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1Department of Applied Mathematics, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
2Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa

(Received: 16 May 2022. Received in revised form: 18 August 2022. Accepted: 22 August 2022. Published online: 30 August 2022.)

c© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract
Some sharp bounds on the general eccentric distance sum are presented for (i) graphs with given order and chromatic
number, (ii) trees with given bipartition, and (iii) bipartite graphs with given order and matching number. Bounds for
bipartite graphs hold also if the matching number is replaced by the independence number, vertex cover number or edge
cover number.
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1. Introduction

Let V (G) and E(G) be the vertex set and edge set of a graph G. The number of vertices is called the order and the
number of edges is the size of G. The number of edges incident with a vertex u is the degree degG(u) of u. The number of
edges in a shortest path between vertices u and v is the distance dG(u, v) between u and v. The distance between u and
a vertex farthest from u in G is the eccentricity eccG(u) of u in G. The diameter of G is the maximum eccentricity among
eccentricities of the vertices in G.

A matching is a set of edges of a graph G such that no two edges in that set have a vertex in common. A vertex
independent set is a set of vertices of a graph G such that no two vertices in that set are adjacent in G. The cardinality of
a maximum matching/independent set is the matching number/independence number of G, respectively. A vertex cover of
a graph G is a set of vertices such that each edge of G is incident with at least one vertex from that set. An edge cover of G
is a set of edges such that each vertex of G is incident with at least one edge from that set. The vertex/edge cover number
is the cardinality of a minimum vertex cover/edge cover, respectively.

For k ≥ 2, a graph is called k-partite if its vertex set can be partitioned into k sets, where any two vertices from the same
set are non-adjacent. A complete k-partite graph Kp1,p2,...,pk is a k-partite graph with partite sets of orders p1, p2, . . . , pk,
where any two vertices from different partite sets are adjacent. A 2-partite graph is called a bipartite graph.

A connected graph containing no cycles is a tree. A leaf is a vertex of a tree having degree 1. The double star Sp1,p2 is a
tree containing exactly two vertices which are not leaves, and their degrees are p1 and p2, respectively. So Sp1,p2 contains
p1 + p2 − 2 leaves. For the complement G of G, we have V (G) = V (G) and uv ∈ E(G) if and only if vertices u and v are not
adjacent in G.

For a connected graph G and a, b ∈ R, the general eccentric distance sum is defined as

EDSa,b(G) =
∑

u∈V (G)

[eccG(u)]
a[DG(u)]

b,

where DG(u) =
∑
v∈V (G) dG(u, v). This index generalizes several distance-based indices. We obtain the classical eccentric

distance sum for a = 1 and b = 1, the total eccentricity index for a = 1 and b = 0, and the first Zagreb eccentricity index of
G for a = 2 and b = 0. For a = 0 and b = 1, we get EDS0,1(G) = 2W (G), where W (G) is the Wiener index.

The eccentric distance sum EDS belongs to topological indices which have been investigated extensively. An upper
bound on the EDS for graphs of given order and minimum degree was obtained by Mukungunugwa and Mukwembi [16].
A lower bound for trees with prescribed order was given by Yu, Feng, and Ilić [24], and also by Hua, Xu, and Wen [11].
The EDS for trees was studied also in [8, 18]. The EDS was investigated for several basic graphs in [17], graphs related
to groups in [1], cubic transitive graphs in [23], graph operations in [2], bipartite graphs in [4,15], fullerances in [9], and
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Sierpiński networks in [3]. Relations between the EDS and a few other indices were studied in [10]. Interesting results
on the EDS were presented also in [12–14]. Bounds on EDSa,b for trees, bipartite graphs and general graphs with given
order as well as for graphs with given order and number of pendant vertices/vertex connectivity were presented in [20].
Another general index was studied for example in [6] and some distance-based indices were investigated also in [5,7,19].

We give bounds on EDSa,b for trees with given bipartition and bipartite graphs with given order and matching number.
Lower bounds are obtained for a ≥ 0 and 0 < b ≤ 1. Upper bounds are obtained for a ≤ 0 and b < 0. Bounds for bipartite
graphs hold also if the matching number is replaced by the independence number, vertex cover number or edge cover
number. A lower bound on EDSa,b for graphs with given order and chromatic number, where each color is used for at least
two vertices, is presented for a ≥ 0 and b ≥ 1. Finally, for a ≥ 0, we present a lower bound on EDSa,1(G) for graphs G of
given order and size containing no vertex adjacent to all the other vertices, and a lower bound on EDSa,1(G) +EDSa,1(G)

for graphs G of given order. All the bounds are sharp and extremal graphs are presented.

