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Abstract
Let N be the set of positive integers. A radio labeling of a graph G is a mapping ϕ : V (G)→ N∪{0} such that the inequality
|ϕ(u) − ϕ(v)| ≥ diam(G) + 1 − d(u, v) holds for every pair of distinct vertices u, v of G, where diam(G) and d(u, v) are the
diameter of G and distance between u and v in G, respectively. The radio number rn(G) of G is the smallest number k such
thatG has a radio labelingϕwithmax{ϕ(v) : v ∈ V (G)} = k. Das et al. [Discrete Math. 340 (2017) 855–861] gave a technique
to find a lower bound for the radio number of graphs. In [Algorithms and Discrete Applied Mathematics: CALDAM 2019,
Lecture Notes in Computer Science 11394, Springer, Cham, 2019, 161–173], Bantva modified this technique for finding an
improved lower bound on the radio number of graphs and gave a necessary and sufficient condition to achieve the improved
lower bound. In this paper, one more useful necessary and sufficient condition to achieve the improved lower bound for the
radio number of graphs is given. Using this result, the radio number of the Cartesian product of the path and wheel graphs
is determined.
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1. Introduction

The channel assignment problem is the problem to assign channels to each TV or radio transmitters such that the inter-
ference constraints are satisfied and the use of spectrum is minimized. The problem was first introduced by Hale [11]
in 1980. The interference between transmitters is closely related to geographic location of the transmitters. The closer
the transmitters are, the higher the interference is and vice-versa. Hence, the frequency difference between two radio
channels assigned to radio transmitters is in the inverse proportion to the distance between two transmitters. Initially
only two level interference, namely high and low, was considered and accordingly, two transmitters are called very close
and close, respectively. In a private communication with Griggs during 1988, Robert proposed a variation of the channel
assignment problem in which close transmitters must receive different channels and very close transmitters must receive
channels that are at least two apart. This problem is studied by mathematicians using graphs labeling approach.

In a graph, the transmitters are represented by vertices and two vertices are adjacent if two transmitters are very close
and distance two apart if they are close. The problem of assignment of channels to transmitters is associated with graph
labeling problem. Motivated through this problem, Griggs and Yeh introduced L(2, 1)-labeling (or distance two labeling)
in [9] as follows: An L(2, 1)-labeling of a graph G = (V (G), E(G)) is a function ϕ from the vertex set V (G) to the set of
non-negative integers such that |ϕ(u) − ϕ(v)| ≥ 2 if d(u, v) = 1 and |ϕ(u) − ϕ(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the
distance between u and v in G. The span of ϕ is defined as span(ϕ) = max{|ϕ(u) − ϕ(v)| : u, v ∈ V (G)}. The λ-number,
denoted by λ(G), is defined as the minimum span over all L(2, 1)-labelings of G. The L(2, 1)-labeling and other distance
two labeling problems have been studied by many researchers in the past two and half decades; for example, see the survey
articles [4,20].

In [5,6], Chartrand et al. extended the constraint on distance from two to the largest possible distance and introduced
the concept of radio labeling as follows.

Definition 1.1. A radio labeling of a graph G is a mapping ϕ : V (G)→ N ∪ {0} (N is the set of positive integers) such that
the following is satisfied for every pair of distinct vertices u, v ∈ V (G),

|ϕ(u)− ϕ(v)| ≥ diam(G) + 1− d(u, v). (1)

The assigned integer ϕ(u) is called the label of u under ϕ and the span of ϕ is defined as

span(ϕ) = max
{
|ϕ(u)− ϕ(v)| : u, v ∈ V (G)

}
.
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The radio number of G, denoted by rn(G), is defined as

rn(G) := min
ϕ
{span(ϕ)}

with minimum taken over all radio labelings ϕ of G. A radio labeling ϕ is optimal if span(ϕ) = rn(G).

It is clear that an optimal radio labeling ϕ always assign 0 to some vertex and hence the span of ϕ is the maximum
integer assigned by ϕ. A radio labeling is a one-to-one integral function from V (G) to the set of non-negative integers.
Therefore, any radio labeling ϕ induces an ordering Oϕ(V (G)) := (x0, x1, . . . , xp−1) of V (G) such that 0 = ϕ(x0) < ϕ(x1) <

. . . < ϕ(xp−1) = span(ϕ), where p = |V (G)|. It is clear that if ϕ is an optimal radio labeling then span(ϕ) ≤ span(ψ) for any
other radio labeling ψ of G.

