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Abstract

Let G(V,E) be a simple graph with | V (G) |= n and |E(G) |= m. If Sk(G) is the sum of k largest Laplacian eigenvalues
of G, then Brouwer’s conjecture states that Sk(G) ≤ m + k(k+1)

2
for 1 ≤ k ≤ n. The girth of a graph G is the length of a

smallest cycle in G. If g is the girth of G, then we show that the mentioned conjecture is true for 1 ≤ k ≤ b g−2
2
c. Wang et al.

[Math. Comput. Model. 56 (2012) 60–68] proved that Brouwer’s conjecture is true for bicyclic and tricyclic graphs whenever
1 ≤ k ≤ n with k 6= 3. We settle the conjecture under discussion also for tricyclic graphs having no pendant vertices when
k = 3.
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1. Introduction

LetG(V,E) be a simple graph with order n and sizem having vertex set V = {v1, v2, . . . , vn} and edge setE = {e1, e2, . . . , em}.
We denote a path of length n− 1 by Pn and a cycle of length n by Cn. The complete graph with n vertices is denoted by Kn.
A tricyclic graph is a connected graph with n vertices and n+2 edges. In a graph G, the length of a smallest cycle is called
the girth of G and is denoted by g. We refer the reader to [14] for other undefined notations and terminology from spectral
graph theory. The adjacency matrix of G is defined as A(G) = (aij), where

aij =

1, if vi and vj are adjacent

0, otherwise.

The Laplacian matrix of G is defined as L(G) = D(G) − A(G), where D = diag(d1, d2, . . . , dn) is the diagonal matrix of
vertex degrees di = deg(vi). The eigenvalues of L(G) are called the Laplacian eigenvalues (or Laplacian spectrum) of G.
Let µ1(G) ≥ µ2(G) ≥ . . . ≥ µn(G) = 0 be the Laplacian eigenvalues of G. For k = 1, 2, 3, . . . , n, let Sk =

∑k
i=1 µi(G) be the

sum of k largest Laplacian eigenvalues of G. Brouwer [1] proposed a conjecture concerning the sum of k largest Laplacian
eigenvalues of a graph G, which is stated as

Sk(G) ≤ m+
k(k + 1)

2
, for 1 ≤ k ≤ n. (1)

Brouwer verified this conjecture for all graphs of order n with n ≤ 10. The conjecture is true for k = 1, which follows from
the inequality µ1(G) ≤ n. In [11], Haemers et al. showed that the conjecture is true for trees and is also true for all graphs
when k = 2. Du et al. [4] proved that the conjecture is true for unicyclic and bicyclic graphs. Wang et al. [16] showed that
the conjecture is also true for tricyclic graphs for 1 ≤ k ≤ n− 1 except k = 3. Chen [2] showed that if the conjecture is true
for a graph G for all k, then it is also true for the complement of G. Ganie et al. [6] improved some previously known upper
bounds for Sk(G) in terms of various graph parameters and showed that the conjecture is true for some new families of
graphs. Rocha and Trevisan [15] verified that the conjecture is true for all k with 1 ≤ k ≤ bg/5c. This result was improved
for 1 ≤ k ≤ bg/4c by Chen in [3]. For further progress on Brouwer’s Conjecture, we refer to [5–10, 13] and the references
therein.

In the present work, we show that the conjecture is true for 1 ≤ k ≤ b g−22 c. We also prove that Brouwer’s conjecture is
true for tricyclic graphs without pendant vertices.
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2. Main results

We will use the following lemmas in the sequel.

Lemma 2.1. Let A and B be two real n× n symmetric matrices. Then for any 1 ≤ k ≤ n

k∑
i=1

λi(A+B) ≤
k∑

i=1

λi(A) +

k∑
i=1

λi(B)

for 1 ≤ k ≤ n

Lemma 2.2. [12] Let G be an unweighted graph on n vertices with edge set E. Then µ1(G) ≤ max{du + dv : uv ∈ E}.

Lemma 2.2 implies that every eigenvalue of a graph G′, having maximum degree of at most 2, is less than or equal to
4. That is, µi(G

′) ≤ 4, for all 1 ≤ i ≤ n − 1. The following theorem gives all possible degree sequences of a tricyclic graph
with no pendant vertices.

Theorem 2.1. Let T be a tricyclic graph with no pendent vertices. Then the possible degree sequences of T are

(2, 2, . . . , 2, 3, 3, 3, 3), (2, 2, . . . , 2, 2, 3, 3, 4), (2, 2, . . . , 2, 2, 4, 4), (2, 2, . . . , 2, 2, 3, 5), (2, 2, . . . , 2, 2, 6).

