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Abstract
A graph is locally irregular if the degrees of the end-vertices of every edge are distinct. An edge coloring of a graph G is
locally irregular if every color induces a locally irregular subgraph of G. A colorable graph G is any graph which admits a
locally irregular edge coloring. The locally irregular chromatic index χ′irr(G) of a colorable graphG is the smallest number of
colors required by a locally irregular edge coloring of G. The Local Irregularity Conjecture claims that all colorable graphs
require at most 3 colors for a locally irregular edge coloring. Recently, it has been observed that the conjecture does not hold
for the bow-tie graph B, since B is colorable and requires at least 4 colors for a locally irregular edge coloring. Since B is a
cactus graph and all non-colorable graphs are also cacti, this seems to be a relevant class of graphs for the Local Irregularity
Conjecture. In this paper, it is proved that χ′irr(G) ≤ 4 for all colorable cactus graphs.
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1. Introduction

All graphs mentioned in this paper are considered to be simple, finite and connected, unless explicitly stated otherwise.
A cactus graph is any graph with edge disjoint cycles. A graph is said to be locally irregular if the degrees of the two
end-vertices of every edge are distinct. A locally irregular k-edge coloring, or k-liec for short, is any k-edge coloring of G
every color of which induces a locally irregular subgraph of G. Since in this paper we deal only with the locally irregular
edge colorings, a graph which admits such a coloring will be called colorable. The locally irregular chromatic index χ′irr(G)

of a colorable graph G is defined as the smallest k such that G admits a k-liec. The first question is which graphs are
colorable? To answer this question, we first need to introduce a special class T of cactus graphs. The class T is defined as
follows:

R1. The triangle K3 is contained in T;

R2. For every graph G ∈ T, a graph H which also belongs to T can be constructed in the following way: a vertex u ∈ V (G)

of degree 2, which belongs to a triangle of G, is identified with an end-vertex of an even length path or with the only
vertex of degree one in a graph consisting of a triangle and an odd length path hanging at one of the vertices of the
triangle.

Obviously, graphs from T are subcubic cacti in which cycles are vertex disjoint triangles, which are connected by an odd
length paths, and besides triangles and odd length paths connecting them a cactus graph G from T may have only even
length paths hanging at any vertex u such that u belongs to a triangle of G and dG(u) = 3. It was established that the
only non-colorable graphs are odd length paths, odd length cycles and cacti from T [2]. Before we proceed, let us make the
following straightforward observation which will be used later.

Observation 1.1. Let G be a non-colorable graph and let e ∈ E(G). If e is an edge incident to a leaf or e belongs to a cycle
of G, then G− e is colorable.

For colorable graphs an interesting question is: what is the smallest number of colors required by a locally irregular
edge coloring of any graph? Regarding this question, the following conjecture was proposed in [2].

Conjecture 1.1 (Local Irregularity Conjecture). For every colorable connected graph G, it holds that χ′irr(G) ≤ 3.
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It was recently shown [8] that the Local Irregularity Conjecture does not hold in general, since there exists a colorable
cactus graph, the so called bow-tie graph B shown in Figure 1, for which χ′irr(G) = 4. There, the following weaker version
of Conjecture 1.1 was proposed.

Figure 1: The bow-tie graph B and a 4-liec of it.

Conjecture 1.2. Every colorable connected graph G satisfies χ′irr(G) ≤ 4.

Even though the graph B contradicts Local Irregularity Conjecture, many partial results support this conjecture. For
example, the conjecture holds for trees [3], unicyclic graphs and cacti with vertex disjoint cycles [8], graphs with minimum
degree at least 1010 [7], k-regular graphs where k ≥ 107 [2]. The conjecture was also considered for general graphs, but
there the upper bound on the number of colors required by a liec of a colorable graph G was first established to be 328 [4],
and then it was lowered to 220 [6]. Some other interesting results on special classes of graphs can be found in [1,5].

The results so far indicate that cacti form a relevant class of graphs for the locally irregular edge colorings, since the
non-colorable graphs are cacti and the only known counterexample, graph B, for the Local Irregularity Conjecture is also
a cactus graph. Motivated by this, in this paper we further consider this class of graphs. We show that all colorable cacti
satisfy Conjecture 1.2.

2. Preliminaries

Let us introduce some results already known in literature, mainly regarding trees and unicyclic graphs, which will be of
use in the rest of the paper.

A tree rooted at its leaf will be called a shrub. The root edge of a shrub T is the edge incident to the root vertex of T. An
edge coloring of a shrub T is said to be an almost locally irregular k-edge coloring, or k-aliec for short, if either it is a k-liec
of T or it is a coloring such that only the root edge is locally regular. Let us state few results regarding trees from [3].