A radio labeling problem is recognized as one of the tough graph labeling problems. In [5,6], Chartrand et al. gave an
upper bound for the radio number of paths and cycles. Liu and Zhu determined the exact radio number for paths and cycles
in [15]. Even determining the radio number for basic graph families like paths and cycles was challenging. In [16–18],
Vaidya and Bantva determined the radio number for the total graph of paths, strong product P2 � Pn and linear cacti.
The radio number of trees remain the focus of many researchers in recent years. In [10], Halász and Tuza determined the
radio number of level-wise regular trees. In [13], Li et al. determined the radio number of complete m-ary trees. In [14],
Liu gave a lower bound for the radio number of trees and, a necessary and sufficient condition to achieve the lower bound;
the author presented a class of trees, namely spiders, achieving this lower bound. In [3], Bantva et al. gave a different
necessary and sufficient condition to achieve this lower bound and presented banana trees, firecrackers trees and a special
class of caterpillars achieving this lower bound. Recently, Bantva and Liu gave a lower bound for the radio number of
block graphs and three necessary and sufficient condition to achieve the lower bound in [2]. They also discussed the radio
number of line graph of trees and block graphs. Liu et al. [7] also studied the radio k-labeling of trees. In [8], Das et al. gave
a technique to find a lower bound for the radio number of graphs. In [1], Bantva improved this technique to find a lower
bound for the radio number of graphs and gave a necessary and sufficient condition to achieve the improved lower bound.
Using these results, the author determined the radio number of the Cartesian product of paths and Peterson graph.

In this paper, one more useful necessary and sufficient condition to achieve the improved lower bound for the radio
number of graphs given in [1] is established. Some subgraphs of a given graph G are characterized such that if the radio
number ofG achieves the lower bound given in [1] then these subgraphs also achieve the lower bound. Using these results,
the radio numbers of the Cartesian product of the path graphs with wheel, star and friendship graphs are determined.

2. Preliminaries

The book [19] is followed for standard graph-theoretic terms and notation. Only simple finite connected graphs are consid-
ered throughout this paper. The distance dG(u, v) between two vertices u and v is the least length of a path joining u and
v in a graph G. The suffix is dropped whenever the graph G is clear in the context. The diameter of a graph G, denoted
by diam(G), is max{dG(u, v) : u, v ∈ V (G)}. The neighborhood of v ∈ G, written as N(v), is the set of vertices adjacent to
v. Let S ⊆ V (G). Define N(S) = {u ∈ V (G) \ S : u is adjacent to v ∈ S}. The subgraph induced by S, denoted by G(S),
is a subgraph of G whose vertex set is S and edge set is E(G(S)) = {e = (u, v) ∈ E(G) : u, v ∈ S}. For any u ∈ V (G), let
dG(u, S) = min{dG(u, v) : v ∈ S} and diam(S) = max{dG(u, v) : u, v ∈ S}. It is clear that if |S| = 1 then diam(S) = 0.

Let H be an induced connected subgraph of G with diam(H) = k. Define layers Li of graph G with respect to subgraph
H as follows: Set L0 = V (H) and L1 = N(L0). Recursively define Li+1 = N(Li) for 1 ≤ i ≤ h− 1, where

h = max{dG(u,H) : u ∈ V (G)},

which is known as the maximal level in a graph G. Since G is a connected graph, Li 6= ∅ for 0 ≤ i ≤ h. Define the total
distance of layers of graph G, denoted by L(G), as

L(G) :=

h∑
i=1

|Li|i.

For a graph G, define

δ(G) =

{
1, if |L0| = 1;

0, if |L0| ≥ 2.

Let G be any connected graph then for any u, v ∈ V (G), note that the distance between u and v in a graph G satisfies the
following inequality:

d(u, v) ≤ d(u, L0) + d(v, L0) + diam(L0). (2)
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In [8], Das et al. gave a technique to find a lower bound for the radio number of graphs. In [1], Bantva improved this
technique and gave a lower bound for the radio number of graphs which is given in the following theorem.

Theorem 2.1. [1] Let G be a simple connected graph of order p, diameter d and L0 ⊆ V (G). Take k = diam(L0) and
δ = δ(G). Then

rn(G) ≥ (p− 1)(d− k + 1) + δ − 2L(G). (3)

Although, both the lower bounds given in [8] and [1] seem to be identical in notation but the difference lies in fixing
the L0. In [8], Das et al. set a vertex or a clique of graph G as L0 while Bantva set all vertices of an induced subgraph
H of G as L0 with the property that two non-adjacent vertices of V (H) have distance equal to diam(L0). The readers may
notice that this improved technique gives a better lower bound for the radio number of graphs, which is sharp for some
classes of graph. The author of [1] presented one such class of graphs, which consists of the Cartesian product of the path
graph and Peterson graph. In this paper, the condition to fix L0 is further relaxed as follows. Set L0 = V (H), where H
is a connected induced subgraph of G with the property that the vertices of G can be ordered as x0, x1, . . . , xp−1 such that
d(xi, xi+1) = d(xi, L0) + d(xi+1, L0) + diam(L0) for 0 ≤ i ≤ p− 2.

