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Abstract

A set S of vertices in a connected graph G is an irregular dominating set if the vertices of S can be labeled with distinct
positive integers in such a way that for every vertex v of G, there is a vertex u ∈ S such that the distance from u to v is the
label assigned to u. If for every vertex u ∈ S, there is a vertex v of G such that u is the only vertex of S whose distance to v
is the label of u, then S is a minimal irregular dominating set. A graph H is an irregular domination graph if there exists a
graph G with a minimal irregular dominating set S such that H is isomorphic to the subgraph G[S] of G induced by S. In
this paper, all irregular domination trees and forests are characterized. All disconnected irregular domination graphs are
determined as well.
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1. Introduction

A set S of vertices in a nontrivial connected graph G is called an irregular dominating set if the vertices of S can be labeled
with distinct positive integers in such a way that for every vertex v in G, there is at least one vertex u ∈ S such that the
distance d(u, v) between u and v is the label `(u) assigned to u. Thus, no label can be greater than the diameter diam(G) ofG
(the greatest distance between any two vertices ofG). The vertex u is said to dominate all vertices v for which d(u, v) = `(u).
Such a labeling is called an irregular dominating labeling. This concept was introduced and studied in [4] and studied
further in [2, 3, 5]. More generally, irregularity in graphs is discussed in [1] and major results on graph domination are
presented in [6] by Haynes, Hedetniemi, and Henning.

When considering an irregular dominating set S in a connected graph G, it is assumed that the vertices of S have been
assigned distinct positive integer labels. In [4], all trees having an irregular dominating set are determined. A path of
order n is denoted by Pn and a star is a tree of diameter 2.

Theorem 1.1. A nontrivial tree T has an irregular dominating set if and only if T is none of P2, P6 or a star.

If G is a connected graph possessing an irregular dominating set, then the minimum cardinality of an irregular dom-
inating set in G is the irregular domination number γ̃(G) of G. If G is such a connected graph of diameter d, then an
irregular dominating labeling of G uses labels from the set [d] = {1, 2, . . . , d} and so γ̃(G) ≤ d.

An irregular dominating set S in a graph is minimal if for every vertex u ∈ S, there is a vertex v of G such that u
is the only vertex that dominates v. In [7], the structural relationships of minimal irregular dominating sets in certain
well-known graphs are studied, which led to the concept of an irregular domination graph. A graph H is an irregular
domination graph if there exists a graph G possessing a minimal irregular dominating set S such that the subgraph G[S]

of G induced by S is isomorphic to H. As we saw in Theorem 1.1, the path P6 does not have an irregular dominating set.
Nevertheless, it is an irregular domination graph, as shown by the graph G of Figure 1. For the set S = {u1, u2, . . . , u6},
the vertex u1 is the only vertex of S that dominates u4, the vertex u2 is the only vertex of S that dominates u3, the vertex u3
is the only vertex of S that dominates x, the vertex u4 is the only vertex of S that dominates u2, the vertex u5 is the only
vertex of S that dominates y, and the vertex u6 is the only vertex of S that dominates z, Therefore, S is a minimal irregular
dominating set and G[S] ∼= P6.

In [7], the next three propositions were obtained and were used to establish Theorem 1.2 given on the next page.

Proposition 1.1. No connected graph of diameter at most 2 is an irregular domination graph.
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Figure 1: Showing that P6 is an irregular domination graph.

By Proposition 1.1, no star is an irregular domination graph.

Proposition 1.2. The graph K1 +K2 is the only irregular domination graph of order 3.

Proposition 1.3. A graph H of order 4 or 5 is an irregular domination graph if and only if H is disconnected, or H is
connected and diam(H) ≥ 3.

Theorem 1.2. A path Pn of order n ≥ 2 is an irregular domination graph if and only if n ≥ 4.

