \delta_{2}}\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-2\right) \tag{19}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Corollary 3.3. Let T be a tree with $n \geq 5$ vertices. Then

$$
L E L(T) \leq 1+\sqrt{1+\Delta}+\frac{(n-3)^{2}\left(\sqrt[4]{\frac{\Delta_{2}}{\delta_{2}}}+\sqrt[4]{\frac{\delta_{2}}{\Delta_{2}}}\right)^{2}}{4\left({ }^{0} R(T)-\frac{1}{\sqrt{\Delta}}-2\right)}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Theorem 3.7. Let T be a tree of order $n \geq 4$ with p pendent vertices. When $p=n-1$, then

$$
L E L(T)=n-2+\sqrt{n}
$$

When $0 \leq p \leq n-2$, then

$$
\begin{equation*}
L E L(T) \leq p-1+\sqrt{1+\Delta}+\frac{2(n-1)-\Delta-p}{\sqrt{\Delta_{2} \delta_{p}}}\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}-\sqrt{\frac{2(n-1)-\Delta-p}{n-p-1}}\right) \tag{20}
\end{equation*}
$$

Proof. After multiplying (17) by d_{i} and summation over i, for $i=2, \ldots, n-p$, we obtain

$$
\sum_{i=2}^{n-p} d_{i}^{3 / 2}+\sqrt{\Delta_{2} \delta_{p}} \sum_{i=2}^{n-p} \sqrt{d_{i}} \leq\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}\right) \sum_{i=2}^{n-p} d_{i}
$$

that is

$$
\begin{equation*}
\sum_{i=2}^{n-p} d_{i}^{3 / 2}+\sqrt{\Delta_{2} \delta_{p}} \sum_{i=2}^{n-p} \sqrt{d_{i}} \leq\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}\right)(2(n-1)-\Delta-p) . \tag{21}
\end{equation*}
$$

On the other hand, the inequality (7) can be considered in the following form

$$
\sum_{i=2}^{n-p} \frac{x_{i}^{r+1}}{a_{i}^{r}} \geq \frac{\left(\sum_{i=2}^{n-p} x_{i}\right)^{r+1}}{\left(\sum_{i=2}^{n-p} a_{i}\right)^{r}}, \quad 0 \leq p \leq n-2
$$

For $r=\frac{1}{2}, x_{i}=d_{i}, a_{i}=1, i=2, \ldots, n-p$, the above inequality becomes

$$
\sum_{i=2}^{n-p} d_{i}^{3 / 2} \geq \frac{\left(\sum_{i=2}^{n-p} d_{i}\right)^{3 / 2}}{\left(\sum_{i=2}^{n-p} 1\right)^{1 / 2}}=\frac{(2(n-1)-\Delta-p)^{3 / 2}}{(n-p-1)^{1 / 2}}
$$

From the above and inequality (21) we obtain

$$
\sum_{i=2}^{n-p} \sqrt{d_{i}} \leq \frac{2(n-1)-\Delta-p}{\sqrt{\Delta_{2} \delta_{p}}}\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{p}}-\sqrt{\frac{2(n-1)-\Delta-p}{n-p-1}}\right)
$$

Now, from the above and inequality (21) we arrive at (20).

The proof the next theorem is analogous to that of Theorem 3.7, hence omitted.
Theorem 3.8. Let T be a tree with $n \geq 4$ vertices. Then

$$
\begin{equation*}
\operatorname{LEL}(T) \leq 1+\sqrt{1+\Delta}+\frac{2(n-2)-\Delta}{\sqrt{\Delta_{2} \delta_{2}}}\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{2}}-\sqrt{\frac{2(n-2)-\Delta}{n-3}}\right) . \tag{22}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Corollary 3.4. Let T be a tree with $n \geq 4$ vertices. Then

$$
\begin{equation*}
L E L(T) \leq 1+\sqrt{1+\Delta}+\frac{(2(n-2)-\Delta)\left(\sqrt{\Delta_{2}}+\sqrt{\delta_{2}}-1\right)}{\sqrt{\Delta_{2} \delta_{2}}} \tag{23}
\end{equation*}
$$

Equality holds if and only if $T \cong K_{1, n-1}$.
Proof. Since 2(n-2)- $\Delta \geq n-3$, from the above and (22) we obtain (23).

4. Comparison and discussion

In this section we compare the upper bounds for $L E L(T)$ obtained by inequalities (12), (15), (19) and (5) and give some numerical results.