2. Results

First, we present Lemma 2.1 which was proved in [21]. We use this lemma in the proofs of Theorems 2.1, 2.2, 2.3, 2.4, and
2.5 to compare EDSa,b of some graphs.

Lemma 2.1. Let 1 ≤ x < y and c > 0. Then for b > 1 and b < 0,

(x+ c)b − xb < (y + c)b − yb.

If 0 < b < 1, then
(x+ c)b − xb > (y + c)b − yb.

A bipartite graph with two partite sets U1 and U2 has an (s, t)-bipartition if |U1| = s and |U2| = t. Clearly, for the order
n of G, we have n = s + t. In Theorems 2.1 and 2.2, we consider trees having an (s, t)-bipartition with s ≥ t ≥ 2, because
the unique tree having an (s, 1)-bipartition is the star with s+1 vertices. For a = b = 1, Theorem 2.1 was presented in [8].
For a = 2 and b = 0, Theorem 2.1 was given in [19].

Theorem 2.1. Let a ≥ 0, 0 < b ≤ 1 and s ≥ t ≥ 2. For any tree T with an (s, t)-bipartition,

EDSa,b(T ) ≥ (s− 1)3a(3t+ 2s− 4)b + (t− 1)3a(3s+ 2t− 4)b + 2a(2t+ s− 2)b + 2a(2s+ t− 2)b,

with equality if and only if T ∼= Ss,t.

Proof. Among trees with an (s, t)-bipartition, we denote a tree with the smallestEDSa,b by T ′. Let us prove by contradiction
that T ′ ∼= Ss,t.

Assume that T ′ � Ss,t. A tree with diameter d ≤ 2 does not exist for s ≥ t ≥ 2 and the only tree having diameter 3 is
Ss,t. Thus d ≥ 4. We denote a diametral path in T ′ by u0u1 . . . ud (so dT ′(u0, ud) = d) and the leaves adjacent to ud−1 by
w1, w2, . . . , wp, where ud is one of them and p ≥ 1. Without loss of generality, we assume that DT ′(u1) ≤ DT ′(ud−1). Let
T ′′ = T ′−{ud−1w1, ud−1w2, . . . , ud−1wp}+ {ud−3w1, ud−3w2, . . . , ud−3wp}. Clearly, T ′′ has an (s, t)-bipartition. Let us use u1
and ud−1 to obtain a contradiction. We have eccT ′(u1) = eccT ′(ud−1) = eccT ′′(ud−1) = d − 1 and d − 2 ≤ eccT ′′(u1) ≤ d − 1.
We obtain

DT ′′(u1) = DT ′(u1)− 2p

and
DT ′′(ud−1) = DT ′(ud−1) + 2p.

For any vertex z ∈ V (T ′) \ {u1, ud−1}, we have eccT ′(z) ≥ eccT ′′(z) and DT ′(z) ≥ DT ′′(z), therefore

[eccT ′(z)]
a[DT ′(z)]

b ≥ [eccT ′′(z)]
a[DT ′′(z)]

b

for a ≥ 0 and 0 < b < 1. Moreover, there are some vertices z ∈ V (T ′)\{u1, ud−1} (for example u0), for whichDT ′(z) > DT ′′(z),
therefore

[eccT ′(z)]
a[DT ′(z)]

b > [eccT ′′(z)]
a[DT ′′(z)]

b

for those vertices.
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Thus,

EDSa,b(T
′)− EDSa,b(T ′′)

=
∑

z∈V (T ′)\{u1,ud−1}

([eccT ′(z)]
a[DT ′(z)]

b − [eccT ′′(z)]
a[DT ′′(z)]

b)