It was shown in [7] that neither the 3-cubeQ3 = C4 �K2 nor the prismC5 �K2 are irregular domination graphs. Both of
these graphs have diameter 3. It was stated as an open question in [7] whether every connected graph of diameter 4 or more
is an irregular domination graph. By Theorem 1.2, every path of diameter at least 3 is an irregular domination graph. It is
our goal here to determine all irregular domination trees and forests. In addition, we determine all disconnected irregular
domination graphs.

2. Irregular domination forests

In [7], it was shown that if an isolated vertex is added to any graph of order 3 or more, then the resulting disconnected
graph is an irregular domination graph.

Theorem 2.1. If H is a graph of order 3 or more, then H +K1 is an irregular domination graph.

The following is a consequence of Theorem 2.1.

Corollary 2.1. If F is a forest of order 4 or more having an isolated vertex, then F is an irregular domination graph.

The following result gives another sufficient condition for a forest to be an irregular domination graph.

Theorem 2.2. If F is a forest containing a component of diameter 3 or more, then F is an irregular domination graph.

Proof. Let F be a forest of order n ≥ 4 containing a component of diameter 3 or more. Then F contains a path
P = (u1, u2, u3, u4), where u1 is an end-vertex of F . We consider two cases depending on whether degF u2 = 2 or degF u2 ≥ 3.

Case 1. degF u2 = 2 . Let X = V (F )− V (P ). Let G be the graph obtained from F by adding (a) a path (y1, y2, . . . , yn−1)

of order n− 1 and joining y1 to u2 and (b) a vertex z and joining z to every vertex in {u2} ∪X. Then dG(x, u2) = 2 and the
diameter ofG is diam(G) = d(x, yn−1) = 2+(n−1) = n+1 for each x ∈ X. Let S = V (F ). We define a labeling f : S → [n+1]

of G as follows:

? f(u1) = 3, f(u2) = 1, f(u3) = 4, f(u4) = 2, and

? the n− 4 labels in the set [6, n+ 1] are assigned arbitrarily to the n− 4 vertices in X.

Hence, the set of labels assigned to the vertices of S by f is [n+ 1]− {5}. It remains to show that S is a minimal irregular
dominating set S. Since

(1) each vertex in V (F ) is dominated by a vertex labeled i for some i ∈ [3] and u2 is only dominated by the vertex labeled 2,

(2) the vertex z is only dominated by the vertex u2 labeled 1,

(3) the vertex y1 is only dominated by the vertex labeled 1, the vertex y2 is only dominated by the vertex labeled 3, the
vertex y3 is only dominated by the vertex labeled 4, and

(4) for 4 ≤ i ≤ n− 1, the vertex yi is only dominated by the vertex labeled i+ 2,
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Figure 2: The graph G in the proof of Case 2 of Theorem 2.2.

it follows that S is a minimal irregular dominating set of G and G[S] ∼= F .
Case 2. degF u2 = t ≥ 3. Let W = NF (u2)− {u1, u3} be the set of those t− 2 neighbors of u2 that do not belong to P and

let X = V (F ) − (NT (u2) ∪ {u2, u4}). Then |X| = n − (t + 2) = n − t − 2. The graph G is obtained from F by adding (a) a
path (y1, y2, . . . , yn−1) of order n − 1 and joining y1 to u2 and (b) a vertex z and joining z to every vertex in {u2} ∪X. The
graph G is shown in Figure 2. Thus, dG(x, u2) = 2 and diam(G) = d(x, yn−1) = 2 + (n− 1) = n+ 1 each x ∈ X.
Let S = V (F ). We define a labeling f : S → [n+ 1] of G as follows:

? f(u1) = 3, f(u2) = 1, f(u3) = 4, f(u4) = 2,

? the t− 2 labels in the set [5, t+ 2] are assigned arbitrarily to the t− 2 vertices in W = NT (u2)− {u1, u3}, and

? the n− t− 2 labels in the set [t+ 4, n+ 1] are assigned arbitrarily to the n− t− 2 vertices in X.