Theorem 2.1. Every shrub admits a 2-aliec.

Theorem 2.2. For every colorable tree T, it holds that χ′irr(T ) ≤ 3. Moreover, χ′irr(T ) ≤ 2 if ∆(T ) ≥ 5.

Beside Theorems 2.1 and 2.2, we will also need some specific claims used in [3] to prove our results. In order to state
them, let us introduce some more notation. The colors of an edge coloring will be denoted by letters a, b, c, . . . By φa(G)

(resp. φa,b(G), φa,b,c(G)) we will usually denote an edge coloring of G using one (resp. two, three) colors. For an edge
coloring φa,b,c of G and a vertex u ∈ V (G), by φa,b,c(u) we will denote the set of colors incident to u. If φa,b,c(u) contains k
colors, then we say u is k-chromatic, specifically in the cases of k = 1 and k = 2 we say u is monochromatic and bichromatic,
respectively. If φa,b is an edge coloring of a graph G which uses colors a and b, then φc,d will denote the edge coloring of G
obtained from φa,b by replacing color a with c and color b with d. In particular, the edge coloring φb,a obtained from φa,b by
swapping colors a and b will be called the inversion of φa,b.

We also need to introduce a sum of colorings, useful when combining two different colorings. Let Gi, for i = 1, . . . , k,

be graphs with pairwise disjoint edge sets, and let G be a graph such that E(G) = ∪ki=1E(Gi). If φia,b,c is an edge coloring
of the graph Gi for i = 1, . . . , k, then φa,b,c =

∑k
i=1 φ

i
a,b,c will denote the edge coloring of G such that e ∈ E(Gi) implies

φa,b,c(e) = φia,b,c(e).

The a-degree of a vertex u ∈ V (G) is defined as the number of edges incident to uwhich are colored by a, and it is denoted
by daG(u). The same name and notation goes for any other color besides a. Now, for a vertex u ∈ V (G) with k incident edges
colored by a, say uv1, . . . , uvk, the a-sequence of u is defined as daG(v1), . . . , daG(vk). It is usually assumed that vertices vi are
denoted so that the a-sequence is non-increasing.
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Regarding shrubs, they admit an 2-aliec according to Theorem 2.1, which will be denoted by φa,b where we assume the
root edge of the shrub is colored by a. Now, let T be a tree, u ∈ V (T ) a vertex of maximum degree in T, and vi all the
neighbors of u for i = 1, . . . , k. Denote by Ti a shrub of T rooted at u with the root edge uvi. A shrub based coloring of T is
defined by φa,b =

∑k
i=1 φ

i
a,b, where φia,b is an 2-aliec of Ti. Since we assume that the root edge of Ti is colored by a in φia,b,

this implies u is monochromatic in color a by a shrub based coloring φa,b of T. Obviously, if a shrub based coloring φa,b is
not a liec of T, only the edges incident to u may be locally regular by φa,b. Notice that

(
k
2

)
different 2-edge colorings of T can

be obtained from a shrub based coloring φa,b by swapping colors a and b in some of the shrubs Ti. If none of those colorings
is a liec of T, we say φa,b is inversion resistant. The following observation was established in [3].

Observation 2.1. Let T be a tree, u ∈ V (T ) a vertex of maximum degree in T and φa,b a shrub based coloring of T rooted
at u. A shrub based coloring φa,b will be inversion resistant in two cases only:

• dT (u) = 3 and the a-sequence of u by φa,b is 3, 2, 2;

• dT (u) = 4 and the a-sequence of u by φa,b is 4, 3, 3, 2.

The obvious consequence of the above observation is that in a tree T with χ′irr(T ) = 3 and ∆(T ) = 3 (resp. ∆(T ) = 4) the
vertices of degree 3 (resp. 4) must come in neighboring pairs. Also, if χ′irr(T ) = 3, then a shrub based coloring of the tree T
rooted at a vertex u of maximum degree is inversion resistant. A 3-liec of such a tree T is obtained from aliecs of shrubs in
a following way: if dT (u) = 3 then φTa,b,c = φ1a,b + φ2b,a + φ3c,b is a 3-liec of T, if dT (u) = 4 then φTa,b,c = φ1a,b + φ2a,b + φ3b,a + φ4c,b
is a 3-liec of T. Notice that in this 3-liec of T, only the root vertex u is 3-chromatic, all other vertices in T are 1- or 2-
chromatic. Hence, we will call u the rainbow root of such a liec. Obviously, every vertex u of maximum degree of a tree T
with χ′irr(T ) = 3 can be the rainbow root of a 3-liec of T , because either the degree sequence of u by a shrub based coloring
is 3, 2, 2 (resp. 4, 3, 3, 2) which means the above 3-liecs can be constructed with u being the rainbow root, or the shrub based
coloring would not be inversion resistant, which implies χ′irr(G) ≤ 2, a contradiction.