Bantva [1] also gave a necessary and sufficient condition (given in the next theorem) to achieve the lower bound (3) for
the radio number of graphs.

Theorem 2.2. [1] Let G be a simple connected graph of order p, diameter d and L0 is as described earlier. Denote k =

diam(L0) and δ = δ(G). Then
rn(G) = (p− 1)(d− k + 1) + δ − 2L(G) (4)

holds if and only if there exists a radio labeling ϕ with 0 = ϕ(x0) < ϕ(x1) < . . . < ϕ(xp−1) = span(ϕ) = rn(G) such that all
the following hold for 0 ≤ i ≤ p− 1 :

(a) d(xi, xi+1) = d(xi, L0) + d(xi+1, L0) + k,

(b) x0, xp−1 ∈ L0 if |L0| ≥ 2 and x0 ∈ L0, xp−1 ∈ L1 if |L0| = 1,

(c) ϕ(x0) = 0 and ϕ(xi+1) = ϕ(xi) + d+ 1− d(xi, L0)− d(xi+1, L0)− k.

3. Main result

In this section, one more useful necessary and sufficient condition to achieve the improved lower bound for the radio number
of graphs given in [1] is established, which rely only on the ordering of vertices of a graph.

Theorem 3.1. LetG be a simple connected graph of order p, diameter d ≥ 2 and L0 is fixed inG as described earlier. Denote
k = diam(L0) and δ = δ(G). Then

rn(G) = (p− 1)(d− k + 1) + δ − 2L(G) (5)

holds if and only if there exists an ordering O(V (G)) := (x0, x1, . . . , xp−1) of V (G) such that the following conditions are
satisfy.

(a) d(x0, L0) + d(xp−1, L0) = 1 if |L0| = 1 and d(x0, L0) + d(xp−1, L0) = 0 if |L0| ≥ 2;

(b) the distance between two vertices xi and xj (0 ≤ i < j ≤ p− 1) satisfy

d(xi, xj) ≥
j−1∑
t=i

(d(xt, L0) + d(xt+1, L0) + k − d− 1) + d+ 1. (6)

Moreover, under the conditions (a) and (b), the mapping ϕ defined by

ϕ(x0) = 0, (7)

ϕ(xi+1) = ϕ(xi) + d+ 1− d(xi, L0)− d(xi+1, L0)− k, 0 ≤ i ≤ p− 2 (8)

is an optimal radio labeling of G.

93



D. Bantva / Discrete Math. Lett. 10 (2022) 91–98 94

Proof. Necessity: Suppose that (5) holds then there exists an optimal radio labeling ϕ of G which induces an ordering
Oϕ(V (G)) := (x0, x1, . . . , xp−1) of V (G) with 0 = ϕ(x0) < ϕ(x1) < . . . < ϕ(xp−1) = span(ϕ) = rn(G) such that the conditions
(a)-(c) of Theorem 2.2 hold. By Theorem 2.2(b), it is clear that d(x0, L0) + d(xp−1, L0) = 1 when |L0| = 1 and

d(x0, L0) + d(xp−1, L0) = 0 when |L0| ≥ 2.

By Theorem 2.2(c), for any two vertices xi and xj (j > i) in ordering Oϕ(V (G)) := (x0, x1, . . . , xp−1) of V (G), we obtain

ϕ(xj)− ϕ(xi) =
j−1∑
t=i

(d+ 1− d(xt, L0)− d(xt+1, L0)− k).