Hence, the set of labels assigned to the vertices of S by f is [n+1]−{t+3}. It remains to show that S is a minimal irregular
dominating set S. Since

(1) each vertex in V (F ) is dominated by a vertex labeled i for some i ∈ [3] and u2 is only dominated by the vertex labeled 2,

(2) the vertex z is only dominated by the vertex u2 labeled 1,

(3) the vertex y1 is only dominated by the vertex labeled 1, the vertex y2 is only dominated by the vertex labeled 3, the
vertex y3 is only dominated by the vertex labeled 4,

(4) for 4 ≤ i ≤ t+ 1, the vertex yi is only dominated by the vertex labeled i+ 1, and

(5) for t+ 2 ≤ i ≤ n− 1, the vertex yi is only dominated by the vertex labeled i+ 2,

it follows that S is a minimal irregular dominating set of G and G[S] ∼= F .

Since no tree of diameter 1 or 2 is an irregular domination graph, the following result is a consequence of Theorem 2.2.

Corollary 2.2. A tree T is an irregular domination graph if and only if diam(T ) ≥ 3.

By Theorem 2.2, only those forests having at least two components, each of which is either K2 or a star, remain to be
considered. If every component of a disconnected forest F isK2, then F is an irregular domination graph, as we show next.

Theorem 2.3. If F = kK2 for some integer k ≥ 2, then F is an irregular domination graph.

Proof. For an integer k ≥ 2, let E(kK2) = {uivi : 1 ≤ i ≤ k} be the set of the k edges of 2K2. We show that there exists
a graph Gk with a minimal dominating set Sk such that Gk[Sk] ∼= kK2 (although 2K2 is an irregular domination graph
by Proposition 1.3). For k = 2, let G2 be the graph of diameter 5 shown in Figure 3. Let S2 = {u1, u2, v1, v2} where the
corresponding labeling f2 : S2 → {1, 2, 3, 4} is also shown in Figure 3. Since (1) each vertex in V (2K2) is dominated by a
vertex labeled i for some i ∈ [3], (2) the vertex z is only dominated by the vertex labeled 1, the vertex x is only dominated
by the vertex labeled 3 and the vertex y1 is only dominated by the vertex labeled 2, and the vertex y2 is only dominated
by the vertex labeled 4, it follows that S2 is a minimal dominating set of G2 and G2[S2] ∼= 2K2. Thus, 2K2 is an irregular
domination graph.

For k ≥ 3, let Hi be a triangle with vertex set {ui, vi, wi} for 3 ≤ i ≤ k. We construct a graph Gk from the graph G2

and the triangles Hi (3 ≤ i ≤ k) by (a) joining the vertex wi of Hi to the vertex x of G2 for 3 ≤ i ≤ k and (b) adding a
path (y3, y4, · · · , y2k−2) of order 2k − 4 and joining y3 to y2. Thus, diam(Gk) = dG(v1, y2k−2) = 2k + 1. Let Sk = V (kK2) and
W = {ui, vi : 3 ≤ i ≤ k}.
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Figure 3: The graph G2 in the proof of Theorem 2.3.

We define a labeling fk : Sk → [2k] as follows:

? fk(v) = f2(v) if v ∈ V (G2) and

? the 2k − 4 labels in the set [5, 2k] are assigned arbitrarily to the 2k − 4 vertices in W .

Hence, the set of labels assigned to the vertices of Sk by fk is [2k]. It remains to show that Sk is a minimal dominating set
of Gk. Since

(1) each vertex in V (kK2) is dominated by a vertex labeled i for some i ∈ [4],

(2) the vertex z is only dominated by the vertex labeled 1, the vertex x is only dominated by the vertex labeled 3 and the
vertex y1 is only dominated by the vertex labeled 2, and

(3) for 2 ≤ i ≤ 2k − 2, the vertex yi is only dominated by the vertex labeled i+ 2,

it follows that Sk is a minimal irregular dominating set of Gk and Gk[Sk] ∼= 2K2.