Further, notice that the color c is used by φTa,b,c in precisely one shrub of T. Simply, one can choose that one shrub to be
any of the shrubs of T rooted at u. Let us now collect all this in the following formal observation for further referencing.

Observation 2.2. Let T be a colorable tree with χ′irr(T ) = 3. Then all vertices of maximum degree in T come in neighboring
pairs. Also, every vertex of maximum degree in T can be the rainbow root of a 3-liec of T . Finally, for any vertex u of maximum
degree in T and for any shrub Ti of T rooted at u, there exists a 3-liec of T such that the color c is used only in Ti.

Finally, we will also need the following result from [8] on unicyclic graphs.

Theorem 2.3. Let G be a colorable unicyclic graph. Then χ′irr(G) ≤ 3.

3. Coloring cacti by four colors

A grape G is any cactus graph with at least one cycle in which all cycles share a vertex u, and the vertex u is called the
root of G. A berry Gi of a grape G is any subgraph of G induced by V (G′i)∪ {u}, where u is the root of G and G′i a connected
component of G − u. Notice that a berry Gi can be either a unicyclic graph in which u is of degree 2 or a tree in which u

is a leaf, so such berries will be called unicyclic berries and acyclic berries, respectively. A unicyclic berry Gi is said to be
triangular if its cycle is the triangle.

An end-grape Gu of a cactus graph G is any subgraph of G such that:

• Gu is a grape rooted at u where u is the only vertex of Gu incident to edges from G− E(Gu), and

• u is incident to either one edge fromG−E(Gu) or two such edges which then must belong to a same cycle ofG−E(Gu),

and such edges are called the exit edges of Gu.

This notion is illustrated by Figure 2. Also, for an end-grape Gu rooted at u, the graph G0 = G− E(Gu) will be called the
root component of Gu. Notice that dG0(u) ≤ 2 and also that E(G) = E(G0) ∪ E(Gu) where E(G0) ∩ E(Gu) = ∅. Let us first
prove the following auxiliary result.

Lemma 3.1. Let G be a colorable cactus graph with c ≥ 2 cycles and Gu an end-grape of G. If Gu is comprised of just one
berry and that berry is a non-colorable triangular berry which has only one exit edge, then there exists a colorable cactus
graph G′0 with fewer cycles than G, such that χ′irr(G) ≤ max{χ′irr(G′0), 3}.
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Figure 2: A cactus graph G with five cycles which contains two end-grapes, Gu1
and Gu8

. The end-grape Gu1
has two

unicyclic berries and one exit edge u1u2. The end-grape Gu8
consists of one unicyclic and one acyclic berry and it has two

exit edges u8u7 and u8u9. Notice that the cycle C3 is not an end-grape of G since it has two exit edges u4u3 and u4u5 and
they do not belong to a same cycle.

Proof. Denote by v and w be the neighbors of u inGu. SinceGu is a non-colorable triangular berry, it consists of the triangle
uvw and possibly an even length path hanging at v and/or w. Let G′0 be the connected component of G−v which contains u.
Notice that G′0 consists of a root component G0 of Gu and a pendant odd length path hanging at u which contains w. If G′0
is non-colorable, since it contains a pendant path we concludeG′0 ∈ T, but thenG is also non-colorable, a contradiction. So,
we may assume G′0 is colorable and admits a liec which uses say colors a and b, so we will denote it by φ0a,b. Since u and w
belong to a pendant path P of G′0, given the parity of their distance to the leaf of the path P , we may assume φ0a,b(u) = {a}
and φ0a,b(w) ⊆ {a, b}. Let T = G− E(G′0) and notice that T is a tree which consists of the path uvw with possibly one even
length path hanging at v. Obviously, T admits a 2-liec φTb,c such that φTb,c(u) = φTb,c(w) = {c}. Since G consists of G′0 and T
which meet at vertices u and w, we conclude that φ0a,b + φTb,c is a k-liec of G, where k = max{χ′irr(G′0), 3}.