Proof. Let p2, p3, . . . , pn−1 be the number of vertices with degrees 2, 3, . . . , n− 1, respectively. So

p2 + p3 + . . .+ pn−1 = n (2)

2p2 + 3p3 + . . .+ (n− 1)pn−1 = 2|E(G)| = 2(n+ 2) (3)

With the help of equations (2) and (3), we get

p3 + 2p4 + 3p5 + 4p6 + . . .+ (n− 3)pn−1 = 4 (4)

Equation (4) has the following possible solutions:

(p3, p4, p5, p6) = (4, 0, 0, 0), (2, 1, 0, 0), (0, 2, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1)

and pi = 0 for all i ≥ 7. This shows that the maximum degree is at most 6. Thus the possible degree sequences of a tricyclic
graph with no pendant vertices are

(2, 2, . . . , 2, 3, 3, 3, 3), (2, 2, . . . , 2, 2, 3, 3, 4), (2, 2, . . . , 2, 2, 4, 4), (2, 2, . . . , 2, 2, 3, 5), (2, 2, . . . , 2, 2, 6).

Theorem 2.2. Let T be a tricyclic graph of order n with no pendant vertices. Then it has a subgraph with at least (n− 2)

edges in which all the vertices have degree less than or equal to 2.

Proof. A tricyclic graph T with n vertices and no pendant vertices has n+ 2 edges. From Theorem 2.1, it can have one of
the following degree sequences:

(2, 2, . . . , 2, 3, 3, 3, 3), (2, 2, . . . , 2, 2, 3, 3, 4), (2, 2, . . . , 2, 2, 4, 4), (2, 2, . . . , 2, 2, 3, 5), (2, 2, . . . , 2, 2, 6).

In each of the above cases, we remove the edges incident to vertices with degree greater than 2 until all the remaining
vertices have degree 2 or less. Since in all cases there are at most four vertices having degree greater than 2 and at most
four edges are sufficient to be removed so that the remaining graph G′ has at least (n + 2) − 4 = (n − 2) edges and each
vertex of G′ has degree 2 or less.

Lemma 2.3. Let G∗ be a graph of order n, size |E| and maximum degree at most 2. Then Sk(G
∗) ≤ |E|, where k ≤ |E|4 .

Proof. From Lemma 2.2, the Laplacian eigenvalues of G∗ are less than or equal to 4 . That is, µi(G
∗) ≤ 4, for all i ≥ 1.

Therefore, Sk(G
∗) ≤ 4k. This implies that Sk(G

∗) ≤ |E|, for k ≤ |E|4 .

A graph is said to be planar if it can be embedded on the surface of the plane, that is, it has no crossovers. In a planar
graph, a region is characterized by the set of edges forming its boundary.

Lemma 2.4. Let T be a tricyclic graph of order n and having no pendant vertex. Then g ≤ n+2
2 , where g is the girth of the

graph.
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Proof. Clearly, a tricyclic graph is a planar graph with four regions. Let kpi be the pi-sided region for i = 1, 2, 3, 4. Since
each edge is on the boundary of exactly two regions, therefore p1 + p2 + p3 + p4 = 2(n + 2). If g is the girth of the graph,
then the above equation gives 4g ≤ 2(n+ 2), which implies that g ≤ n+2

2 .

Theorem 2.3. Let G be a graph with c ≥ 3 cycles. Then Sk(G) ≤ |E(G)|+ k(k+1)
2 , for k ≤ b g−22 c, where g ≥ 4 is the girth of

the graph.

Proof. As G has c ≥ 3 cycles, so it must have a connected tricyclic subgraphG∗1 (n∗1, E∗1 ) with no pendant vertex. Then, from
Theorem 2.2, G∗1 (n∗1, E∗1 ) has a subgraphG′1 with size |E′1| and maximum degree at most 2. G′1 is also a subgraph ofG. Let
G1 be the graph obtained from G by removing edges of G′1. If no connected component of G1 has more than 2 cycles, then
stop here, otherwise there exists a connected tricyclic subgraph G∗2 (n

∗
2, E

∗
2 ) with no pendant vertices. Again, by Theorem

2.2, G∗2 (n∗2, E∗2 ) has a subgraph G′2 with size |E′2| and maximum degree at most 2. Let G2 be the graph obtained from G1

by removing edges of G′2. Suppose after r steps as above, we get the graph Gr in which no connected component has more
than 2 cycles, then

Sk(G) ≤ Sk (Gr) + Sk (G
′
1) + Sk (G

′
2) + . . .+ Sk (G

′
r)