By Theorems 2.2 and 2.3, only one situation remains, namely when all components of a disconnected forest are stars
or K2 and at least one component is a star.

Theorem 2.4. Let F = T1 + T2 + · · ·+ Tk be a forest with k ≥ 2 components Ti where 1 ≤ i ≤ k, each of which is either K2

or a star. If F contains at least one star, then F is an irregular domination graph.

Proof. Let F = T1 + T2 + · · ·+ Tk be a forest of order n, where T1 is a star and each tree Ti, 2 ≤ i ≤ k, is either K2 or a star
and ui ∈ V (Ti) such that degTi

ui = ∆(Ti) for 1 ≤ i ≤ k. Thus, if Ti is a star, then ui is the center of Ti for 1 ≤ i ≤ k. We
consider two cases, depending on k = 2 or k ≥ 3.

Case 1. k = 2. Let G be obtained from F by adding a path (y1, y2, . . . , yn−1) of order n − 1 and joining y1 to u1 and u2.
Let v1,1 and v1,2 be two neighbors of u1 in T1 and let v2,1 be a neighbor of u2 in T2. Then the diameter of G is diam(G) =

dG(v1,1, yn−1) = n. Let X = V (F )−{u1, u2, v1,1, v1,2, v2,1}. Then |X| = n− 5. Let S = V (F ). We define a labeling f : S → [n]

as follows:

? f(u1) = 1, f(u2) = 2, f(v1,1) = 3, f(v1,2) = 4, f(v2,1) = 5 and

? the n− 5 labels in [6, n] are assigned arbitrarily to the n− 5 vertices of X.

Hence, the set of labels assigned to the vertices of S by f is [n]. It remains to show that S is a minimal irregular dominating
set of G. Since

(1) each vertex in V (F ) is dominated by a vertex labeled i for some i ∈ [4], the vertex u1 is only dominated by the vertex
labeled 2, and the vertex u2 is only dominated by the vertex labeled 3,

(2) the vertex y1 is only dominated by the vertex labeled 1 and the vertex y2 is dominated by the vertex labeled 2 or 3,
and

(3) for 3 ≤ i ≤ n− 1, the vertex yi is only dominated by the vertex labeled i+ 1.

it follows that S is a minimal irregular dominating set of G and G[S] ∼= F .
Case 2. k ≥ 3. LetG be obtained from F by adding (a) a vertex z and joining z to every vertex in {u3, u4, . . . , uk} and (b) a

path (y1, y2, . . . , yn) of order n and joining y1 to each vertex in {z, u1, u2}. Let v1,1 and v1,2 be two neighbors of u1 in T1 and let
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v2,1 be a neighbor of u2 in T2. Then the diameter of G is diam(G) = dG(v3,1, yn) = n+ 1, where v3,1 is a neighbor of u3 in T3.
Let W = V (F )− (V (T1) ∪ V (T2) ∪ {u3, u4, . . . , uk}) and X = V (T1) ∪ V (T2)− {u1, u2, v1,1, v1,2, v2,1}. Let p = |V (T1) ∪ V (T2)|.
Then |W | = p− 5 and |X| = n− p− (k − 2) = n− p− k + 2. Let S = V (F ). We define a labeling f : S → [n+ 1] as follows:

? f(u1) = 1, f(u2) = 2, f(v1,1) = 3, f(v1,2) = 4, f(v2,1) = 5,

? the p− 5 labels in [6, p] are assigned arbitrarily to the p− 5 vertices of X,

? the k − 2 labels in [p+ 1, p+ (k − 2)] are assigned arbitrarily to the k − 2 vertices of {u3, u4, . . . , uk}, and

? the n− p− k + 2 labels in [p+ k, n+ 1] are assigned arbitrarily to the n− p− k + 2 vertices of W .