+ [eccT ′(u1)]
a[DT ′(u1)]

b − [eccT ′′(u1)]
a[DT ′′(u1)]

b + [eccT ′(ud−1)]
a[DT ′(ud−1)]

b − [eccT ′′(vu−1)]
a[DT ′′(ud−1)]

b

> [eccT ′(u1)]
a[DT ′(u1)]

b − [eccT ′′(u1)]
a[DT ′′(u1)]

b + [eccT ′(ud−1)]
a[DT ′(ud−1)]

b − [eccT ′′(vu−1)]
a[DT ′′(ud−1)]

b

= (d− 1)a[DT ′(u1)]
b − [eccT ′′(u1)]

a[DT ′(u1)− 2p]b + (d− 1)a([DT ′(ud−1)]
b − [DT ′(ud−1) + 2p]b)

≥ (d− 1)a([DT ′(u1)]
b − [DT ′(u1)− 2p]b) + (d− 1)a([DT ′(ud−1)]

b − [DT ′(ud−1) + 2p]b)

≥ 0,

because for b = 1,
[DT ′(u1)]

b − [DT ′(u1)− 2p]b + [DT ′(ud−1)]
b − [DT ′(ud−1) + 2p]b = 0,

and for 0 < b < 1, from Lemma 2.1, we obtain

[DT ′(u1)]
b − [DT ′(u1)− 2p]b > [DT ′(ud−1) + 2p]b − [DT ′(ud−1)]

b.

Therefore EDSa,b(T ′) > EDSa,b(T
′′). Hence T ′ does not have the minimum EDSa,b. We have a contradiction.

So T ′ ∼= Ss,t which contains two vertices which are not leaves, say v and v′, where v is adjacent to s − 1 leaves vi,
i = 1, 2, . . . , s− 1, and v′ is adjacent to t− 1 leaves v′j , j = 1, 2, . . . , t− 1. We have

eccSs,t(v) = 2, DSs,t(v) = s+ 2(t− 1),
eccSs,t(v

′) = 2, DSs,t(v
′) = t+ 2(s− 1),

eccSs,t(vi) = 3, DSs,t(vi) = 1 + 2(s− 1) + 3(t− 1),
eccSs,t(v

′
j) = 3, DSs,t(v

′
j) = 1 + 2(t− 1) + 3(s− 1).

Hence
EDSa,b(Ss,t) = (s− 1)3a(3t+ 2s− 4)b + (t− 1)3a(3s+ 2t− 4)b + 2a(2t+ s− 2)b + 2a(2s+ t− 2)b.

Theorem 2.2. Let a ≤ 0, b < 0 and s ≥ t ≥ 2. For any tree T with an (s, t)-bipartition,

EDSa,b(T ) ≤ (s− 1)3a(3t+ 2s− 4)b + (t− 1)3a(3s+ 2t− 4)b + 2a(2t+ s− 2)b + 2a(2s+ t− 2)b,

with equality if and only if T ∼= Ss,t.

Proof. Only those parts of the proof are presented which differ from the proof of Theorem 2.1. Among trees with an (s, t)-
bipartition, we denote a tree with the largest EDSa,b by T ′. Since eccT ′′(u1) ≤ d− 1, we have

[eccT ′′(u1)]
a ≥ (d− 1)a for a ≤ 0.

For any vertex z ∈ V (T ′) \ {u1, ud−1}, we have eccT ′(z) ≥ eccT ′′(z) and DT ′(z) ≥ DT ′′(z), therefore [eccT ′(z)]
a ≤ [eccT ′′(z)]

a

for a ≤ 0 and [DT ′(z)]
b ≤ [DT ′′(z)]

b for b < 0, so [eccT ′(z)]
a[DT ′(z)]

b ≤ [eccT ′′(z)]
a[DT ′′(z)]

b. Thus,

EDSa,b(T
′)− EDSa,b(T ′′)

≤ [eccT ′(u1)]
a[DT ′(u1)]

b − [eccT ′′(u1)]
a[DT ′′(u1)]

b + [eccT ′(ud−1)]
a[DT ′(ud−1)]

b − [eccT ′′(vu−1)]
a[DT ′′(ud−1)]

b

= (d− 1)a[DT ′(u1)]
b − [eccT ′′(u1)]

a[DT ′(u1)− 2p]b + (d− 1)a([DT ′(ud−1)]
b − [DT ′(ud−1) + 2p]b)

≤ (d− 1)a([DT ′(u1)]
b − [DT ′(u1)− 2p]b) + (d− 1)a([DT ′(ud−1)]

b − [DT ′(ud−1) + 2p]b)

< 0,

because for b < 0, from Lemma 2.1, we obtain

[DT ′(u1)]
b − [DT ′(u1)− 2p]b < [DT ′(ud−1) + 2p]b − [DT ′(ud−1)]

b.

