Research Article

Irregular domination trees and forests

Caryn Mays, Ping Zhang*
Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA

(Received: 19 July 2022. Accepted: 21 September 2022. Published online: 28 September 2022.)
© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

A set S of vertices in a connected graph G is an irregular dominating set if the vertices of S can be labeled with distinct positive integers in such a way that for every vertex v of G, there is a vertex $u \in S$ such that the distance from u to v is the label assigned to u. If for every vertex $u \in S$, there is a vertex v of G such that u is the only vertex of S whose distance to v is the label of u, then S is a minimal irregular dominating set. A graph H is an irregular domination graph if there exists a graph G with a minimal irregular dominating set S such that H is isomorphic to the subgraph $G[S]$ of G induced by S. In this paper, all irregular domination trees and forests are characterized. All disconnected irregular domination graphs are determined as well.

Keywords: distance; irregular domination; irregular domination graph; trees; forests.
2020 Mathematics Subject Classification: 05C05, 05C12, 05C69, 05C76.

1. Introduction

A set S of vertices in a nontrivial connected graph G is called an irregular dominating set if the vertices of S can be labeled with distinct positive integers in such a way that for every vertex v in G, there is at least one vertex $u \in S$ such that the distance $d(u, v)$ between u and v is the label $\ell(u)$ assigned to u. Thus, no label can be greater than the diameter diam (G) of G (the greatest distance between any two vertices of G). The vertex u is said to dominate all vertices v for which $d(u, v)=\ell(u)$. Such a labeling is called an irregular dominating labeling. This concept was introduced and studied in [4] and studied further in [2, 3, 5]. More generally, irregularity in graphs is discussed in [1] and major results on graph domination are presented in [6] by Haynes, Hedetniemi, and Henning.

When considering an irregular dominating set S in a connected graph G, it is assumed that the vertices of S have been assigned distinct positive integer labels. In [4], all trees having an irregular dominating set are determined. A path of order n is denoted by P_{n} and a star is a tree of diameter 2 .

Theorem 1.1. A nontrivial tree T has an irregular dominating set if and only if T is none of P_{2}, P_{6} or a star.
If G is a connected graph possessing an irregular dominating set, then the minimum cardinality of an irregular dominating set in G is the irregular domination number $\tilde{\gamma}(G)$ of G. If G is such a connected graph of diameter d, then an irregular dominating labeling of G uses labels from the set $[d]=\{1,2, \ldots, d\}$ and so $\tilde{\gamma}(G) \leq d$.

An irregular dominating set S in a graph is minimal if for every vertex $u \in S$, there is a vertex v of G such that u is the only vertex that dominates v. In [7], the structural relationships of minimal irregular dominating sets in certain well-known graphs are studied, which led to the concept of an irregular domination graph. A graph H is an irregular domination graph if there exists a graph G possessing a minimal irregular dominating set S such that the subgraph $G[S]$ of G induced by S is isomorphic to H. As we saw in Theorem 1.1, the path P_{6} does not have an irregular dominating set. Nevertheless, it is an irregular domination graph, as shown by the graph G of Figure 1. For the set $S=\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$, the vertex u_{1} is the only vertex of S that dominates u_{4}, the vertex u_{2} is the only vertex of S that dominates u_{3}, the vertex u_{3} is the only vertex of S that dominates x, the vertex u_{4} is the only vertex of S that dominates u_{2}, the vertex u_{5} is the only vertex of S that dominates y, and the vertex u_{6} is the only vertex of S that dominates z, Therefore, S is a minimal irregular dominating set and $G[S] \cong P_{6}$.

In [7], the next three propositions were obtained and were used to establish Theorem 1.2 given on the next page.

Proposition 1.1. No connected graph of diameter at most 2 is an irregular domination graph.

[^0]

Figure 1: Showing that P_{6} is an irregular domination graph.