By Lemma 2.3, we have Sk (G
′
i) ≤ |E′i|, for k ≤ |E

′
i|
4 and by Lemma 2.4, we have b g−22 c ≤

|E′
i|
4 . Therefore, Sk (G

′
i) ≤ |E′i|, for

k ≤ b g−22 c. Thus, we get

Sk(G) ≤ |E (Gr) |+
k(k + 1)

2
+ |E′1|+ |E′2|+ . . .+ |E′r|

Sk(G) ≤
(
|E(G)| − (|E′1|+ |E′2|+ . . .+ |E′r|)

)
+
k(k + 1)

2
+ |E′1|+ |E′2|+ . . .+ |E′r|

(5)

Hence,
Sk(G) ≤ |E(G)|+ k(k + 1)

2

for k ≤ b g−22 c.

Lemma 2.5. Let T be a tricyclic graph with no pendant vertex and e1, e2 ∈ E(T ) and |E(T )| = e(T ).

(a) If T − {e1} consists of two non-trivial components, then S3 ≤ e(T ) + 6.

(b) If T − {e1, e2} consists of two non-trivial components with at least three vertices, then S3 ≤ e(T ) + 6.

Proof. (a) Let T − {e1} consist of two non-trivial components G1 and G2. Then G1 and G2 are either trees or unicyclic
or bicyclic graphs. Since the conjecture is true for trees, unicyclic and bicyclic graphs, we have S3(Gi) ≤ |E(Gi)| + 6 for
i = 1, 2. Without loss of generality, if S3(G1 ∪ G2) = S3(G1), then S3(T ) ≤ S3(G1 ∪ G2) + 2 ⇒ S3(T ) ≤ S3(G1) + 2 ⇒
S3(T ) ≤ (|E(G1)|+ 6) + 2⇒ S3(T ) = |E(G1)|+ 8⇒ S3(T ) ≤ |E(T )|+ 6.

Now, suppose that S3(G1 ∪ G2) 6= S3(Gi), for i = 1, 2. Without loss of generality, assume that the first three largest
Laplacian eigenvalues of S3(G1 ∪G2) are µ1(G1), µ2(G1)and µ3(G2), that is, S3(G1 ∪G2) ≤ S2(G1)+S1(G2). Then S3(T ) ≤
S3(G1 ∪G2) + 2⇒ S3(T ) ≤ S2(G1) + S1(G2) + 2⇒ S3(T ) ≤ (|E(G1)|+ 3) + (|E(G2)|+ 1) + 2⇒ S3(T ) ≤ |E(T )|+ 5.

(b) Let T − {e1, e2} consist of two non-trivial components G1 and G2. Then G1 and G2 are either trees or unicyclic
or bicyclic graphs. Since the conjecture is true for trees, unicyclic and bicylic graphs, we have S3(Gi) ≤ |E(Gi)| + 6, for
i = 1, 2. Without loss of generality, if S3(G1 ∪ G2) = S3(G1), then S3(T ) ≤ S3(G1 ∪ G2) + 4 ⇒ S3(T ) ≤ S3(G1) + 4 ⇒
S3(T ) ≤ (|E(G1)|+ 6) + 4⇒ S3(T ) = |E(G1)|+ 10⇒ S3(T ) ≤ |E(T )|+ 6.

Now, assume that S3(G1 ∪ G2) 6= S3(Gi) for i = 1, 2. Without loss of generality, assume that the first three largest
Laplacian eigenvalues of S3(G1 ∪ G2) are µ1(G1), µ2(G1) and µ3(G2), that is, S3(G1 ∪ G2) ≤ S2(G1) + S1(G2). Therefore,
S3(T ) ≤ S3(G1∪G2)+4⇒ S3(T ) ≤ S2(G1)+S1(G2)+4⇒ S3(T ) ≤ (|E(G1)|+3)+(|E(G2)|+1)+4⇒ S3(T ) ≤ |E(T )|+6.

Lemma 2.6. Let G′ be the graph obtained from a tricyclic graph T by removing any one of the subgraphs K2∪K2∪K2∪K2,
or P3 ∪K2 ∪K2, or P3 ∪ P3, or S4 ∪K2 or S5. If G′ has maximum degree at most 2, then Brouwer’s conjecture holds for T .

Proof. Let T be a tricylic graph of order n and edge set E. Let G∗ be one of the graphs K2 ∪K2 ∪K2 ∪K2, or P3 ∪K2 ∪K2,
or P3 ∪ P3, or S4 ∪K2. Let G′ be the graph obtained by removing G∗ from T . If G′ has maximum degree of at most 2, then

S3(T ) ≤ S3(G
′) + S3(G

∗) ≤ 12 + 7 ≤ (n+ 2) + 6 (6)

for n ≥ 11. The second inequality is due to the Lemma 2.2 and the fact that S3(G
∗) ≤ 7 for all G∗. For n ≤ 10, Brouwer has

already verified that the conjecture is true. This completes the proof.
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Theorem 2.4. Let G be the family of tricyclic graphs with no pendant vertices. Then, for T ∈ G, we have

Sk(T ) ≤ e(T ) +
k(k + 1)

2

for 1 ≤ k ≤ n− 1.