Let $T=P_{n}, n \geq 3$. In that case the bounds (15) and (19) coincide, and are equal to

$$
L E L(T) \leq 1+\sqrt{3}+\sqrt{2}(n-3)
$$

The upper bounds determined by (12) and (19) are incomparable. Namely, when $T=P_{n}, n \geq 3$, the bound (12) is stronger than (19). However, if T is a tree with the vertex degree sequence

$$
(\frac{n}{2}, \frac{n}{2}, \underbrace{1, \ldots, 1}_{n-2}),
$$

then for $n \geq 6$, the bound (19) is stronger than (12).

Table 1: Numerical values of the bounds (12), (15), (19) and (5) when $T \cong P_{n}$.

n	Eq. (12)	Eq. (15)	Eq. (19)	Eq. (5)
5	5.5300	5.5605	5.5605	5.9180
10	12.6012	12.6315	12.6315	13.8534
20	26.7433	26.7737	26.7737	29.2713
50	69.1698	69.2001	69.2001	74.2715
100	139.8800	139.9110	139.9110	147.9010

Table 2: Numerical values of the bounds (12), (15), (19) and (5) when T has the degree sequence $(\frac{n}{2}, \frac{n}{2}, \overbrace{1, \ldots, 1}^{n-2})$.

n	Eq. (12)	Eq. (15)	Eq. (19)	Eq. (5)
10	11.9143	12.0987	11.6856	12.7814
20	24.3730	25.1844	23.4789	26.3264
30	36.5527	38.1036	34.8730	39.5747
50	60.5141	63.6866	57.0990	65.660
100	119.3820	126.9560	111.2120	129.8240

Table 1 gives the numerical values for $L E L(T)$ (i.e. $I E(T)$) obtained by inequalities (12), (15), (19) and (5) when tree is a path, $T \cong P_{n}$, that is for trees defined by the vertex degrees

$$
(\underbrace{2, \ldots, 2}_{n-2}, 1,1)
$$

for $n=5,10,20,50,100$.
Table 2 gives numerical values for the trees with the vertex degrees $(\frac{n}{2}, \frac{n}{2}, \underbrace{1, \ldots, 1}_{n-2})$ for $n=10,20,30,50,100$.
According to Tables 1 and 2 we conclude that the upper bounds on $L E L(T)$ obtained by (12), (15) and (19) are stronger than the one obtained by (5). However, the open question is whether this is true for any tree T.

References

[1] Ș. B. Bozkurt Altındağ, D. Bozkurt, Lower bounds via new approaches for incidence energy, In: I. Gutma, X. Li (Eds.) Energies of Graphs - Theory and applications, Univ. Kragujevac, Kragujevac, 2016, 81-110.
[2] X. Chen, K. C. Das, Characterization of extremal graphs from Laplacian eigenvalues and the sum of powers of the Laplacian eigenvalues of graphs, Discr. Math. 338 (2015) 1252-1263.
[3] K. C. Das, I. Gutman, A. Cevik, On the Laplacian-energy-like invariant, Lin. Algebra Appl. 442 (2014) 58-68.
[4] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz. 103 (1978) 1-22.
[5] I. Gutman, D. Kiani, M. Mirzakhar, On incidence energy of graphs, MATCH Commun. Math. Comput. Chem. 62 (2009) 573-580.
[6] I. Gutman, X. Li (Eds.), Energies of graphs - Theory and applications, Univ. Kragujevac, Krgujevac, 2016.
[7] L. B. Kier, L. H. Hall, Molecular connectivity in Chemistry and drug research, Academic Press, New York, 1976.
[8] H. B. Kober, On arithmetic and geometric means and on Hölder's inequality, Proc. Amer. Math. Soc. 59 (1958) 452-459.
[9] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
[10] J. Liu, B. Liu, A Laplacian-energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59 (2008) 355-372.
[11] M. Liu, B. Liu, A note on sum of powers of the Laplacian eigenvalues of graphs, Appl. Math. Lett. 24 (2011) 249-252.
[12] D. S. Mitrinović, P. M. Vasić,Analytic inequalities, Springer Verlag, Berlin/Heidelberg/New york, 1970.
[13] J. Radon, Über die absolut additiven Mengenfunktionen, Wiener Sitzungsber 122 (1913) 1295-1438.
[14] D. Stevanović, S. Wagner, Laplacian-energy-like invariant: Laplacian coefficients, extremal graphs and bounds, In: I. Gutman, X. Li (Eds.) Energies of Graphs - Theory and applications, Univ. Kragujevac, Kragujevac, 2016, 81-110.