By Proposition 1.1, no star is an irregular domination graph.
Proposition 1.2. The graph $K_{1}+K_{2}$ is the only irregular domination graph of order 3 .
Proposition 1.3. A graph H of order 4 or 5 is an irregular domination graph if and only if H is disconnected, or H is connected and $\operatorname{diam}(H) \geq 3$.

Theorem 1.2. A path P_{n} of order $n \geq 2$ is an irregular domination graph if and only if $n \geq 4$.
It was shown in [7] that neither the 3-cube $Q_{3}=C_{4} \square K_{2}$ nor the prism $C_{5} \square K_{2}$ are irregular domination graphs. Both of these graphs have diameter 3. It was stated as an open question in [7] whether every connected graph of diameter 4 or more is an irregular domination graph. By Theorem 1.2, every path of diameter at least 3 is an irregular domination graph. It is our goal here to determine all irregular domination trees and forests. In addition, we determine all disconnected irregular domination graphs.

2. Irregular domination forests

In [7], it was shown that if an isolated vertex is added to any graph of order 3 or more, then the resulting disconnected graph is an irregular domination graph.

Theorem 2.1. If H is a graph of order 3 or more, then $H+K_{1}$ is an irregular domination graph.
The following is a consequence of Theorem 2.1.
Corollary 2.1. If F is a forest of order 4 or more having an isolated vertex, then F is an irregular domination graph.
The following result gives another sufficient condition for a forest to be an irregular domination graph.
Theorem 2.2. If F is a forest containing a component of diameter 3 or more, then F is an irregular domination graph.
Proof. Let F be a forest of order $n \geq 4$ containing a component of diameter 3 or more. Then F contains a path $P=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$, where u_{1} is an end-vertex of F. We consider two cases depending on whether $\operatorname{deg}_{F} u_{2}=2 \operatorname{or~}_{\operatorname{deg}}^{F} u_{2} \geq 3$.

Case 1. $\operatorname{deg}_{F} u_{2}=2$. Let $X=V(F)-V(P)$. Let G be the graph obtained from F by adding (a) a path $\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ of order $n-1$ and joining y_{1} to u_{2} and (b) a vertex z and joining z to every vertex in $\left\{u_{2}\right\} \cup X$. Then $d_{G}\left(x, u_{2}\right)=2$ and the diameter of G is $\operatorname{diam}(G)=d\left(x, y_{n-1}\right)=2+(n-1)=n+1$ for each $x \in X$. Let $S=V(F)$. We define a labeling $f: S \rightarrow[n+1]$ of G as follows:
$\star f\left(u_{1}\right)=3, f\left(u_{2}\right)=1, f\left(u_{3}\right)=4, f\left(u_{4}\right)=2$, and

* the $n-4$ labels in the set $[6, n+1]$ are assigned arbitrarily to the $n-4$ vertices in X.

Hence, the set of labels assigned to the vertices of S by f is $[n+1]-\{5\}$. It remains to show that S is a minimal irregular dominating set S. Since
(1) each vertex in $V(F)$ is dominated by a vertex labeled i for some $i \in[3]$ and u_{2} is only dominated by the vertex labeled 2 ,
(2) the vertex z is only dominated by the vertex u_{2} labeled 1 ,
(3) the vertex y_{1} is only dominated by the vertex labeled 1 , the vertex y_{2} is only dominated by the vertex labeled 3 , the vertex y_{3} is only dominated by the vertex labeled 4, and
(4) for $4 \leq i \leq n-1$, the vertex y_{i} is only dominated by the vertex labeled $i+2$,