Therefore EDSa,b(T ′) < EDSa,b(T
′′). Hence T ′ does not have the maximum EDSa,b. We have a contradiction.

The proofs of Theorems 2.3, 2.4 and 2.5 use the next lemma which was proved in [20].
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Lemma 2.2. Let G be a connected graph with two non-adjacent vertices u and v. For a ≥ 0 and b > 0, we have

EDSa,b(G+ uv) < EDSa,b(G).

For a ≤ 0 and b < 0, we have
EDSa,b(G+ uv) > EDSa,b(G).

Any graph has the matching number ν at most bn2 c. Stars are the unique connected bipartite graphs with matching
number 1. Thus, let us consider bipartite graphs for 2 ≤ ν ≤ bn2 c. For a = b = 1, Theorem 2.3 was presented in [15].

Theorem 2.3. Let a ≥ 0 and 0 < b ≤ 1. For a connected bipartite graph G of order n and matching number ν, where
2 ≤ ν ≤ bn2 c, we have

EDSa,b(G) ≥ ν2a(n+ ν − 2)b + (n− ν)2a(2n− ν − 2)b,

with equality if and only if G ∼= Kν,n−ν .

Proof. Among bipartite graphs of order n and matching number ν, let us denote a graph with the minimum EDSa,b by G′.
Without loss of generality, suppose that |U1| ≤ |U2|, where U1 and U2 are the partite sets ofG′. Let us show by contradiction
that G′ ∼= Kν,n−ν .

Suppose that G′ � Kν,n−ν . Clearly, |U1| ≥ ν (otherwise if |U1| ≤ ν − 1, the matching number of G′ is at most ν − 1).
Note that G′ cannot be a subgraph of Kν,n−ν , (if G′ would be a subgraph of Kν,n−ν , by Lemma 2.2, we get EDSa,b(G′) >
EDSa,b(Kν,n−ν)). Therefore ν < |U1| ≤ |U2|.

Let us denote any matching in G′ having ν edges by M ′. For j = 1, 2, let Uνj be the subset of Uj containing ν vertices
incident with the edges in M ′. We have |Uj | = ν + lj with lj > 0 (and 2ν + l1 + l2 = n). Obviously, a vertex u1 ∈ U1 \ Uν1 is
not adjacent to a vertex u2 ∈ U2 \ Uν2 , otherwise there would be the matching M ′ ∪ {u1u2} in G′ with ν + 1 edges.

Let us define the graphH ′ having the same vertices asG′, and containing all the edges between Uν1 and Uν2 , between Uν1
and U2 \Uν2 , and between U1 \Uν1 and Uν2 . The graphG′ is a subgraph ofH ′, thus from Lemma 2.2, we obtain EDSa,b(H ′) <
EDSa,b(G

′). The matching number of H ′ is at least ν + 1.
Now we construct a graph H ′′ from H ′ by deleting all the edges between U1 \ Uν1 and Uν2 , and by adding all the edges

between U1 \Uν1 and Uν1 . The graph H ′′ is bipartite, having the matching number ν and H ′′ is a subgraph of Kν,n−ν . Thus,
by Lemma 2.2, we have EDSa,b(Kν,n−ν) < EDSa,b(H

′′).
Let us compare the EDSa,b of the graphsH ′ andH ′′. For any u1 ∈ Uν1 and any u2 ∈ Uν2 , we have eccH′(u1) = eccH′′(u1) =

eccH′(u2) = eccH′′(u2) = 2 and

DH′(u1) = ν + l2 + 2l1 + 2(ν − 1) = 3ν + 2l1 + l2 − 2,

DH′′(u1) = ν + l2 + l1 + 2(ν − 1) = 3ν + l1 + l2 − 2,

DH′(u2) = ν + l1 + 2l2 + 2(ν − 1) = 3ν + l1 + 2l2 − 2,

DH′′(u2) = ν + 2l1 + 2l2 + 2(ν − 1) = 3ν + 2l1 + 2l2 − 2,

so
DH′(u1) = DH′′(u1) + l1, DH′(u2) = DH′′(u1) + l2, DH′′(u2) = DH′′(u1) + l1 + l2.

