
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 11 (2023) 27–30
DOI: 10.47443/dml.2022.110

Research Article

On disjoint cross intersecting families of permutations

Nuttanon Songsuwan, Supida Sengsamak, Nutchapol Jeerawattana, Thiradet Jiarasuksakun,
Pawaton Kaemawichanurat∗

Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

(Received: 15 July 2022. Received in revised form: 14 September 2022. Accepted: 17 September 2022. Published online: 21 September 2022.)

© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract
For the positive integers r and n satisfying r ≤ n, let Pr,n be the family of partial permutations {{(1, x1), (2, x2), . . . , (r, xr)} :
x1, x2, . . . , xr are different elements of {1, 2, . . . , n}}. The subfamilies A1,A2, . . . ,Ak of Pr,n are called cross intersecting if
A ∩ B 6= ∅ for all A ∈ Ai and B ∈ Aj , where 1 ≤ i 6= j ≤ k. Also, if A1,A2, . . . ,Ak are mutually disjoint, then they are
called disjoint cross intersecting subfamilies of Pr,n. For the disjoint cross intersecting subfamilies A1,A2, . . . ,Ak of Pn,n, it
follows from the AM-GM inequality that

∏k
i=1 |Ai| ≤ (n!/k)k. In this paper, we present two proofs of the following statement:∏k

i=1 |Ai| = (n!/k)k if and only if n = 3 and k = 2.
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1. Introduction and motivation

For the natural numbers n and r such that r ≤ n, take [n] = {1, 2, . . . , n} and let Pr,n be the family of partial permutations
{{(1, x1), (2, x2), . . . , (r, xr)} : x1, x2, . . . , xr are different elements of [n]}. For convenience, we write (x1x2 . . . xr) to denote
{(1, x1), (2, x2), . . . , (r, xr)}. Also, we say that xi is the ith digit of (x1x2 . . . xr). For a permutation σ ∈ Pr,n, we set σ(i) = xi

if (i, xi) ∈ σ. A subfamily A of Pr,n is intersecting if A∩B 6= ∅ for all A,B ∈ A. For k ≥ 2, subfamilies A1,A2, . . . ,Ak of Pr,n

are called cross intersecting if A ∩ B 6= ∅ for all A ∈ Ai and B ∈ Aj , where 1 ≤ i 6= j ≤ k. Moreover, if A1,A2, . . . ,Ak are
mutually disjoint, then A1,A2, . . . ,Ak are called disjoint cross intersecting subfamilies of Pr,n. For each i ∈ [r] and xi ∈ [n],
the family of all permutations of Pr,n that contains (i, xi) is called the star centered at (i, xi).

The Erdős-Ko-Rado Theorem [7] is a well-known result in extremal set theory. There have been many generalizations
such as cross intersecting families (see [2–4, 10, 11]) and also intersecting families of permutations. Frankl and Deza [8]
proved that |A| ≤ (n− 1)! for intersecting families A of Pn,n. The extremal case is characterized in [5,9].

Theorem 1.1 (see [5,8,9]). If A ∈ Pn,n is intersecting, then |A| ≤ (n− 1)! where the equality holds if and only if A is the set
{σ ∈ Pn,n : σ(i) = j} for given i, j ∈ [n].

In cross intersecting subfamilies A1 and A2 of Pn,n, when n = 2, we see that the maximum of |A1||A2| is 1 which is
when A1 = A2 = (12) or A1 = A2 = (21). When n = 3, the maximum of |A1||A2| is 9 which is when A1 and A2 are

T1 = {(123), (231), (312)} and T2 = {(132), (213), (321)}.

When, n ≥ 4, Leader conjectured in the British Combinatorial Conference 2005 that |A1||A2| ≤ ((n − 1)!)2 with equality
if and only if A1 = A2 = {σ ∈ Pn,n : σ(i) = j} for fixed i, j ∈ [n]. This conjecture was proved by Ellis et. al. [6]. In fact,
Ellis et. al. [6] further proved the general result when |A ∩ B| ≥ t for all A ∈ A1 and B ∈ A2 when t ≥ 1. In 2010, Borg [1]
established a result concerning the characterization of cross intersecting subfamilies A1, . . . ,Ak of Pr,n when

∑k
i=1 |Ai| is

maximum as detailed in Theorem 1.2. The following definition was introduced by Borg in his paper [1] too.