Figure 2: The graph G in the proof of Case 2 of Theorem 2.2.
it follows that S is a minimal irregular dominating set of G and $G[S] \cong F$.
Case 2. $\operatorname{deg}_{F} u_{2}=t \geq 3$. Let $W=N_{F}\left(u_{2}\right)-\left\{u_{1}, u_{3}\right\}$ be the set of those $t-2$ neighbors of u_{2} that do not belong to P and let $X=V(F)-\left(N_{T}\left(u_{2}\right) \cup\left\{u_{2}, u_{4}\right\}\right)$. Then $|X|=n-(t+2)=n-t-2$. The graph G is obtained from F by adding (a) a path $\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ of order $n-1$ and joining y_{1} to u_{2} and (b) a vertex z and joining z to every vertex in $\left\{u_{2}\right\} \cup X$. The graph G is shown in Figure 2. Thus, $d_{G}\left(x, u_{2}\right)=2$ and $\operatorname{diam}(G)=d\left(x, y_{n-1}\right)=2+(n-1)=n+1$ each $x \in X$.
Let $S=V(F)$. We define a labeling $f: S \rightarrow[n+1]$ of G as follows:
$\star f\left(u_{1}\right)=3, f\left(u_{2}\right)=1, f\left(u_{3}\right)=4, f\left(u_{4}\right)=2$,
\star the $t-2$ labels in the set $[5, t+2]$ are assigned arbitrarily to the $t-2$ vertices in $W=N_{T}\left(u_{2}\right)-\left\{u_{1}, u_{3}\right\}$, and
\star the $n-t-2$ labels in the set $[t+4, n+1]$ are assigned arbitrarily to the $n-t-2$ vertices in X.
Hence, the set of labels assigned to the vertices of S by f is $[n+1]-\{t+3\}$. It remains to show that S is a minimal irregular dominating set S. Since
(1) each vertex in $V(F)$ is dominated by a vertex labeled i for some $i \in[3]$ and u_{2} is only dominated by the vertex labeled 2 ,
(2) the vertex z is only dominated by the vertex u_{2} labeled 1 ,
(3) the vertex y_{1} is only dominated by the vertex labeled 1 , the vertex y_{2} is only dominated by the vertex labeled 3 , the vertex y_{3} is only dominated by the vertex labeled 4 ,
(4) for $4 \leq i \leq t+1$, the vertex y_{i} is only dominated by the vertex labeled $i+1$, and
(5) for $t+2 \leq i \leq n-1$, the vertex y_{i} is only dominated by the vertex labeled $i+2$,
it follows that S is a minimal irregular dominating set of G and $G[S] \cong F$.
Since no tree of diameter 1 or 2 is an irregular domination graph, the following result is a consequence of Theorem 2.2.
Corollary 2.2. A tree T is an irregular domination graph if and only if $\operatorname{diam}(T) \geq 3$.
By Theorem 2.2, only those forests having at least two components, each of which is either K_{2} or a star, remain to be considered. If every component of a disconnected forest F is K_{2}, then F is an irregular domination graph, as we show next.

Theorem 2.3. If $F=k K_{2}$ for some integer $k \geq 2$, then F is an irregular domination graph.
Proof. For an integer $k \geq 2$, let $E\left(k K_{2}\right)=\left\{u_{i} v_{i}: 1 \leq i \leq k\right\}$ be the set of the k edges of $2 K_{2}$. We show that there exists a graph G_{k} with a minimal dominating set S_{k} such that $G_{k}\left[S_{k}\right] \cong k K_{2}$ (although $2 K_{2}$ is an irregular domination graph by Proposition 1.3). For $k=2$, let G_{2} be the graph of diameter 5 shown in Figure 3. Let $S_{2}=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ where the corresponding labeling $f_{2}: S_{2} \rightarrow\{1,2,3,4\}$ is also shown in Figure 3. Since (1) each vertex in $V\left(2 K_{2}\right)$ is dominated by a vertex labeled i for some $i \in[3]$, (2) the vertex z is only dominated by the vertex labeled 1 , the vertex x is only dominated by the vertex labeled 3 and the vertex y_{1} is only dominated by the vertex labeled 2 , and the vertex y_{2} is only dominated by the vertex labeled 4 , it follows that S_{2} is a minimal dominating set of G_{2} and $G_{2}\left[S_{2}\right] \cong 2 K_{2}$. Thus, $2 K_{2}$ is an irregular domination graph.