For u′1 ∈ U1 \ Uν1 , we have eccH′(u′1) = 3 and eccH′′(u′1) = 2 and

DH′(u
′
1) = ν + 2ν + 3l2 + 2(l1 − 1) = 3ν + 3l2 + 2l1 − 2,

DH′′(u
′
1) = ν + 2ν + 2l2 + 2(l1 − 1) = 3ν + 2l2 + 2l1 − 2.

For u′2 ∈ U2 \ Uν2 , we have eccH′(u′2) = 3 and eccH′′(u′2) = 2 and

DH′(u
′
2) = ν + 2ν + 3l1 + 2(l2 − 1) = 3ν + 3l1 + 2l2 − 2,

DH′′(u
′
2) = ν + 2ν + 2l1 + 2(l2 − 1) = 3ν + 2l1 + 2l2 − 2.

So, for j = 1, 2, we have DH′(u
′
j) > DH′′(u

′
j) and eccH′(u′j) > eccH′′(u

′
j), thus

[eccH′(u
′
j)]

a[DH′(u
′
j)]

b > [eccH′′(u
′
j)]

a[DH′′(u
′
j)]

b

for a ≥ 0 and b > 0.
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Consequently,

EDSa,b(H
′)− EDSa,b(H ′′)

=
∑
u1∈Uν1

([eccH′(u1)]
a[DH′(u1)]

b − [eccH′′(u1)]
a[DH′′(u1)]

b) +
∑
u2∈Uν2

([eccH′(u2)]
a[DH′(u2)]

b − [eccH′′(u2)]
a[DH′′(u2)]

b)

+
∑

u′1∈U1\Uν1

([eccH′(u
′
1)]

a[DH′(u
′
1)]

b − [eccH′′(u
′
1)]

a[DH′′(u
′
1)]

b) +
∑

u′2∈U2\Uν2

([eccH′(u
′
2)]

a[DH′(u
′
2)]

b − [eccH′′(u
′
2)]

a[DH′′(u
′
2)]

b)

>
∑
u1∈Uν1

([eccH′(u1)]
a[DH′(u1)]

b − [eccH′′(u1)]
a[DH′′(u1)]

b) +
∑
u2∈Uν2

([eccH′(u2)]
a[DH′(u2)]

b − [eccH′′(u2)]
a[DH′′(u2)]

b)

= ν2a([DH′′(u1) + l1]
b − [DH′′(u1)]

b + [DH′′(u1) + l2]
b − [DH′′(u1) + l1 + l2]

b)

≥ 0,

since
[DH′′(u1) + l1]

b − [DH′′(u1)]
b + [DH′′(u1) + l2]

b − [DH′′(u1) + l1 + l2]
b = 0

if b = 1, and by Lemma 2.1,

[DH′′(u1) + l1]
b − [DH′′(u1)]

b > [DH′′(u1) + l1 + l2]
b − [DH′′(u1) + l2]

b.

for 0 < b < 1. We obtain EDSa,b(H ′′) < EDSa,b(H
′), so

EDSa,b(Kν,n−ν) < EDSa,b(H
′′) < EDSa,b(H

′) < EDSa,b(G
′).

We have a contradiction. Thus, G′ is Kν,n−ν . For ν vertices of Kν,n−ν , say vi, i = 1, 2, . . . , ν, we have DKν,n−ν (vi) = n− ν +
2(ν−1) = n+ν−2, and for the other n−ν vertices, say v′j , j = 1, 2, . . . , n−ν, we getDKν,n−ν (vi) = ν+2(n−ν−1) = 2n−ν−2.
Since the eccentricity of every vertex is 2, we obtain

EDSa,b(Kν,n−ν) = ν2a(n+ ν − 2)b + (n− ν)2a(2n− ν − 2)b.

Theorem 2.4. Let a ≤ 0 and b < 0. For a connected bipartite graphG of order n and matching number ν, where 2 ≤ ν ≤ bn2 c,
we have

EDSa,b(G) ≤ ν2a(n+ ν − 2)b + (n− ν)2a(2n− ν − 2)b,

with equality if and only if G ∼= Kν,n−ν .