Definition 1.1 (see [1]). For any integer q, θq : Pr,n → Pr,n is called the translation operator if

θq(A) := {(a, b+ q mod n) : (a, b) ∈ A},

and Θ : Pr,n → Pr,n is called the orbit of A if
Θ(A) := {θq(A) : q ∈ N}.
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By the property of modulo n, it holds that |Θ(A)| = n.

Lemma 1.1 (see [1]). If A ∈ Pr.n then for distinct x, y ∈ Θ(A), it holds that x ∩ y = ∅.

Borg [1] also the next theorem.

Theorem 1.2 (see [1]). LetA1,A2, . . . ,Ak be cross intersecting subfamilies of Pr,n. Then,
∑k

i=1 |Ai| is maximum if and only
if either of the following five conditions holds.

(i). k < n and, for some i ∈ [k], Ai = Pr,n and Aj = ∅ for all j ∈ [k] \ {i}.

(ii). k > n and A1 = A2 = · · · = Ak = {A ∈ Pr,n : (x, y) ∈ A} for some (x, y) ∈ [r]× [n].

(iii). k = n and A1,A2, . . . ,Ak are as in (i) or (ii).

(iv). 2 ≤ k ≤ 3 = r = n, Aj = T1 and Al = T2 for some j ∈ [k] and l ∈ [k] \ {j}, and if k = 3, then Ap = ∅ for p ∈ [k] \ {j, l}.

(v). k = r = n = 3, there exist j ∈ [3], i ∈ [2], and T ∈ T3−i such that Aj = Ti ∪ {T}. Further, Al = {T} for each l ∈ [3] \ {j}.

We remark here that there is no study on disjoint cross intersecting subfamilies A1,A2, . . . ,Ak of Pr,n. It is easy to see
that

∑k
i=1 |Ai| ≤ n!. By the AM-GM inequality, we have that

k∏
i=1

|Ai| ≤
(n!

k

)k
. (1)

In this note, we present two proofs of the following theorem

Theorem 1.3. The equality in (1) holds if and only if n = 3, k = 2, for which A1 and A2 are T1 and T2.

2. Proof of Theorem 1.3

We observe that when n = 3 and k = 2, the families T1, T2 give the maximum value of the size product, which is ( 3!
2 )2. Thus,

in order to prove Theorem 1.3, it suffices to show that if the equality in (1) holds, then n = 3, k = 2, for which A1 and A2

are T1 and T2.

Proof. Assume that the equality in (1) holds. Hence,
∑k

i=1 |Ai| = n! which is maximum. Since the subfamiliesA1,A2, . . . ,Ak

are mutually disjoint, they do not satisfy the conditions (ii) and (v) of Theorem 1.2. Also, if the subfamilies satisfy the
condition (i), then

∏k
i=1 |Ai| = 0 contradicting

k∏
i=1

|Ai| =
(n!

k

)k
.

Hence, the subfamilies do not satisfy the condition (i). This implies that they do not satisfy (iii). Therefore, A1,A2, . . . ,Ak

satisfy (iv). Consequently, n = 3. Suppose to the contrary that k ≥ 3. By the condition (iv), we have that k = 3 and A3 = ∅.
This implies that

∏k
i=1 |Ai| = 0, which is a contradiction. Hence, k = 2 and A1,A2 are T1 and T2.

As we have seen that Theorem 1.3 follows from Theorem 1.2 directly. However, to the best of our knowledge, Theorem
1.3 has not been pointed out in any earlier study.

3. Another proof of Theorem 1.3

Although, the proof of Theorem 1.3 presented in this section is longer than the one given in the previous section, but it
does not require the use of Theorem 1.2. All the methods in this proof are just basic tools in Combinatorics. The following
proposition is proved simply by induction and hence its proof is omitted.