Before we proceed with the main result, let us introduce the notation we will use in a cactus graph with an end-grape
Gu and its root component G0. Let p (resp. q) denote the number of cyclic (resp. acyclic) berries in Gu. We may assume
berries of Gu are denoted by Gi, for i = 1, . . . , p+ q, so that Gi is a cyclic berry if and only if i ≤ p. Let vi be a neighbor of u
in a berry Gi for i = 1, . . . , p+ q. Let wi be the other neighbor of u in a cyclic berry Gi for i = 1, . . . , p. The neighbors of u in
the root component G0 will be denoted by u1 and u2, where u2 does not exist if dG0

(u) = 1.

Theorem 3.1. Let G be a colorable cactus graph. Then χ′irr(G) ≤ 4.

Proof. The proof is by the induction on the number of cycles in G. If G contains less than 2 cycles, then G is a tree or a
unicyclic graph, so the claim follows from Theorems 2.2 and 2.3, respectively. Let us assume that the claim holds for all
cacti with less than c ≥ 2 cycles, and let G be a cactus graph with c cycles.

If G is a grape with the root vertex u, let Eu be the set consisting of an edge incident to u from every cycle in G. Since
G contains at least two cycles, Eu contains at least two edges, hence Eu induces a locally irregular subgraph of G. Notice
that T = G − Eu is a tree. If T is colorable, then it can be colored by 3 colors, so coloring Eu by the fourth color yields a
4-liec of G. If T is non-colorable, then T is a path, and there exists an edge uz in T such that uz 6∈ Eu and T ′ = T − uz is a
collection of one or two even length paths. Thus T ′ is colorable and can be colored by 2 colors, then coloring E′u = Eu ∪{uz}
by the third color yields a 3-liec of G.

Assume now that G is not a grape, so let Gu be an end-grape of G and let G0 be the root component of Gu. If G0 is
non-colorable, since G is not a grape, it follows that G0 ∈ T. So, within G0 there must exist an end-grape of G consisting of
a single non-colorable triangular berry with only one exit edge. Then the claim follows from Lemma 3.1 and the induction
hypothesis. So, let us assume that G0 is colorable. Let Eu = {uv1, . . . , uvp} and let T = Gu − Eu. Notice that T is a tree.

Case 1: T is not colorable. Since T is a non-colorable tree, it must be an odd length path. Notice that there exists an edge
uz in T, such that T ′ = T − uz is a collection of one or two even length paths. Hence, T ′ admits a 2-liec φT ′

a,b. Since the
degree of u in T ′ is at most one we may assume φT ′

a,b(u) ⊆ {a}. Let E′u = Eu ∪ {uz} and notice that E′u contains at least two
edges, so it induces a locally irregular subgraph of G which admits a 1-liec φE′

c . Hence, φua,b,c = φT
′

a,b + φE
′

c is a 3-liec of Gu

such that φua,b,c(u) ⊆ {a, c}.
It remains to consider the root component G0 of Gu. Since G0 is colorable, the induction hypothesis implies G0 admits

a 4-liec φ0a,b,c,d. Also, dG0(u) ≤ 2 implies that we may assume φ0a,b,c,d(u) ⊆ {b, d}. Since G is comprised of G0 and Gu which
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meet at u, from φ0a,b,c,d(u) ⊆ {b, d} and φua,b,c(u) ⊆ {a, c} we conclude that φ0a,b,c,d + φua,b,c is the desired 4-liec of G.

Case 2: T is colorable. Denote by φTa,b,c a liec of T, and if T is colorable by fewer than 3 colors, we assume the color c (resp.
b and c) is not used. We wish to establish that there exists a liec φTa,b,c of T such that

φTa,b,c(x) ⊆ {a, b} (1)

for each x ∈ {u, v1, . . . , vp}. Now, if χ′irr(T ) ≤ 2, then (1) obviously holds. So, let us assume χ′irr(T ) = 3. Notice that vertices
u, v1, . . . , vp form an independent set in T. Thus, Observation 2.2 implies we can choose the rainbow root z in T distinct
from u, v1, . . . , vp. Notice that u and all vi for i ≤ p belong to at most two distinct shrubs of T rooted at z. Since T has at
least three shrubs rooted at z, Observation 2.2 implies the color c can be used only in the shrub not containing vertices u
and vi for i ≤ p. Thus, we obtain a 3-liec of T for which (1) holds, and the claim is established.

Subcase 2a: p ≥ 2. Since |Eu| = p ≥ 2, the set Eu induces a locally irregular subgraph of G which admits a 1-liec φEc . Since
(1) holds, we conclude that φua,b,c = φTa,b,c + φEc is a 3-liec of Gu. It remains to glue φua,b,c with a coloring of G0.