Proof. Only those parts of the proof are presented which differ from the proof of Theorem 2.3. Among bipartite graphs of
order n and matching number ν, let us denote a graph with the maximum EDSa,b by G′. The graph G′ is a subgraph of H ′,
thus by Lemma 2.2, we get EDSa,b(H ′) > EDSa,b(G

′). Similarly, by Lemma 2.2, we have EDSa,b(Kν,n−ν) > EDSa,b(H
′′).

For j = 1, 2, we have DH′(u
′
j) > DH′′(u

′
j) and eccH′(u′j) > eccH′′(u

′
j), thus for a ≤ 0 and b < 0, we obtain

[eccH′(u
′
j)]

a ≤ [eccH′′(u
′
j)]

a and [DH′(u
′
j)]

b < [DH′′(u
′
j)]

b.

Then
[eccH′(u

′
j)]

a[DH′(u
′
j)]

b < [eccH′′(u
′
j)]

a[DH′′(u
′
j)]

b.

Consequently,

EDSa,b(H
′)− EDSa,b(H ′′)

<
∑
u1∈Uν1

([eccH′(u1)]
a[DH′(u1)]

b − [eccH′′(u1)]
a[DH′′(u1)]

b) +
∑
u2∈Uν2

([eccH′(u2)]
a[DH′(u2)]

b − [eccH′′(u2)]
a[DH′′(u2)]

b)

= ν2a([DH′′(u1) + l1]
b − [DH′′(u1)]

b + [DH′′(u1) + l2]
b − [DH′′(u1) + l1 + l2]

b)

< 0,

since by Lemma 2.1,

[DH′′(u1) + l1]
b − [DH′′(u1)]

b < [DH′′(u1) + l1 + l2]
b − [DH′′(u1) + l2]

b for b < 0.

We obtain EDSa,b(H ′′) > EDSa,b(H
′), so

EDSa,b(Kν,n−ν) > EDSa,b(H
′′) > EDSa,b(H

′) > EDSa,b(G
′).
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Let us denote the independence number, vertex cover number and edge cover number by α, β and β′, respectively. It is
known that for a graph of order n,

α+ β = n;

see [22]. If G has no isolated vertices, then
ν + β′ = n.

If G is bipartite with no isolated vertices,
α = β′, thus ν = β;

see [22]. So, from Theorems 2.3 and 2.4, we obtain the following corollary.

Corollary 2.1. For a connected bipartite graph G of order n and vertex cover number β, where 2 ≤ β ≤ bn2 c, we have

EDSa,b(G) ≥ β2a(n+ β − 2)b + (n− β)2a(2n− β − 2)b

if a ≥ 0 and 0 < b ≤ 1, and
EDSa,b(G) ≤ β2a(n+ β − 2)b + (n− β)2a(2n− β − 2)b

if a ≤ 0 and b < 0. The equalities hold if and only if G ∼= Kβ,n−β .

In Theorems 2.3 and 2.4, 2 ≤ ν ≤ bn2 c, thus ⌈n
2

⌉
≤ β′ ≤ n− 2.

Since ν + β′ = n, Theorem 2.3 says that if a ≥ 0 and 0 < b ≤ 1, then for a connected bipartite graph G of order n and
matching number n− β′, we get

EDSa,b(G) ≥ (n− β′)2a(2n− β′ − 2)b + β′2a(n+ β′ − 2)b.

Similarly, an upper bound can be obtained for a ≤ 0 and b < 0. Thus, we obtain Corollary 2.2.

Corollary 2.2. For a connected bipartite graph G of order n and edge cover number/independence number β′, where
dn2 e ≤ β

′ ≤ n− 2, we have
EDSa,b(G) ≥ β′2a(n+ β′ − 2)b + (n− β′)2a(2n− β′ − 2)b

if a ≥ 0 and 0 < b ≤ 1, and
EDSa,b(G) ≤ β′2a(n+ β′ − 2)b + (n− β′)2a(2n− β′ − 2)b

if a ≤ 0 and b < 0. The equalities hold if and only if G ∼= Kβ′,n−β′ .

The smallest number of colors needed to color the vertices of a graph G such that no two adjacent vertices have the
same color is the chromatic number of G. Clearly, any nonempty graph has chromatic number at least 2. Graphs with
given order and chromatic number are investigated in Theorem 2.5. For a = b = 1, Theorem 2.5 was presented in [14].