Hence, the set of labels assigned to the vertices of S by f is [n+ 1]−{p+ k− 1}. This is shown in Figure 4 where T1 = K1,3,
T2 = K2, T3 = K1,2, and T4 = K1,3. Thus, k = 4, p = 6, and n = 13.
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Figure 4: The graph G in the proof of Case 2 of Theorem 2.4.

It remains to show that S is a minimal irregular dominating set of G. Since

(1) each vertex in V (F ) is dominated by a vertex labeled i for some i ∈ [4] and u2 is only dominated by the vertex labeled 2,

(2) the vertex z is only dominated by the vertex u2 labeled 1,

(3) the vertex y1 is only dominated by the vertex labeled 1, the vertex y2 is only dominated by the vertex labeled 3, the
vertex y3 is only dominated by the vertex labeled 4,

(4) for 4 ≤ i ≤ t+ 1, the vertex yi is only dominated by the vertex labeled i+ 1, and

(5) for t+ 2 ≤ i ≤ n− 1, the vertex yi is only dominated by the vertex labeled i+ 2,

it follows that S is a minimal irregular dominating set of G and G[S] ∼= F .

Observe that the graph constructed in each case of the proof of Theorems 2.4 is a tree. Thus, if F is a disconnected
forest in which each component is either K2 or a star and at least one component is a star, then there is a tree T with a
minimal irregular dominating set S such that T [S] ∼= F . We are now able to characterize all forests that are irregular
domination graphs.

Corollary 2.3. A forest F is an irregular domination graph if and only if

(1) F is a tree of diameter 3 or more,

(2) F ∼= K1 +K2 or F is disconnected of order 4 or more.
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3. Disconnected irregular domination graphs

As a consequence of Theorem 2.1, Corollary 2.2, and arguments used in the proofs of Theorems 2.2, 2.3, and 2.4, every
disconnected graph of order 4 or more, in which at least one component is a tree, is an irregular domination graph. In fact,
more can be said about disconnected irregular domination graphs in general.

Theorem 3.1. A disconnected graph in which at least one component has order 3 or more is an irregular domination graph.

Proof. Let H = H1 + H2 + · · · + Hk be a disconnected graph of order n consisting of k ≥ 2 components H1, H2, . . . ,Hk,
where H1 has order 3 or more. Let u ∈ V (H1) such that degH1

u ≥ 2 and let w ∈ V (H2). Next, let W = V (H)− V (H1) and
let X = V (H1)−N [u], where possibly X = ∅. A graph G is constructed from H by adding

(a) a vertex z and joining z to each vertex in W and

(b) a path (z1, z2, y1, y2, . . . , yn−2) of order n and joining z1 to each vertex in {u,w} ∪X and joining z2 to u and z.

The graph G is shown in Figure 5, where any edge joining a vertex of N(u) and a vertex of X is not drawn as well as any
edge joining vertices in X, N(u), or W . The diameter of G is diam(G) = dG(w, yn−2) = n for each w ∈W .

X

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq q q
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
q qq

qq
........
......................................
. ........

.....................................
..qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq........
......................................
.

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

........
......................................
. ........

.....................................
.. ........

.....................................
.. ........

......................................
. ........

.....................................
.. q q q ........

.....................................
..

q
...........................................................................

.......
.......
.......
..

........
........
........
.......

.........
.........
.........
.........
.....

........
........
........
......

........
........
........
........
...

.................................................................

........................................................................

.................................................................................................................................
........
........
........
.

.........
.........

.........

...................................................................................................

.............................................................................................................................................

......................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................
..................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
........

................
................

................
................

................
................

................
................

................
................

................
......N(u)

zu

Ww
z1

z2

yn−2y1 y2 y3 y4 y5

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

Figure 5: The graph G in the proof of Theorem 3.1.