For $k \geq 3$, let H_{i} be a triangle with vertex set $\left\{u_{i}, v_{i}, w_{i}\right\}$ for $3 \leq i \leq k$. We construct a graph G_{k} from the graph G_{2} and the triangles $H_{i}(3 \leq i \leq k)$ by (a) joining the vertex w_{i} of H_{i} to the vertex x of G_{2} for $3 \leq i \leq k$ and (b) adding a path $\left(y_{3}, y_{4}, \cdots, y_{2 k-2}\right)$ of order $2 k-4$ and joining y_{3} to y_{2}. Thus, $\operatorname{diam}\left(G_{k}\right)=d_{G}\left(v_{1}, y_{2 k-2}\right)=2 k+1$. Let $S_{k}=V\left(k K_{2}\right)$ and $W=\left\{u_{i}, v_{i}: 3 \leq i \leq k\right\}$.

Figure 3: The graph G_{2} in the proof of Theorem 2.3.

We define a labeling $f_{k}: S_{k} \rightarrow[2 k]$ as follows:
$\star f_{k}(v)=f_{2}(v)$ if $v \in V\left(G_{2}\right)$ and

* the $2 k-4$ labels in the set $[5,2 k]$ are assigned arbitrarily to the $2 k-4$ vertices in W.

Hence, the set of labels assigned to the vertices of S_{k} by f_{k} is [2k]. It remains to show that S_{k} is a minimal dominating set of G_{k}. Since
(1) each vertex in $V\left(k K_{2}\right)$ is dominated by a vertex labeled i for some $i \in[4]$,
(2) the vertex z is only dominated by the vertex labeled 1 , the vertex x is only dominated by the vertex labeled 3 and the vertex y_{1} is only dominated by the vertex labeled 2 , and
(3) for $2 \leq i \leq 2 k-2$, the vertex y_{i} is only dominated by the vertex labeled $i+2$,
it follows that S_{k} is a minimal irregular dominating set of G_{k} and $G_{k}\left[S_{k}\right] \cong 2 K_{2}$.
By Theorems 2.2 and 2.3, only one situation remains, namely when all components of a disconnected forest are stars or K_{2} and at least one component is a star.

Theorem 2.4. Let $F=T_{1}+T_{2}+\cdots+T_{k}$ be a forest with $k \geq 2$ components T_{i} where $1 \leq i \leq k$, each of which is either K_{2} or a star. If F contains at least one star, then F is an irregular domination graph.

Proof. Let $F=T_{1}+T_{2}+\cdots+T_{k}$ be a forest of order n, where T_{1} is a star and each tree $T_{i}, 2 \leq i \leq k$, is either K_{2} or a star and $u_{i} \in V\left(T_{i}\right)$ such that $\operatorname{deg}_{T_{i}} u_{i}=\Delta\left(T_{i}\right)$ for $1 \leq i \leq k$. Thus, if T_{i} is a star, then u_{i} is the center of T_{i} for $1 \leq i \leq k$. We consider two cases, depending on $k=2$ or $k \geq 3$.