Note that ϕ is a radio labeling of G and so ϕ(xj) − ϕ(xi) ≥ d + 1 − d(xi, xj). Substituting this in the above equation, we
obtain

d(xi, xj) ≥
j−1∑
t=i

(d(xt, L0) + d(xt+1, L0) + k − d− 1) + d+ 1. (9)

Sufficiency: Suppose that an ordering O(V (G)) := (x0, x1, . . . , xp−1) of V (G) satisfies conditions (a)-(b) of hypothesis and
ϕ is defined by (7) and (8). Note that it is enough to prove that ϕ is a radio labeling with span equal to the right-hand side
of (5). Let xi and xj (0 ≤ i < j ≤ p− 1) be two arbitrary vertices then by (8) and using (6), we have

ϕ(xj)− ϕ(xi) = (j − i)(d+ 1)−
j−1∑
t=i

(d(xt, L0) + d(xt+1, L0) + k)

≥ d+ 1− d(xi, xj)

and hence ϕ is a radio labeling. The span of ϕ is given by

span(ϕ) = ϕ(xp−1)− ϕ(x0)

=

p−2∑
i=0

(ϕ(xi+1)− ϕ(xi))

=

p−2∑
i=0

(d+ 1− d(xi, L0)− d(xi+1, L0)− k)

= (p− 1)(d+ 1)−
p−2∑
i=0

(d(xi, L0) + d(xi+1, L0) + k)

= (p− 1)(d− k + 1)− 2L(G) + d(x0, L0) + d(xp−1, L0)

= (p− 1)(d− k + 1) + δ − 2L(G).

Therefore, rn(G) ≤ (p− 1)(d− k + 1) + δ − 2L(G). This together with (3) implies (5).

A graph with no cycle is called acyclic graph. A forest is an acyclic graph. A tree is a connected acyclic graph. A spanning
subgraph of a graph G is a subgraph with vertex set V (G). Let H be a connected proper induced subgraph of a graph G.
A spanning subgraph rooted at H of a graph G is a subgraph GH of G with vertex set V (GH) = V (G) and GH(V (H)) ∼= H.
A spanning tree rooted at H of a graph G, denoted by TH , is a spanning subgraph rooted at H of G such that TH \H is a
forest. A spanning tree TH rooted at H is called minimum distance spanning tree rooted at H if L(TH) = L(G), denoted by
TmH .

Observation 3.1. Let G be a simple connected graph of order p, diameter d ≥ 2 and L0 is fixed in G as described earlier.
Let TmL0

be a minimum distance spanning tree rooted at L0 of G. Then

(a) diam(TmL0
) = diam(G),

(b) dTm
L0
(u, L0) = dG(u, L0) for all u ∈ V (TmL0

),

(c) L(TmL0
) = L(G),

(d) dTm
L0
(u, v) ≥ dG(u, v) for all u, v ∈ V (G).
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Theorem 3.2. LetG be a simple connected graph of order p, diameter d ≥ 2 and L0 is fixed inG as described earlier. Denote
diam(L0) = k. If rn(G) attains a lower bound given in (3) then rn(TmL0

) attains a lower bound given in (3) and rn(TmL0
) = rn(G).

Proof. Since rn(G) attains a lower bound given in (3), there exists an ordering O(V (G)):=(x0, x1, . . ., xp−1) of V (G) which
satisfies conditions (a)-(b) of Theorem 3.1. Then by Observation 3.1, the same ordering of V (TmL0

) = V (G) satisfies conditions
(a)-(b) of Theorem 3.1. Hence, rn(TmL0

) attains a lower bound given in (3). Since V (TmL0
) = V (G), diam(TmL0

) = diam(G) and
L(TmL0

) = L(G), it is clear that rn(TmL0
) = rn(G)..

Theorem 3.3. LetG be a simple connected graph of order p, diameter d ≥ 2 and L0 is fixed inG as described earlier. Denote
diam(L0) = k. Let G = G1 ⊇ G2 ⊇ . . . ⊇ Gt = TmL0

be a sequence of subgraphs obtained by deleting edges in G to obtain TmL0
.

If rn(G) attains a lower bound given in (3) then for 1 ≤ i ≤ t, rn(Gi) attains a lower bound given in (3) and rn(Gi) = rn(G).

Proof. The proof is similar to the proof of Theorem 3.2.

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. The Cartesian product of G and H, denoted by G�H,
is a graph with vertex set V (G�H) = V (G) × V (H), where two vertices (g1, h1) and (g2, h2) are adjacent if g1 = g2 and
h1h2 ∈ E(H), or h1 = h2 and g1g2 ∈ E(G). A path Pm on m vertices is a tree in which each vertex has degree at most 2.
Denote the vertex set of Pm by V (Pm) = {u1, u2, . . . , um}withE(Pm) = {uiui+1 : 1 ≤ i ≤ m−1}. A wheel graphWn is a graph
obtained by joining each vertex of a cycle Cn to a new vertex v0. Denote the vertex set of Wn by V (Wn) = {v0, v1, . . . , vn}
with E(Wn) = {v0vi, v0vn, vivi+1, v1vn : 1 ≤ i ≤ n− 1}. Observe that the diameter of Pm�Wn is m+ 1.

