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Abstract

An alphabetic point in an inversion sequence is a value j where all the values l to its left satisfy l ≤ j and all the values r to
its right satisfy r ≥ j. We study alphabetic points and records in inversion sequences of permutations and obtain formulae
for the total numbers of alphabetic points, weak records, and strict records.
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1. Introduction

In this paper, we study combinatorial statistics in inversion sequences. An inversion sequence b(1)b(2) · · · b(n) is defined
as follows (for example, see [4,7]). Given a permutation a(1)a(2) . . . a(n) of [n], let b(i) = |{a(j) : j < i and a(j) > a(i)}|. We
place b(i), (0 ≤ b(i) ≤ n− 1) in position i in the inversion sequence. This procedure defines a mapping from permutations
of n to inversion sequences with n parts, with the alphabet starting at 0. Thus, an inversion sequence with n parts is a
word c(1)c(2) . . . c(n) where for each i, c(i) is an integer such that 0 ≤ c(i) ≤ i− 1.

For the convenience of obtaining a nice geometrical bargraph representation, we increase the size of each image point
by 1 so that now and for the rest of the paper, an inversion sequence with n parts is a word c(1)c(2) . . . c(n) where for each
i, c(i) is an integer such that 1 ≤ c(i) ≤ i. For example, Table 1 shows the inversion sequences of the six permutations of
{1, 2, 3}.

Permutation Corresponding inversion sequence
123 111
132 112
213 121
231 113
312 122
321 123

Table 1: Inversion sequences of the six permutations of {1,2,3}.

The inverse map from inversion sequences with n parts to permutations of n is just the reverse of the above procedure.
So, for example, the inversion sequence 121 is mapped to 213 because in 121 the part 3 must be positioned in the 1st position
from the right i.e., 3. Now, part 2 is positioned in the 2nd (second) empty position from the right, i.e., this yields 2 3.
Finally, 1 is positioned in the 1st empty position from the right, yielding 213. The map and its inverse defines a bijection
between permutations of n and inversion sequences of length n.

A strict (respectively, weak) record or left-to-right maximum is a value j where all the values l to its left satisfy l < j,
(respectively l ≤ j). For the definitions of these terms, see [13] and for research papers on records, see [5, 6, 8–11]. An
alphabetic point in an inversion sequence is a value j where all the values l to its left satisfy l ≤ j and all the values r
to its right satisfy r ≥ j. Therefore, an alphabetic point is any point that is both a weak left-to-right maximum and a
weak right-to-left minimum. For recent work on alphabetic points in other combinatorial structures, see [2] concerning
compositions and words, and [3] concerning restricted growth functions.
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Remark 1.1. Alphabetic points are analogous to “strong fixed points” in permutations. See p. 49 in [13, Volume 1] as well
as sequences A006932 and A052186 in [12]. However, in permutations these are automatically also fixed points. See [1] for
the current authors’ study of fixed points in inversion sequences where these are not necessarily alphabetic.

The structure of this paper is as follows: in Section 2 we study alphabetic points, in Section 3 we deal with weak records,
and finally in Section 4 we study strict records in inversion sequences.

2. The total number of alphabetic points in inversion sequences

For the approach here, we do not take an inversion sequence, count its alphabetic points and add all these numbers (which
is not easy), instead we take any (potential) alphabetic point in a fixed position and create and count all inversion sequences
that fit to the alphabetic point in the fixed position.
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Figure 1: Sketch indicating an alphabetic point s in position r in an inversion sequence.
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Figure 2: Sketch indicating an alphabetic point s in position r = s in an inversion sequence.

Theorem 2.1. The total number of alphabetic points in inversion sequences of length n ≥ 2 is given by

T (n) := n! + (n− 1)! +
n!

2
+

n∑
r=3

(
(r − 1)!(n− r + 1)! +

(r − 1)!(n− r + 2)!

2!
+

r−2∑
s=1

s!(n− s+ 1)!sr−1−s

(r − s+ 1)!

)
(1)

and T (1) = 1.

Proof. We refer to Figures 1 and 2. Let part of size s be an alphabetic point in position r of the inversion sequence of length
n. Then 1 ≤ s ≤ r and 1 ≤ r ≤ n.

Case 1: r = 1. There are n! such instances since the first position is always alphabetic.

Case 2: r = 2. By counting all the cases for s = 1 and s = 2, there are (n− 1)! + n!
2 such instances.