Case 1. $k=2$. Let G be obtained from F by adding a path $\left(y_{1}, y_{2}, \ldots, y_{n-1}\right)$ of order $n-1$ and joining y_{1} to u_{1} and u_{2}. Let $v_{1,1}$ and $v_{1,2}$ be two neighbors of u_{1} in T_{1} and let $v_{2,1}$ be a neighbor of u_{2} in T_{2}. Then the diameter of G is $\operatorname{diam}(G)=$ $d_{G}\left(v_{1,1}, y_{n-1}\right)=n$. Let $X=V(F)-\left\{u_{1}, u_{2}, v_{1,1}, v_{1,2}, v_{2,1}\right\}$. Then $|X|=n-5$. Let $S=V(F)$. We define a labeling $f: S \rightarrow[n]$ as follows:
$\star f\left(u_{1}\right)=1, f\left(u_{2}\right)=2, f\left(v_{1,1}\right)=3, f\left(v_{1,2}\right)=4, f\left(v_{2,1}\right)=5$ and
\star the $n-5$ labels in $[6, n]$ are assigned arbitrarily to the $n-5$ vertices of X.
Hence, the set of labels assigned to the vertices of S by f is $[n]$. It remains to show that S is a minimal irregular dominating set of G. Since
(1) each vertex in $V(F)$ is dominated by a vertex labeled i for some $i \in[4]$, the vertex u_{1} is only dominated by the vertex labeled 2 , and the vertex u_{2} is only dominated by the vertex labeled 3 ,
(2) the vertex y_{1} is only dominated by the vertex labeled 1 and the vertex y_{2} is dominated by the vertex labeled 2 or 3 , and
(3) for $3 \leq i \leq n-1$, the vertex y_{i} is only dominated by the vertex labeled $i+1$.
it follows that S is a minimal irregular dominating set of G and $G[S] \cong F$.
Case 2. $k \geq 3$. Let G be obtained from F by adding (a) a vertex z and joining z to every vertex in $\left\{u_{3}, u_{4}, \ldots, u_{k}\right\}$ and (b) a path $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ of order n and joining y_{1} to each vertex in $\left\{z, u_{1}, u_{2}\right\}$. Let $v_{1,1}$ and $v_{1,2}$ be two neighbors of u_{1} in T_{1} and let
$v_{2,1}$ be a neighbor of u_{2} in T_{2}. Then the diameter of G is $\operatorname{diam}(G)=d_{G}\left(v_{3,1}, y_{n}\right)=n+1$, where $v_{3,1}$ is a neighbor of u_{3} in T_{3}. Let $W=V(F)-\left(V\left(T_{1}\right) \cup V\left(T_{2}\right) \cup\left\{u_{3}, u_{4}, \ldots, u_{k}\right\}\right)$ and $X=V\left(T_{1}\right) \cup V\left(T_{2}\right)-\left\{u_{1}, u_{2}, v_{1,1}, v_{1,2}, v_{2,1}\right\}$. Let $p=\left|V\left(T_{1}\right) \cup V\left(T_{2}\right)\right|$. Then $|W|=p-5$ and $|X|=n-p-(k-2)=n-p-k+2$. Let $S=V(F)$. We define a labeling $f: S \rightarrow[n+1]$ as follows:
$\star f\left(u_{1}\right)=1, f\left(u_{2}\right)=2, f\left(v_{1,1}\right)=3, f\left(v_{1,2}\right)=4, f\left(v_{2,1}\right)=5$,
\star the $p-5$ labels in $[6, p]$ are assigned arbitrarily to the $p-5$ vertices of X,
\star the $k-2$ labels in $[p+1, p+(k-2)]$ are assigned arbitrarily to the $k-2$ vertices of $\left\{u_{3}, u_{4}, \ldots, u_{k}\right\}$, and
\star the $n-p-k+2$ labels in $[p+k, n+1]$ are assigned arbitrarily to the $n-p-k+2$ vertices of W.
Hence, the set of labels assigned to the vertices of S by f is $[n+1]-\{p+k-1\}$. This is shown in Figure 4 where $T_{1}=K_{1,3}$, $T_{2}=K_{2}, T_{3}=K_{1,2}$, and $T_{4}=K_{1,3}$. Thus, $k=4, p=6$, and $n=13$.

Figure 4: The graph G in the proof of Case 2 of Theorem 2.4.
It remains to show that S is a minimal irregular dominating set of G. Since
(1) each vertex in $V(F)$ is dominated by a vertex labeled i for some $i \in[4]$ and u_{2} is only dominated by the vertex labeled 2 ,
(2) the vertex z is only dominated by the vertex u_{2} labeled 1 ,
(3) the vertex y_{1} is only dominated by the vertex labeled 1 , the vertex y_{2} is only dominated by the vertex labeled 3 , the vertex y_{3} is only dominated by the vertex labeled 4 ,
(4) for $4 \leq i \leq t+1$, the vertex y_{i} is only dominated by the vertex labeled $i+1$, and
(5) for $t+2 \leq i \leq n-1$, the vertex y_{i} is only dominated by the vertex labeled $i+2$,
it follows that S is a minimal irregular dominating set of G and $G[S] \cong F$.
Observe that the graph constructed in each case of the proof of Theorems 2.4 is a tree. Thus, if F is a disconnected forest in which each component is either K_{2} or a star and at least one component is a star, then there is a tree T with a minimal irregular dominating set S such that $T[S] \cong F$. We are now able to characterize all forests that are irregular domination graphs.