Theorem 3.4. Let m ≥ 3 and n ≥ 7 be any integers. Then

rn(Pm�Wn) =


1

2
(m2n+m2 + 2m− 2), if m is even;

1

2
(m2n+m2 + 2m+ n− 1), if m is odd.

(10)

Proof. We consider the following two cases.

Case-1: m is even.
In this case, set {(um/2, v0), (um/2+1, v0)} of Pm�Wn as L0 then diam(L0) = k = 1 and the maximum level in Pm�Wn is
h = m/2. The order of Pm�Wn and L(Pm�Wn) are given by

p := m(n+ 1), (11)

L(Pm�Wn) :=
m

4
(mn+ 2n+m− 2). (12)

Substituting (11) and (12) into (3) we obtain the right-hand side of (10) which is a lower bound for the radio num-
ber of rn(Pm�Wn). We prove that this lower bound is tight. For this purpose, we give an ordering O(V (Pm�Wn)) :=

(x0, x1, . . . , xp−1) of V (Pm�Wn) which satisfies conditions (a) and (b) of Theorem 3.1. Let τ and σ be two permutations
defined on {1, 2, . . . , n} as follows:

τ(j) =


n− 1, if j = 1;

n, if j = 2;

j − 2, if 3 ≤ j ≤ n.

σ(j) =

 dj/4e, if j ≡ 1 (mod 4);∑k−2
t=0 d(n− t)/4e+ dj/4e, if j ≡ k (mod 4), k = 2, 3, 4.

Using these two permutations we first rename (ui, vj)(1 ≤ i ≤ m, 0 ≤ j ≤ n) as (ar, bs) as follows.

(ar, bs) =


(ui, vj), if 1 ≤ i ≤ m and j = 0;

(ui, vστ(j)), if 1 ≤ i ≤ m/2 and 1 ≤ j ≤ n;

(ui, vσ(j)), if m/2 < i ≤ m and 1 ≤ j ≤ n.

We now define an ordering O(V (Pm�Wn)) := (x0, x1, . . . , xp−1) as follows: Let xt := (ar, bs), where

t :=



2(m/2− r)(n+ 1) + 2s, if 1 ≤ r ≤ m/2 and 1 ≤ s ≤ n;

2(m− r)(n+ 1) + 2s− 1, if m/2 < r ≤ m and 1 ≤ s ≤ n;

2(m/2− r)(n+ 1), if 1 ≤ r ≤ m/2 and s = 0;

2(m− r + 1)(n+ 1)− 1, if m/2 < r ≤ m and s = 0.
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Note that d(x0, L0) + d(xp−1, L0) = 0. Hence, the condition (a) in Theorem 3.1 is satisfied.

Claim-1: The above defined ordering O(V (Pm�Wn)) := (x0, x1, . . . , xp−1) satisfies (6).
Let xi and xj (0 ≤ i < j ≤ p − 1) be any two arbitrary vertices. Denote the right-hand side of (6) by E(i, j). Let
O(V (Pm�Wn)) := (x0, x1, . . . , xp−1) = U0 ∪ U1 ∪ . . . ∪ Um/2−1, where Ut := (x2t(n+1), x(2t(n+1)+1), . . . , x2t(n+1)+2n+1) for
0 ≤ t ≤ m/2− 1. It is clear that d(xi, L0) + d(xi+1, L0) ≤ (d+ 1)/2 for all 0 ≤ i ≤ p− 2. Now if xi ∈ Ua, xj ∈ Ub. If b > a+ 1

then E(i, j) < 0 < d(xi, xj). If b = a + 1 then we consider the following two cases: (i) j = i + 2n and (ii) j 6= i + 2n. If
j = i + 2n then d(xi, xj) = 1 and in this case, E(i, j) < 0 < d(xi, xj) and if j 6= i + 2n then d(xi, xj) = 2 and in this case,
E(i, j) ≤ 2 ≤ d(xi, xj). If xi, xj ∈ Ua then if xi = x2t(n+1) or xj = x2t(n+1)+2n+1 (0 ≤ t ≤ m/2− 1) then E(i, j) ≤ 1 ≤ d(xi, xj).
If x2t(n+1) < xi < xj < x2t(n+1)+2n+1 then if d(xi, xj) = 1 then j − i ≥ dn/2e + 1 ≥ 3 and hence E(i, j) < 0 ≤ d(xi, xj) and
d(xi, xj) ≥ 2 then E(i, j) ≤ 2 ≤ d(xi, xj) which completes the proof of Claim-1.