Proof. From Theorem 3.4 of [16], the conjecture is true for tricyclic graphs for all k, except for k = 3. Therefore it is
sufficient to prove the conjecture for k = 3. As seen earlier, the possible degree sequences of tricyclic graphs are

(2, 2, . . . , 2, 2, 3, 3, 3, 3), (2, 2, . . . , 2, 2, 2, 3, 3, 4), (2, 2, . . . , 2, 2, 2, 2, 4, 4), (2, 2, . . . , 2, 2, 2, 2, 3, 5), (2, 2, . . . , 2, 2, 2, 2, 2, 6).

Case I. Assume that any two vertices v1 and v2 with d(v1), d(v2) > 2 are adjacent. Then it is enough to remove at most
three edges {e1, e2, e3} in order to make the degree of each vertex in the remaining graph G′ = T − {e1, e2, e3} less than or
equal to 2. Thus, we obtain

S3(T ) ≤ S3(G
′) + 3S3(K2) ≤ 12 + 6 = 18

and 18 ≤ (n+ 2) + 6 for n ≥ 10. Therefore, we get

S3(T ) ≤ e(T ) + 6 for n ≥ 10.

For n ≤ 10, Brouwer proved that the conjecture is true.

Case II. Consider the case when no two vertices v1 and v2, with d(v1), d(v2) > 2, are adjacent.
(i) For the degree sequence (2, 2, . . . , 2, 2, 3, 3, 3, 3), let v1, v2, v3 and v4 be four vertices of degree 3. After removing the
path between v1 and the nearest vertex of degree 3, the remaining graph has either two connected components with at
least three vertices or has one connected component. In the first case, from the graph T , just remove one edge from the
path between v1 and the nearest vertex of degree 3. So by Lemma 2.5, T follows Brouwer’s conjecture. In the second
case, from the graph T , further remove the path between the remaining two vertices v3 and v4 with each of degree. Again
there are two possibilities, the remaining graph has either two connected components with at least three vertices or has
one connected component. In the first case, just remove one edge from each of the two paths in T . So, by Lemma 2.5, T
follows Brouwer’s conjecture. If removing these two paths, the graph still has only one non-empty component, then this
component is a cycle Cr with r ≥ 8 containing vertices v1, v2, v3 and v4. It means, for this case, in the graph T , there is a
cycle Cr, with r ≥ 8, containing vertices v1, v2, v3. Now we can remove four edges, one edge incident on each vi, to obtain
the graphG′ such that degree of all vertices inG′ is less than or equal to 2 and no two of the removed edges have a common
vertex. So, we have

S3(T ) ≤ S3(G
′) + S3(K2 ∪K2 ∪K2 ∪K2) ≤ 12 + 6 ≤ (n+ 2) + 6 (7)

for n ≥ 10. For n < 10, the conjecture is true as proved by Brouwer.
(ii) Consider the degree sequence (2, 2, . . . , 2, 2, 3, 3, 4).
Remove one edge from each of the vertices of degree 3, say e1 and e2. Then it is possible to remove two edges incident to
vertex of degree 4 such that these two edges do not share a vertex with the edges e1 or e2. Therefore the subgraph removed
is either P3∪P3, or P3∪K2∪K2 and the remaining graph has vertices with degree less than or equal to 2. From Lemma 2.6,
T follows Brouwer’s conjecture.
(iii) Consider the degree sequence (2, 2, . . . , 2, 2, 4, 4).
Let v1 and v2 be two vertices with degree 4. Now, remove two edges, say e1, e2, incident to vertex v1. Now, it is possible
to remove two edges incident to v2 such that these two edges have no common vertex with e1 or e2. Thus, after removing
subgraph P3 ∪ P3, the remaining graph has vertices of degree less than or equal to 2. Hence, using Lemma 2.6, T follows
Brouwer’s conjecture.

Similarly, the removal of the subgraph S4 ∪K2 for the degree sequence (2, 2, . . . , 2, 2, 2, 3, 5) and the subgraph S5 for the
degree sequence (2, 2, . . . , 2, 2, 2, 2, 6) leaves the remaining graph with vertices having degree less than or equal to 2. The
proof then follows by Lemma 2.6.
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