Theorem 2.5. Let a ≥ 0 and b ≥ 1. For any connected graph G with n vertices and chromatic number χ, where each of the
χ colors is used for at least two vertices, we have

EDSa,b(G) ≥ EDSa,b(Kp1,p2,...,pχ),

with equality if only if G ∼= Kp1,p2,...,pχ , where |pj − pl| ≤ 1 for any 1 ≤ j < l ≤ χ.

Proof. For the considered set of graphs, let us denote a graph with the minimum EDSa,b byG′. Since the graphG′ does not
contain edges between vertices colored by the same color, G′ is a χ-partite graph. Each of the χ colors is used for at least
two vertices, thus each partite set contains at least two vertices. By Lemma 2.2, any two vertices from different partite sets
are adjacent, therefore G′ ∼= Kp1,p2,...,pχ , where pj ≥ 2, j = 1, 2, . . . , χ. Let us show that |pj − pl| ≤ 1 for any 1 ≤ j < l ≤ χ.

Suppose to the contrary that there exist j and l, where 1 ≤ j < l ≤ χ, such that |pj − pl| ≥ 2. We can suppose that
p1 ≥ p2 +2. We compare EDSa,b(G′) and EDSa,b(G′′), where G′ = Kp1,p2,...,pχ and G′′ = Kp1−1,p2+1,...,pχ . Every vertex in G′

and G′′ has eccentricity 2. For any u′1 from the first partite set and u′2 from the second partite set of G′, we have

DG′(u
′
1) = (n− p1) + 2(p1 − 1) = n+ p1 − 2

and
DG′(u

′
2) = (n− p2) + 2(p2 − 1) = n+ p2 − 2.
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For any u′′1 from the first partite set and u′′2 from the second partite set of G′′, we get

DG′′(u
′′
1) = [n− (p1 − 1)] + 2(p1 − 2) = n+ p1 − 3 and DG′′(u

′′
2) = [n− (p2 + 1)] + 2p2 = n+ p2 − 1.

For any other vertex x, we get DG′(x) = DG′′(x). Since p1 − 1 ≥ p2 + 1, we obtain

EDSa,b(G
′)− EDSa,b(G′′)

= p12
a(n+ p1 − 2)b + p22

a(n+ p2 − 2)b − (p1 − 1)2a(n+ p1 − 3)b − (p2 + 1)2a(n+ p2 − 1)b

= (p1 − 1)2a[(n+ p1 − 2)b − (n+ p1 − 3)b]− (p2 + 1)2a[(n+ p2 − 1)b − (n+ p2 − 2)b] + 2a(n+ p1 − 2)b − 2a(n+ p2 − 2)b

> (p1 − 1)2a[(n+ p1 − 2)b − (n+ p1 − 3)b]− (p2 + 1)2a[(n+ p2 − 1)b − (n+ p2 − 2)b]

≥ (p2 + 1)2a[(n+ p1 − 2)b − (n+ p1 − 3)b]− (p2 + 1)2a[(n+ p2 − 1)b − (n+ p2 − 2)b]

which equals 0 if b = 1, and it is positive for b > 1, because from Lemma 2.1,

(n+ p1 − 2)b − (n+ p1 − 3)b > (n+ p2 − 1)b − (n+ p2 − 2)b.

Therefore EDSa,b(G′) − EDSa,b(G′′) > 0 and EDSa,b(G
′) > EDSa,b(G

′′). We have a contradiction. Thus |pj − pl| ≤ 1 for
any 1 ≤ j < l ≤ χ, hence G′ ∼= Kp1,p2,...,pχ .

In Theorems 2.6 and 2.7, we obtain bounds on EDSa,b for b = 1. For a = 1, the bound given in Theorem 2.6 was
presented in [13].

Theorem 2.6. Let a ≥ 0. For any connected graph G of order n and size m not containing a vertex of degree n− 1,

EDSa,1(G) ≥ [n(n− 1)−m]2a+1,

with equality if and only if the diameter of G is 2.

Proof. Since no vertex of G is adjacent to all the other vertices, we have eccG(u) ≥ 2 for every u ∈ V (G). Thus,

[eccG(u)]
a ≥ 2a.