Case-2: m is odd.
In this case, set {(u(m+1)/2, v0)} of Pm�Wn as L0 then diam(L0) = k = 0 and the maximum level in Pm�Wn is h = (m+1)/2.
The order of Pm�Wn and L(Pm�Wn) are given by

p := m(n+ 1) (13)

L(Pm�Wn) :=
1

4
(m2n+m2 + 4mn− n− 1). (14)

Substituting (13) and (14) into (3) we obtain the right-hand side of (10) which is a lower bound for the radio num-
ber of rn(Pm�Wn). We prove that this lower bound is tight. For this purpose, we give an ordering O(V (Pm�Wn)) :=

(x0, x1, . . . , xp−1) of V (Pm�Wn) which satisfies conditions (a) and (b) of Theorem 3.1. Let τ and σ are as defined earlier in
Case-1. Let α be a permutation defined on {1, 2, . . . , n} as follows:

α(j) =



n− 3, if j = 1;

n− 2, if j = 2;

n− 1, if j = 3;

n, if j = 4;

j − 4, if 5 ≤ j ≤ n.

Using permutations α, τ and σ, we first rename (ui, vj)(1 ≤ i ≤ m, 0 ≤ j ≤ n) as (ar, bs) as follows:

(ar, bs) =



(ui, vj), if 1 ≤ i ≤ m and j = 0; or i = m and 1 ≤ j ≤ n;

(ui, vτ(j), if i = 1 and 1 ≤ j ≤ n;

(ui, vα(j), if i = (m+ 1)/2 and 1 ≤ j ≤ n;

(ui, vστ(j)), if 2 ≤ i ≤ (m− 1)/2 and 1 ≤ j ≤ n;

(ui, vσ(j)), if (m+ 3)/2 ≤ i ≤ m− 1 and 1 ≤ j ≤ n.

We now define an ordering O(V (Pm�Wn)) := (x0, x1, . . . , xp−1) as follows: Let xt := (ar, bs), where

t :=



3s− 1, if r = 1 and 1 ≤ s ≤ n;

3s, if r = (m+ 1)/2 and 1 ≤ s ≤ n;

3s− 2, if r = m and 1 ≤ s ≤ n;

3n+ 2, if r = 1 and s = 0;

0, if r = (m+ 1)/2 and s = 0;

3n+ 1, if r = m and s = 0;

3n+ 2 + 2(r − 2)(n+ 1) + 2s, if 1 < r < (m+ 1)/2 and 1 ≤ s ≤ n;

3n+ 2 + 2(r − (m+ 1)/2− 1)(n+ 1) + 2s− 1, if (m+ 1)/2 < r < m and 1 ≤ s ≤ n;

3n+ 2 + 2(r − 1)(n+ 1), if 1 < r < (m+ 1)/2 and s = 0;

3n+ 2 + 2(r − (m+ 1)/2)(n+ 1)− 1, if (m+ 1)/2 < r < m and s = 0.

Note that d(x0, L0) + d(xp−1, L0) = 1. Hence, the condition (a) in Theorem 3.1 is satisfied.

Claim-2: The above defined ordering O(V (Pm�Wn)) := (x0, x1, . . . , xp−1) satisfies (6).
Let xi and xj (0 ≤ i < j ≤ p−1) be any two arbitrary vertices. Denote the right-hand side of (6) byE(i, j). LetO(Pm�Wn) :=
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U1 ∪ . . . ∪ U(m−1)/2, where U1 := (x0, x1, . . . , x3(n+1)−1) and Ut+2 := (x2t(n+1)+3(n+1), . . . , x2t(n+1)+5(n+1)−1) for 0 ≤ t ≤
(m − 5)/2. Let xi ∈ Ua and xj ∈ Ub. Assume a = b = 1. In this case, if j ≥ i + 3 then E(i, j) ≤ 0 < d(xi, xj). If
j = i + 2 then note that d(xi, xj) ≥ (d + 2)/2 and hence E(i, j) ≤ d/2 ≤ d(xi, xj). Let a = 1 and b > 1. If j ≥ i + 3 then
E(i, j) ≤ 0 < d(xi, xj). If j = i+2 then if xi = x3(n+1)−2 then note that d(xi, xj) = (d−1)/2 and E(i, j) = (d−4)/2 < d(xi, xj).
If xi = x3(n+1)−1 then note that d(xi, xj) = 2 and E(i, j) = 1 < d(xi, xj). Let a, b ≥ 2. If b > a+ 1 then E(i, j) < 0 < d(xi, xj).
If b = a + 1 then we consider the following two cases: (i) j = i + 2n and (ii) j 6= i + 2n. If j = i + 2n then d(xi, xj) = 1