Proposition 3.1. For n ≥ 4, then
1

1!
− 1

2!
+ · · ·+ (−1)n

(n− 1)!
>

1

2
.

Now, we are ready to give another proof of Theorem 1.3.
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Proof. Suppose that the equality in (1) holds. Then, |A1| = · · · = |Ak| = n!
k and

⋃k
i=1Ai = Pn,n. Let S = {S1, S2, . . . , S(n−1)!}

be the star centered at (1, 1). Note that Pn,n can be partition to Θ(S1),Θ(S2), . . . ,Θ(S(n−1)!).

Claim 1. If Ai ∩Θ(Sj) 6= ∅, then Θ(Sj) ⊆ Ai.

Proof of Claim 1. Suppose to the contrary that Ai ∩Θ(Sj) 6= ∅ and there exists σ ∈ Θ(Sj) but σ /∈ Ai. Since
⋃k

i=1Ai = Pn,n,
σ ∈ Al for some l. Thus, σ ∩ γ = ∅ for all γ ∈ Ai ∩ Θ(Sj) contradicting A1, . . . ,Ak are cross intersecting families. Hence,
Θ(Sj) ⊆ Ai. This proves Claim 1.

Next, we take σi ∈ Θ(Si) and σj ∈ Θ(Sj).

Claim 2 If |σi ∩ σj | ≥ 2, then there exists γ ∈ Θ(Sj) such that σi ∩ γ = ∅.

Proof of Claim 2. Suppose that σi and σj intersects at the ith1 and ith2 digits. Suppose to the contrary that γ ∩ σi 6= ∅ for
all γ ∈ Θ(Sj) \ {σj}. Since all digits of each permutation in Θ(Sj) are different, it follows that there are at most n − 2

remaining digits of σi that can intersect these n− 1 permutations in Θ(Sj) \ {σj}. By Pigeonhole Principle, there exists an
ith3 digit of σi and γ′, γ′′ ∈ Θ(Sj) \ {σj} such that (i3, xi3) ∈ σi ∩ γ′ ∩ γ′′. In particular, γ′ ∩ γ′′ 6= ∅ contradicting Lemma 1.1.
Therefore, there exists γ ∈ Θ(Sj) such that σi ∩ γ = ∅. This proves Claim 2.

Now, we suppose to the contrary that n ≥ 4. Without loss of generality, we assume that (12 . . . n) ∈ A1. Let W be the
subfamily of S such that S ∩ (12 . . . n) = {(1, 1)} for all S ∈ W. Hence, (2, 2), . . . , (n, n) /∈ S for all S ∈ W. By the formula for
the number of derangements, we have

|W| = (n− 1)!
n−1∑
p=2

(−1)p

p!
.

Observe that |S ∩ (12 . . . n)| ≥ 2 for each S ∈ S\W. By Claim 2, there exists γ ∈ Θ(S) such that γ ∩ (12 . . . n) = ∅. Since⋃k
i=1Ai = Pn,n, γ ∈ A1. By Claim 1, Θ(S) ⊆ A1. Hence⋃

S∈S\W

Θ(S) ⊆ A1

and Therefore,

n!

k
= |A1| ≥ n (|S| − |W|) = n

(
(n− 1)!− (n− 1)!

n−1∑
p=2

(−1)p

p!

)

≥ n!

(
1− 1

2!
+

1

3!
− · · ·+ (−1)n

(n− 1)!

)
.

By Proposition 3.1, we have

1

k
≥ 1− 1

2
+

1

3!
− · · ·+ (−1)n

(n− 1)!
>

1

2

which contradicts k ≥ 2. Thus, n = 3. Clearly, P3,3 = {(123), (231), (312), (132), (213), (321)}. Let

Θ(S1) = {(123), (231), (312)} and Θ(S2) = {(132), (213), (321)}.

By Claim 1, Θ(S1) ⊆ Ai and Θ(S2) ⊆ Aj where {i, j} = {1, 2}. This implies that k = 2 and A1,A2 are Θ(S1) and Θ(S2).
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