Corollary 2.3. A forest F is an irregular domination graph if and only if
(1) F is a tree of diameter 3 or more,
(2) $F \cong K_{1}+K_{2}$ or F is disconnected of order 4 or more.

3. Disconnected irregular domination graphs

As a consequence of Theorem 2.1, Corollary 2.2, and arguments used in the proofs of Theorems 2.2, 2.3, and 2.4, every disconnected graph of order 4 or more, in which at least one component is a tree, is an irregular domination graph. In fact, more can be said about disconnected irregular domination graphs in general.

Theorem 3.1. A disconnected graph in which at least one component has order 3 or more is an irregular domination graph.
Proof. Let $H=H_{1}+H_{2}+\cdots+H_{k}$ be a disconnected graph of order n consisting of $k \geq 2$ components $H_{1}, H_{2}, \ldots, H_{k}$, where H_{1} has order 3 or more. Let $u \in V\left(H_{1}\right)$ such that $\operatorname{deg}_{H_{1}} u \geq 2$ and let $w \in V\left(H_{2}\right)$. Next, let $W=V(H)-V\left(H_{1}\right)$ and let $X=V\left(H_{1}\right)-N[u]$, where possibly $X=\emptyset$. A graph G is constructed from H by adding
(a) a vertex z and joining z to each vertex in W and
(b) a path $\left(z_{1}, z_{2}, y_{1}, y_{2}, \ldots, y_{n-2}\right)$ of order n and joining z_{1} to each vertex in $\{u, w\} \cup X$ and joining z_{2} to u and z.

The graph G is shown in Figure 5, where any edge joining a vertex of $N(u)$ and a vertex of X is not drawn as well as any edge joining vertices in $X, N(u)$, or W. The diameter of G is $\operatorname{diam}(G)=d_{G}\left(w, y_{n-2}\right)=n$ for each $w \in W$.

Figure 5: The graph G in the proof of Theorem 3.1.

Let u_{1} and u_{2} be two neighbors of u. We define a labeling $f: V(H) \rightarrow[n]$ of G by

$$
f(u)=1, f(w)=2, f\left(u_{1}\right)=3, f\left(u_{2}\right)=4
$$

The $n-4$ labels in the set $[5, n]$ are assigned arbitrarily to the $n-4$ vertices in the set $V(H)-\left\{u, u_{1}, u_{2}, w\right\}$. Thus, the set of labels assigned to the vertices of $V(H)$ by f is $[n]$. The graph G is shown in Figure 6 for a graph H of order $n=10$, where any edge joining a vertex of $N(u)$ and a vertex of X is not drawn as well as any edge joining vertices in $X, N(u)$, or W.

Figure 6: The graph G in the proof of Theorem 3.1.

It remains to show that S is a minimal irregular dominating set of G. Since
(1) each vertex in $V(H)$ is dominated by a vertex labeled i for some $i \in[4]$, each vertex in X is dominated by the vertex labeled 2 , the vertex u is only dominated by the vertex labeled 2 , and the vertex w is only dominated by the vertex labeled 3,
(2) the vertex z_{1} is only dominated by the vertex labeled 1 and the vertex z_{2} is dominated by the vertex labeled 1 , and
(3) for $1 \leq i \leq n-2$, the vertex y_{i} is only dominated by the vertex labeled $i+2$,
it follows that S is a minimal irregular dominating set of G and $G[S] \cong H$.