Since G0 is colorable, the induction hypothesis implies there exists a 4-liec φ0a,b,c,d of G0. If u is 1-chromatic by φ0a,b,c,d,
we may assume φ0a,b,c,d(u) = {d}, so φ0a,b,c,d + φua,b,c is the desired 4-liec of G. If u is 2-chromatic by φ0a,b,c,d, we may assume
that u1u is c-colored, and u2u is d-colored. When we glue together Gu and G0 with their respective colorings, the only color
incident to u in both graphs is the color c. So, it is important to consider c-degree of u and its neighbors in Gu and in G0,
which will be denoted by dcu(u) and dc0(u) respectively.

Notice that dcu(u) = p, and the c-degree of the neighbors of u in Gu is at most one. When Gu and G0 are glued together,
the c-degree of u becomes p + 1. This will not make c-colored edges of Gu incident to u to become locally regular, the only
problem is the edge u1u in G0. If dc0(u1) 6= p+ 1, then φ0a,b,c,d + φua,b,c is the desired 4-liec of G. If dd0(u2) 6= p+ 1, we can swap
colors c and d in G0, so the case reduces to the previous case dc0(u1) 6= p+ 1. Finally, if dc0(u1) = dd0(u2) = p+ 1, we have to
make a small modification of φua,b,c. Let φ′ua,b,c,d be the coloring of Gu obtained from φua,b,c by changing only the color of uv1
from c to d. Notice that φ′ua,b,c,d is not a liec of Gu, since uv1 is an isolated edge in color d, but φ0a,b,c,d + φ′ua,b,c,d is a 4-liec of G,
which proves the claim.

Subcase 2b: p = 1. Let G′′0 = G0 + uv1. If G′′0 is colorable, by induction hypothesis it admits a 4-liec φ′′0a,b,c,d. Notice that
dG′′

0
(u) = dG0

(u) + 1 ≤ 3. Now we argue that u is 1- or 2-chromatic by φ′′0a,b,c,d, and to see this we distinguish the case
dG0

(u) = 1 and dG0
(u) = 2. If dG0

(u) = 1, then dG′′
0
(u) = 2, so the claim obviously holds. If dG0

(u) = 2, then dG′′
0
(u) = 3, but

in this case u is a vertex of a cycle in G′′0 with a pendant edge uv1. In order for an edge coloring of G′′0 to be locally irregular,
the color of the pendant edge uv1 must be the same as the color of at least one more edge incident to u. From this we
deduce that u is 1- or 2-chromatic by φ′′0a,b,c,d, as claimed. Hence, we may assume φ′′0a,b,c,d(u)∪φ′′0a,b,c,d(v1) ⊆ {c, d}. Notice that
G consists of G′′0 and T which meet at u and v1. From (1) and φ′′0a,b,c,d(u) ∪ φ′′0a,b,c,d(v1) ⊆ {c, d} we conclude φ′′0a,b,c,d + φTa,b,c is
the desired 4-liec of G.

If G′′0 is not colorable, then the presence of a leaf in G′′0 implies G′′0 ∈ T. Then again the claim follows from Lemma 3.1
and the induction hypothesis.

4. Concluding remarks

In this paper we established that all colorable cacti require at most 4 colors for a locally irregular edge coloring. This is
the best possible upper bound, since there exists the so called bow-tie graph B, which is a colorable cactus graph with
χ′irr(B) = 4. This result can be further extended to a claim that every colorable cactus graph distinct from B requires at
most three colors for the locally irregular edge coloring and a paper with this result is in preparation.

Our argument of this claim is lengthy but uses the same approach as Theorem 3.1. The main difference is that in Case
2.a of Theorem 3.1 we do not have to take much care about a- and b-degrees of the neighbors of u in T since we have the
fourth color d to use it for at least one of the two edges incident to u in G0. When the fourth color must not be used, then a
great care has to be taken of these a- and b-degrees in T because the same colors must be used for both edges incident to
u in G0. So, one has to avoid colors a and b in Gu to spare them for G0, i.e. color all edges of Gu incident to u by c and not
just Eu. That is not always possible, so special berries and alternative colorings for them need to be introduced. In light of
all this, it might be helpful for a reader interested into this to consider Theorem 3.1 as a first step.
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[3] O. Baudon, J. Bensmail, É. Sopena, On the complexity of determining the irregular chromatic index of a graph, J. Discrete Algorithms 30 (2015) 113–127.
[4] J. Bensmail, M. Merker, C. Thomassen, Decomposing graphs into a constant number of locally irregular subgraphs, European J. Combin. 60 (2017) 124–134.
[5] C. N. Lintzmayer, G. O. Mota, M. Sambinellia, Decomposing split graphs into locally irregular graphs, Discrete Appl. Math. 292 (2021) 33–44.
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