Case 3: r ≥ 3.
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Case 3a: See Figure 2. Here r = s, the solid and dashed columns coincide. All possible parts in the shaded
triangle to the left of r are less than r and therefore must be counted. The total number of such instances is
(r − 1)!. On the right of r, all parts whose highest point are in the shaded triangle are greater than or equal to
r. The number of such instances is (n− r + 1)!. Together this yields a total for this case of

(r − 1)!(n− r + 1)!.

We refer to Figures 1 for the cases below.

Case 3b: Consider r = s+1, the solid column is adjacent to the dashed column. All possible parts in the leftmost
shaded triangle of Figure 1 are less than or equal to s and therefore must be counted. The total number of such
instances is s! = (r− 1)!. Similarly, on the right of r, all parts whose highest points are in the shaded trapezium
are greater than or equal to s = r − 1. The number of such instances is (n−r+2)!

2! . So the total number of such
instances is

(r − 1)!(n− r + 2)!

2!

.

Case 3c: Here r > s + 1; column r solid is to the right of the dashed column, but not touching. Again, all
possible parts in the leftmost shaded triangle of Figures 1 are less than or equal to s and therefore must be
counted. The total number of such instances is s!. Again, on the right of r, all parts whose highest points are
in the shaded trapezium are greater than or equal to s. The number of such instances is (n−s+1)!

(r−s+1)! . Finally the
number of instances formed by all possible parts lying in the rectangle between s and r is the number of words on
the alphabet [s] with number of parts equal to the rectangle width, i.e., sr−1−s. The product of all the instances
for this case is then summed over all possible s values yielding

r−2∑
s=1

s!(n− s+ 1)!sr−1−s

(r − s+ 1)!
.

Summing all the cases together, we obtain the formula as stated in the theorem.

3. Number of weak records

Let an,m,r be the number of inversion sequences e = e1e2 · · · en having r weak records such that max1≤i≤n ei = m + 1. By
considering the last letter en in any inversion sequence e1e2 · · · en, we obtain for 0 ≤ m ≤ n− 1 and 0 ≤ r ≤ n,

an,m,r = man−1,m,r +

m∑
j=0

an−1,j,r−1

with initial condition a0,0,0 = 1. Define An,m(v) =
∑n

r=0 an,m,rv
r. Thus, by multiplying the recurrence by vr and summing

over r = 0, 1, . . . , n, we obtain

An,m(v) = mAn−1,m(v) + v

m∑
j=0

An−1,j(v), 0 ≤ m ≤ n, (2)

with A0,0(v) = 1 (see Table 2).

n\m 0 1 2 3 4

1 v
2 v2 v2

3 v3 v2 + 2v3 2v3

4 v4 v2 + 3v3 + 3v4 5v3 + 5v4 v3 + 5v4

5 v5 v2 + 4v3 + 6v4 + 4v5 11v3 + 18v4 + 9v5 4v3 + 24v4 + 14v5 v3 + 9v4 + 14v5

Table 2: Values of An,m(v) for 0 ≤ m < n < 6.

Note that by definitions, we see that any inversion sequence e = e1e2 · · · en with maximal letter n and n weak records
satisfies 1 = e1 ≤ e2 ≤ · · · ≤ en ≤ n. Thus, the number such inversion sequences are given by n-th Catalan number
Cn = 1

n+1

(
2n
n

)
(this set is listed in [13, Volume 2] among those discrete objects enumerated by Cn).
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Define An(u, v) =
∑n−1

m=0An,m(v)um. Thus, by multiplying (2) by um and summing over m = 0, 1, . . . , n− 1, we obtain

An(u, v) =

m−1∑
m−0

mAn−1,m(v)um + v

n−1∑
m=0

m∑
j=0

An−1,j(v)u
m

= u
∂

∂u
An−1(u, v) + v

n−1∑
j=0

n−1∑
m=j

An−1,j(v)u
m

= u
∂

∂u
An−1(u, v) + v

n−1∑
j=0

An−1,j(v)
uj − un

1− u

= u
∂

∂u
An−1(u, v) +

v

1− u
(An−1(u, v)− unAn−1(1, v)),

where A0(u, v) = 1. Define A(x, u, v) =
∑

n≥0An(x, u, v)x
n. Hence,

A(x, u, v) = 1 +
vx

1− u
(A(x, u, v)− uA(ux, 1, v)) + ux

∂

∂u
A(x, u, v). (3)

By Applying (3) several times, we get that the coefficient of xn, n = 0, 1, . . . , 4, in A(x, u, v) are 1, v, (u+ 1)v2, (2u2v + 2uv +

u + v)v2, and (5u3v2 + u3v + 5u2v2 + 5u2v + 3uv2 + 3uv + v2 + u)v2. Let Ar(x, u) be the coefficient of vr in A(x, u, v). Then
(3) gives

Ar(x, u) = δr=0 +
x

1− u
(Ar−1(x, u)− uAr−1(ux, 1)) + ux

∂

∂u
Ar(x, u).