and in this case, E(i, j) < 0 < d(xi, xj) and if j 6= i + 2n then d(xi, xj) = 2 and in this case, E(i, j) ≤ 2 ≤ d(xi, xj). If
xi, xj ∈ Ua. If xj = x2t(n+1)+5(n+1)−2 or xj = x2t(n+1)+5(n+1)−1 (0 ≤ t ≤ (m − 5)/2) then E(i, j) ≤ 1 ≤ d(xi, xj); otherwise
E(i, j) ≤ 2 ≤ d(xi, xj) which completes the proof of Claim-2.

An n-star, denoted by K1,n, is a tree consisting of n leaves and another vertex joined to all leaves by edges. Denote
the vertex set of K1,n by V (K1,n) = {v0, v1, . . . , vn} and take E(K1,n) = {v0vi : 1 ≤ i ≤ n}. A friendship graph Fn is a
graph obtained by identifying one vertex of n copies of cycle C3 with a common vertex. Denote the vertex set of Fn by
V (Fn) = {v0, v1, . . . , v2n} with E(Fn) = {v0vi, v0vn+i, v2i−1v2i : 1 ≤ i ≤ n}.

Corollary 3.1. Let m ≥ 3 and n ≥ 7 be any integers. Then

rn(Pm�K1,n) =


1

2
(m2n+m2 + 2m− 2), if m is even;

1

2
(m2n+m2 + 2m+ n− 1), if m is odd.

Proof. Observe that Pm�K1,n can be regarded as a subgraph of Pm�Wn with identical L0 = {(um/2, v0), (um/2+1, v0)} when
m is even and L0 = {(u(m+1)/2, v0)} when m is odd and hence by Theorem 3.3, the radio number of Pm�Wn and Pm�K1,n

are identical.

Corollary 3.2. Let m ≥ 3 and n ≥ 4 be any integers. Then

rn(Pm�Fn) =

{
1
2 (2m

2n+m2 + 2m− 2), if m is even;
1
2 (2m

2n+m2 + 2m+ 2n− 1), if m is odd.

Proof. Observe that Pm�Fn can be regarded as a subgraph of Pm�W2n with identical L0 = {(um/2, v0), (um/2+1, v0)} when
m is even and L0 = {(u(m+1)/2, v0)} when m is odd and hence by Theorem 3.3, the radio number of Pm�W2n and Pm�Fn
are identical.

Example 3.1. In Table 1, an ordering of vertices and the corresponding optimal radio labeling of P7�W7 is shown.

Table 1: An ordering and optimal radio labeling for vertices of P7�W7.
(ui, vj)

i→
j↓ 1 2 3 4 5 6 7

0 x23 72 x39 139 x55 206 x0 0 x38 133 x54 200 x22 69
1 x17 51 x31 104 x47 171 x12 37 x24 76 x40 143 x1 5
2 x20 60 x35 120 x51 187 x15 46 x28 92 x44 159 x4 14
3 x2 6 x25 80 x41 147 x18 55 x32 108 x48 175 x7 23
4 x5 15 x29 96 x45 163 x21 64 x36 124 x52 191 x10 32
5 x8 24 x33 112 x49 179 x3 10 x26 84 x42 151 x13 41
6 x11 33 x37 128 x53 195 x6 19 x30 100 x46 167 x16 50
7 x14 42 x27 88 x43 155 x9 28 x34 116 x50 183 x19 59

Example 3.2. In Table 2, an ordering of vertices and the corresponding optimal radio labeling of P8�W7 is shown.

4. Concluding remarks

In [12], Kim et al. determined the radio number of Cartesian product of paths and complete graph Pm�Kn.

Theorem 4.1. [12] Let m ≥ 4 and n ≥ 3 be integers. Then

rn(Pm�Kn) =


1

2
(m2n− 2m+ 2), if m is even;

1

2
(m2n− 2m+ n+ 2), if m is odd.