For every u ∈ V (G), DG(u) ≥ degG(u) + 2[n− 1− degG(u)] = 2(n− 1)− degG(u) since the distance between u and any of the
n− 1− degG(u) vertices not adjacent to u is at least 2. Since∑

u∈V (G)

degG(u) = 2m,

we obtain
EDSa,1(G) ≥

∑
u∈V (G)

2a[2(n− 1)− degG(u)] = 2a+1[n(n− 1)−m],

with equality if and only if the diameter of G is 2.

For any graph G, we have
n− 1 ≤ m ≤

(
n

2

)
=
n(n− 1)

2
.

We show that there exist graphs with a small size (size close to n− 1) as well as some graphs with a large size (size close
to n(n−1)

2 ) which attain the bound presented in Theorem 2.6.
Note that Cn is the cycle of order n and n

2K2 (for even n) is the set of n
2 independent edges. The graphs Kc,n−c for

2 ≤ c ≤ bn2 c,
n
2K2 for even n and Cn have diameter 2 and they do not contain a vertex of degree n− 1, therefore they belong

to the extremal graphs for Theorem 2.6. The graphs Kc,n−c have a small size if c is small. We have |E(Kc,n−c)| = c(n− c).
Thus, for c = 2, |E(K2,n−2)| = 2n− 4. The graphs n

2K2 for even n and Cn have a large size. We have∣∣∣∣E (n2K2

)∣∣∣∣ = n(n− 2)

2
and

∣∣E (Cn)∣∣ = n(n− 3)

2
.

For a = 1, the bound given in Theorem 2.7 was presented in [12,13].

Theorem 2.7. Let a ≥ 0. If G and G are connected graphs of order n ≥ 5, then

EDSa,1(G) + EDSa,1(G) ≥ 3n(n− 1)2a,

with equality if and only if d(G) = d(G) = 2.

105



Y. K. Feyissa and T. Vetrı́k / Discrete Math. Lett. 10 (2022) 99–106 106

Proof. Since G is connected, G does not contain vertices of degree n − 1. Analogously, since G is connected, G does not
contain vertices of degree n− 1. So, from Theorem 2.6, we have

EDSa,1(G) ≥ [n(n− 1)−m]2a+1 and EDSa,1(G) ≥ [n(n− 1)−m]2a+1,

where m and m are the sizes of G and G, respectively. By Theorem 2.6, the equalities hold if and only if G and G have
diameter 2, respectively. Since m+m =

(
n
2

)
= n(n−1)

2 , we obtain

EDSa,1(G) + EDSa,1(G) ≥ 2n(n− 1)2a+1 − (m+m)2a+1 = 4n(n− 1)2a − n(n− 1)2a = 3n(n− 1)2a,

with equality if and only if d(G) = d(G) = 2.

We show that there exist graphs G such that d(G) = d(G) = 2 for every n ≥ 5, which implies that the bound presented
in Theorem 2.7 is sharp for every n ≥ 5.

Let G1, G2, G3, G4, G5 be any (possibly disconnected) graphs of orders n1, n2, n3, n4, n5 ≥ 1, respectively. Let G be the
graph obtained from G1, G2, G3, G4, G5 by joining any vertex of G1 and any vertex of G5, and by joining any vertex of Gi
and any vertex of Gi+1 for i = 1, 2, 3, 4.

Note thatG is the graph obtained fromG1,G2,G3,G4,G5 by joining any vertex ofGi and any vertex ofGi+2 for i = 1, 2, 3,
and by joining any vertex of Gi and any vertex of Gi+3 for i = 1, 2. Clearly, |V (G)| = |V (G)| = n1 + n2 + n3 + n4 + n5.

3. Open problems

Let us present several problems which are open for further research.

Problem 3.1. Find lower and upper bounds on EDSa,b for trees with given order and diameter.

Problem 3.2. Find a graph with the largest EDSa,b among graphs/trees of given order for positive a and b.

Problem 3.3. Find bounds on EDSa,b for planar graphs and outerplanar graphs of given order.

Problem 3.4. Find bounds on EDSa,b for graphs with given order and number of bridges.

We suggest to study Problems 3.1, 3.2, 3.3, and 3.4 for general a and b, or for one general parameter and the other
parameter being 1.
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