Define Ãr(x, u) =
∑

n≥0[x
n](Ar(x, u))

xn

n! . Then, we have the following result.

Proposition 3.1. For all r ≥ 0,
∂

∂x
Ãr(x, u) =

1

1− u
(Ãr−1(x, u)− uÃr−1(ux, 1)) + u

∂

∂u
Ãr(x, u).

For instance, by using the fact that Ã0(x, u) = 1, then ∂
∂x Ã1(x, u) = 1 + u ∂

∂u Ã1(x, u), which shows that Ã1(x, u) = x.
Similarly, Ã2(x, u) = uex − ux− u+ 1

2x
2.

Next, we consider the total number of weak records in inversion sequences. Here, we use the approach developed in the
previous section.

Theorem 3.1. The total number of weak records in inversion sequences of length n ≥ 2 is given by

W (n) := 2n! + n!

n∑
r=3

(
2

r
+

1

r!

r−2∑
s=1

s!sr−1−s

)
(4)

with W (1) = 1.

Proof. Let a part of size s be a weak record in position r of the inversion sequence of length n. Then 1 ≤ s ≤ r and 1 ≤ r ≤ n.

Case 1: r = 1. There are n! such instances.

Case 2: r = 2. There are n! such instances again. These come from s = 1 and s = 2.

Case 3: r ≥ 3.

Case 3a: r = s, the solid and dashed columns coincide. See Figure 2. All possible parts in the shaded triangle
to the left of r are less than r and therefore must be counted. The total number of such instances is (r − 1)!. On
the right of r, we count all possible entries in an inversion sequence, i.e., n(n− 1)(n− 2) . . . (r + 1). The number
of such instances is n!

r! . Together this yields a total for this case of

n!

r
.

Case 3b: r = s + 1, the solid column is adjacent to the dashed column. All possible parts in the leftmost
shaded triangle of Figures 1 are less than or equal to s and therefore must be counted. The total number of such
instances is s! = (r − 1)!. Similarly, on the right of r, all parts must be counted yielding again n!

r! . So the total
number of such instances is also as before

n!

r
.
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Case 3c: r > s + 1, column r solid is to the right of the dashed column, but not touching. Again, all possible
parts in the leftmost shaded triangle of Figures 1 are less than or equal to s and therefore must be counted. The
total number of such instances is s!. Again, on the right of r, all parts must be counted as before. The number
of such instances is

n!

r!
.

Finally the number of instances formed by all possible parts lying in the rectangle between s and r is the number
of words on the alphabet [s] with number of parts equal to the rectangle width, i.e., sr−1−s. The product of all
the instances for this case is then summed over all possible s values yielding

n!

r!

r−2∑
s=1

s!sr−1−s.

Adding all the cases together, we obtain the formula as stated in the theorem.

4. Number of strict records

Let sn,m,r be the number of inversion sequences e = e1e2 · · · en having r strong records such that max1≤i≤n ei = m+ 1. By
considering the last letter en in any inversion sequence e1e2 · · · en, we obtain for 0 ≤ m ≤ n− 1 and 0 ≤ r ≤ n,

sn,m,r = (m+ 1)sn−1,m,r +
m−1∑
j=0

an−1,j,r−1

with initial condition s1,0,1 = 1. Define Sn,m(v) =
∑n

r=0 an,m,rv
r. Thus, by multiplying the recurrence by vr and summing

over r = 0, 1, . . . , n, we obtain

Sn,m(v) = (m+ 1)Sn−1,m(v) + v

m−1∑
j=0

Sn−1,j(v), 0 ≤ m ≤ n− 1, (5)

with S1,0(v) = v (see Table 3).

n\m 0 1 2 3 4

1 v
2 v v2

3 v 3v2 v2 + v3

4 v 7v2 4v2 + 6v3 v2 + 4v3 + v4

5 v 15v2 13v2 + 15v3 5v2 + 27v3 + 10v4 v2 + 12v3 + 10v4 + v5

Table 3: Values of Sn,m(v) for 0 ≤ m < n < 6.