Let u1 and u2 be two neighbors of u. We define a labeling f : V (H)→ [n] of G by

f(u) = 1, f(w) = 2, f(u1) = 3, f(u2) = 4.

The n−4 labels in the set [5, n] are assigned arbitrarily to the n−4 vertices in the set V (H)−{u, u1, u2, w}. Thus, the set of
labels assigned to the vertices of V (H) by f is [n]. The graph G is shown in Figure 6 for a graph H of order n = 10, where
any edge joining a vertex of N(u) and a vertex of X is not drawn as well as any edge joining vertices in X, N(u), or W .
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Figure 6: The graph G in the proof of Theorem 3.1.

It remains to show that S is a minimal irregular dominating set of G. Since

(1) each vertex in V (H) is dominated by a vertex labeled i for some i ∈ [4], each vertex in X is dominated by the vertex
labeled 2, the vertex u is only dominated by the vertex labeled 2, and the vertex w is only dominated by the vertex
labeled 3,

(2) the vertex z1 is only dominated by the vertex labeled 1 and the vertex z2 is dominated by the vertex labeled 1, and

(3) for 1 ≤ i ≤ n− 2, the vertex yi is only dominated by the vertex labeled i+ 2,

it follows that S is a minimal irregular dominating set of G and G[S] ∼= H.
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Observe that Theorem 2.4 is, in fact, a corollary of Theorem 3.1. The following is a consequence of Theorems 2.1, 2.3,
and 3.1.

Corollary 3.1. Every disconnected graph of order 4 or more is an irregular domination graph.

Proof. LetG be a disconnected graph of order 4 or more. IfG contains an isolated vertex, thenG is an irregular domination
graph by Theorem 2.1. Thus, we may assume that every component of G has order 2 or more. If every component of G
is K2, then G is an irregular domination graph by Theorem 2.3. If at least component of G has order 3 or more, then G is
an irregular domination graph by Theorem 3.1.

Since (a) there is no irregular domination graph of order 2, (b) the graph K2 + K1 is the only irregular domination
graph of order 3 by Proposition 1.2, and (c) every disconnected graph of order 4 or more is an irregular domination graph
by Corollary 3.1, we are now able to characterize all disconnected graphs that are irregular domination graphs.

Theorem 3.2. A disconnected graph G is an irregular domination graph if and only if G is neither 2K1 nor 3K1.

4. Closing comments

By Proposition 1.1, if G is a connected graph with diam(G) ≤ 2, then G is not an irregular domination graph. The following
result obtained in [7] gives an infinite class of graphs of diameter 3 that are not irregular domination graphs.

Theorem 4.1. Let H be an r-regular graph, r ≥ 2, of diameter 3 with the property that for each vertex x of H, there is
exactly one vertex y such that d(x, y) = 3. Then H is not an irregular domination graph.

By Corollary 2.2, every tree of diameter 3 (a double star) is an irregular domination graph and so there is an infinite
class of connected graphs of diameter 3 that are irregular domination graphs. In fact, more can be said. The eccentricity
e(v) of a vertex v of a connected graph G is the distance between v and a vertex farthest from v in G. If e(v) = diam(G),
then v is a peripheral vertex of G. The following is a consequence of the proof of Theorem 2.2.

Corollary 4.1. Let G be a connected graph of diameter 3 or more. If G contains an end-vertex that is a peripheral vertex
of G, then G is an irregular domination graph.

By Corollary 4.1, if G is a connected graph with diam(G) = 3 having a peripheral vertex of degree 1, then G is an
irregular domination graph. This is also true for all connected graphs of diameter 4. We know of no connected graph of
diameter 4 or more, however, that is not an irregular domination graph. By Corollary 4.1, if G is a connected graph of
diameter 4 or more that is not an irregular domination graph, then no end-vertex of G is a peripheral vertex of G. We close
by stating the following conjecture.

Conjecture 4.1. Every connected graph of diameter 4 or more is an irregular domination graph.
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