Observe that Theorem 2.4 is, in fact, a corollary of Theorem 3.1. The following is a consequence of Theorems 2.1, 2.3, and 3.1.

Corollary 3.1. Every disconnected graph of order 4 or more is an irregular domination graph.
Proof. Let G be a disconnected graph of order 4 or more. If G contains an isolated vertex, then G is an irregular domination graph by Theorem 2.1. Thus, we may assume that every component of G has order 2 or more. If every component of G is K_{2}, then G is an irregular domination graph by Theorem 2.3. If at least component of G has order 3 or more, then G is an irregular domination graph by Theorem 3.1.

Since (a) there is no irregular domination graph of order 2, (b) the graph $K_{2}+K_{1}$ is the only irregular domination graph of order 3 by Proposition 1.2, and (c) every disconnected graph of order 4 or more is an irregular domination graph by Corollary 3.1, we are now able to characterize all disconnected graphs that are irregular domination graphs.

Theorem 3.2. A disconnected graph G is an irregular domination graph if and only if G is neither $2 K_{1}$ nor $3 K_{1}$.

4. Closing comments

By Proposition 1.1, if G is a connected graph with $\operatorname{diam}(G) \leq 2$, then G is not an irregular domination graph. The following result obtained in [7] gives an infinite class of graphs of diameter 3 that are not irregular domination graphs.

Theorem 4.1. Let H be an r-regular graph, $r \geq 2$, of diameter 3 with the property that for each vertex x of H, there is exactly one vertex y such that $d(x, y)=3$. Then H is not an irregular domination graph.

By Corollary 2.2, every tree of diameter 3 (a double star) is an irregular domination graph and so there is an infinite class of connected graphs of diameter 3 that are irregular domination graphs. In fact, more can be said. The eccentricity $e(v)$ of a vertex v of a connected graph G is the distance between v and a vertex farthest from v in G. If $e(v)=\operatorname{diam}(G)$, then v is a peripheral vertex of G. The following is a consequence of the proof of Theorem 2.2.

Corollary 4.1. Let G be a connected graph of diameter 3 or more. If G contains an end-vertex that is a peripheral vertex of G, then G is an irregular domination graph.

By Corollary 4.1, if G is a connected graph with $\operatorname{diam}(G)=3$ having a peripheral vertex of degree 1 , then G is an irregular domination graph. This is also true for all connected graphs of diameter 4. We know of no connected graph of diameter 4 or more, however, that is not an irregular domination graph. By Corollary 4.1, if G is a connected graph of diameter 4 or more that is not an irregular domination graph, then no end-vertex of G is a peripheral vertex of G. We close by stating the following conjecture.

Conjecture 4.1. Every connected graph of diameter 4 or more is an irregular domination graph.

Acknowledgment

We are grateful to Professor Gary Chartrand for suggesting the concept of irregular domination graphs to us and kindly providing useful information on disconnected irregular domination graphs.

References

[1] A. Ali, G. Chartrand, P. Zhang, Irregularity in Graphs, Springer, New York, 2021.
[2] A. Ali, G. Chartrand, P. Zhang, On irregular and antiregular domination in graphs, Electron. J. Math. 2 (2021) 26-36.
[3] P. Broe, G. Chartrand, P. Zhang, Irregular domination in trees, Electron. J. Math. 1 (2021) 89-100.
[4] P. Broe, G. Chartrand, P. Zhang, Irregular orbital domination in graphs, Int. J. Comput. Math. Comput. Syst. Theory 7 (2022) 68-79.
[5] G. Chartrand, P. Zhang, A chessboard problem and irregular domination, Bull. Inst. Combin. Appl., To appear.
[6] T. W. Haynes, S. T. Hedetniemi, M. A. Henning, Domination in Graphs: Core Concepts, Springer, New York, 2022.
[7] C. Mays, P. Zhang, Irregular domination graphs, Contrib. Math. 6 (2022) 5-14.

[^0]: *Corresponding author (ping.zhang@wmich.edu).