Define Sn(u, v) =
∑n−1

m=0 Sn,m(v)um. Thus, by multiplying (5) by um and summing over m = 0, 1, . . . , n− 1, we obtain

Sn(u, v) = u
∂

∂u
Sn−1(u, v) + Sn−1(u, v) +

uv

1− u
(Sn−1(u, v)− un−1Sn−1(1, v)). (6)

with S1(u, v) = v.
Define S(x, u, v) =

∑
n≥1 Sn(u, v)x

n. Thus, by multiplying (6) by xn and summing over n ≥ 2, we obtain

S(x, u, v) = vx+ ux
∂

∂u
S(x, u, v) + xS(x, u, v) +

uvx

1− u
(S(x, u, v)− S(ux, 1, v)).

Let Sr(x, u) be the coefficient of vr in S(x, u, v). Then

Sr(x, u) = xδr=1 + ux
∂

∂u
Sr(x, u) + xSr(x, u) +

ux

1− u
(Sr−1(x, u)− Sr−1(ux, 1)).

Define S̃r(x, u) =
∑

n≥1[x
n](Sr(x, u))

xn

n! . Then, we have the following result.

Proposition 4.1. For all r ≥ 0,

∂

∂x
S̃r(x, u) = δr=1 + u

∂

∂u
S̃r(x, u) + S̃r(x, u) +

u

1− u
(S̃r−1(x, u)− S̃r−1(ux, 1)).
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For instance, by using the fact that S̃0(x, u) = 0, then ∂
∂u S̃1(x, u) = 1 + u ∂

∂u S̃1(x, u) + S̃1(x, u), which leads to S̃1(x, u) =

ex − 1. Moreover,
∂

∂u
S̃2(x, u) = 1 + u

∂

∂u
S̃2(x, u) + S̃2(x, u) +

u

1− u
(ex − eux),

which leads to
S2(x, u) = u

∫ x

0

eute
x−t+2x−2t + ex−t

uex−t − 1
dt.

To study the total of the number of strict records, as before, we extend the approach of the previous two sections.

Theorem 4.1. The total number of strict records in inversion sequences of length n ≥ 2 is given by

S(n) :=
3

2
n! + n!

n∑
r=3

(
1

r
+
r − 2

r − 1

1

r
+

1

r!

r−2∑
s=2

(s− 1)!(s− 1)r−s

)
(7)

and S(1) = 1.

Proof. Let a part of size s be a weak record in position r of the inversion sequence of length n. Then 1 ≤ s ≤ r and 1 ≤ r ≤ n.

Case 1: r = 1. There are n! such instances.

Case 2: r = 2. There are n!
2 such instances again. These come from s = 2 in position 2.

Case 3: r ≥ 3.

Case 3a: r = s, the solid and dashed columns coincide. See Figure 2. All possible parts in the shaded triangle
to the left of r are strictly less than r and therefore must be counted. The total number of such instances is
(r − 1)!. On the right of r, we count all possible entries in an inversion sequence, i.e., n(n− 1)(n− 2) . . . (r + 1).
The number of such instances is n!

r! . Together this yields a total for this case of
n!

r
.

Case 3b: r = s+ 1, the solid column is adjacent to the dashed column. All possible parts in the shaded triangle
to the left of the dashed column of Figures 1 are less than s and therefore must be counted. The s-th column can
have a maximum height of s− 1. The total number of such instances is (s− 1)!(s− 1) = (r− 2)!(r− 2). Similarly,
on the right of r, all parts must be counted yielding again n!

r! . So the total number of such instances is therefore
r − 2

r − 1

n!

r
.

Case 3c: r > s+ 1, column r solid is to the right of the dashed column, but not touching. Again, all parts to the
left of s in Figures 1 that are strictly less than s must be counted. Including the s − 1 possibilities for the s-th
column, the total number of such instances is (s− 1)!(s− 1). Again, on the right of r, all parts must be counted
as before. The number of such instances is

n!

r!
.

Finally, the number of instances formed by all possible parts lying in the rectangle between s and r and less
than s, is the number of words on the alphabet [s − 1] with number of parts equal to the rectangle width, i.e.,
(s− 1)r−1−s. The product of all the instances for this case is then summed over all possible s values yielding

n!

r!

r−2∑
s=2

(s− 1)(s− 1)!(s− 1)r−1−s.

Adding all the cases together, we obtain the formula as stated in the theorem.
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