(15)
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Table 2: An ordering and optimal radio labeling for vertices of P8�W7.
(ui, vj)

i→
j↓ 1 2 3 4 5 6 7 8

0 x48 201 x32 134 x16 67 x0 0 x63 263 x47 196 x31 129 x15 62
1 x56 234 x40 167 x24 100 x8 33 x49 206 x33 139 x17 72 x1 5
2 x60 250 x44 183 x28 116 x12 49 x53 222 x37 155 x21 88 x5 21
3 x50 210 x34 143 x18 76 x2 9 x57 238 x41 171 x25 104 x9 37
4 x54 226 x38 159 x22 92 x6 25 x61 254 x45 187 x29 120 x13 53
5 x58 242 x42 175 x26 108 x10 41 x51 214 x35 147 x19 80 x3 13
6 x62 258 x46 191 x30 124 x14 57 x55 230 x39 163 x23 96 x7 29
7 x52 218 x36 151 x20 84 x4 17 x59 246 x43 179 x27 112 x11 45

Theorem 4.1 can also be proved using Theorem 3.1. The order and total level of Pm�Kn are given by

p := mn (16)

L(Pm�Kn) :=


1

2
(mn(m− 2)), if m is even;

1

4
((m2 − 1)n), if m is odd.

(17)

Substituting (16) and (17) in (3), we obtained the right-hand side of (15), which is a lower bound for the radio number of
Pm�Kn. Now, it is easy to prove that the radio labeling given in [12] satisfies conditions (a) and (b) of Theorem 3.1 and
hence the right-hand side of (3) is exactly the radio number of Pm�Kn, which is (15) in the present case.

Acknowledgments

The author is grateful to the two anonymous referees for the careful reading of this manuscript and for their insightful
and helpful comments. This research is supported by Research Promotion under Technical Education - STEM research
project grant of the Government of Gujarat.

References
[1] D. Bantva, A lower bound for the radio number of graphs, In: S. P. Pal, A. Vijayakumar (Eds.), Algorithms and Discrete Applied Mathematics:

CALDAM 2019, Lecture Notes in Computer Science 11394, Springer, Cham, 2019, 161–173.
[2] D. Bantva, D. Liu, Optimal radio labelings of block graphs and line graph of trees, Theoret. Comput. Sci. 891 (2021) 90–104.
[3] D. Bantva, S. Vaidya, S. Zhou, Radio number of trees, Discrete Appl. Math. 217 (2017) 110–122.
[4] T. Calamoneri, The L(h, k)-labeling problem: An updated survey and annotated bibliography, Comput. J. 54 (2011) 1344–1371.
[5] G. Chartrand, D. Erwin, F. Harary, P. Zhang, Radio labelings of graphs, Bull. Inst. Combin. Appl. 33 (2001) 77–85.
[6] G. Chartrand, D. Erwin, P. Zhang, A graph labeling suggested by FM channel restrictions, Bull. Inst. Combin. Appl. 43 (2005) 43–57.
[7] A. Chavez, D. Liu, M. Surman, Optimal radio k-labelings for trees, European J. Combin. 91 (2021) #103203.
[8] S. Das, S. Ghosh, S. Nandi, S. Sen, A lower bound technique for radio k-coloring, Discrete Math. 340 (2017) 855–861.
[9] J. R. Griggs, R. K. Yeh, Labeling graphs with condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586–595.

[10] V. Halász, Z. Tuza, Distance-constrained labeling of complete trees, Discrete Math. 338 (2015) 1398–1406.
[11] W. K. Hale, Frequency assignment: Theory and applications, Proc. IEEE 68 (1980) 1497–1514.
[12] B. M. Kim, W. Hwang, B. C. Song, Radio number for the product of a path and a complete graph, J. Comb. Optim. 30 (2015) 139–149.
[13] X. Li, V. Mak, S. Zhou, Optimal radio labelings of complete m-ary trees, Discrete Appl. Math. 158 (2010) 507–515.
[14] D. Liu, Radio number for trees, Discrete Math. 308 (2008) 1153–1164.
[15] D. Liu, X. Zhu, Multi-level distance labelings of paths and cycles, SIAM J. Discrete Math. 19 (2005) 610–621.
[16] S. Vaidya, D. Bantva, Radio number of total graph of paths, ISRN Combin. 2013 (2013) #326038.
[17] S. Vaidya, D. Bantva, Radio number of strong product P2 � Pn, Malaya J. Math. 2 (2013) 29–36.
[18] S. Vaidya, D. Bantva, Radio number of linear cacti, Math. Student 82 (2013) 233–245.
[19] D. B. West, Introduction to Graph Theory, Prentice-Hall, New Delhi, 2001.
[20] R. K. Yeh, A survey on labeling graphs with a condition at distance two, Discrete Math. 306 (2006) 1217–1231.

98


	Introduction
	Preliminaries
	Main result
	Concluding remarks

