Research Article

On chromatic vertex stability of 3-chromatic graphs with maximum degree 4

Martin Knor ${ }^{1}$, Mirko Petruševski ${ }^{2, *}$, Riste Š Srekovski ${ }^{3,4}$
${ }^{1}$ Slovak University of Technology in Bratislava, Bratislava, Slovakia
${ }^{2}$ Faculty of Mechanical Engineering, University Ss. Cyril and Methodius in Skopje, Skopje, Macedonia
${ }^{3}$ Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
${ }^{4}$ Faculty of Information Studies, Novo Mesto, Slovenia

(Received: 7 May 2022. Received in revised form: 10 June 2022. Accepted: 16 June 2022. Published online: 18 June 2022.)
(c) 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The (independent) chromatic vertex stability (ivs $(G)) \operatorname{vs}_{\chi}(G)$ is the minimum size of (independent) set $S \subseteq V(G)$ such that $\chi(G-S)=\chi(G)-1$. The question of how large must the chromatic number $\chi(G)$ of a graph G be, in terms of the maximum degree $\Delta(G)$, to ensure the equality $\operatorname{ivs}_{\chi}(G)=\mathrm{vs}_{\chi}(G)$ was raised by Akbari et al. [European J. Combin. 102 (2022) \#103504]; the authors showed that $\operatorname{ivs}_{\chi}(G)=\mathrm{vs}_{\chi}(G)$ if $\chi(G) \in\{\Delta(G), \Delta(G)+1\}$, and also pointed out to graphs with $\chi(G) \leq(\Delta(G)+1) / 2$ for which $\operatorname{ivs}_{\chi}(G)>\mathrm{vs}_{\chi}(G)$. In the light of their findings, they raised the following problem: Is it true that $\chi(G) \geq \Delta(G) / 2+1$ always implies ivs $\chi_{\chi}(G)=\mathrm{vs}_{\chi}(G)$? This threshold question was recently answered in the negative by Cambrie et al. [arXiv: 2203.13833 v 1 , (2022)]. In this paper, we show that the smallest instance for counterexamples is the case $(\chi(G), \Delta(G))=(3,4)$, with the smallest possible order being 9 (and there are 30 such graphs). We construct exponentially many graphs G having $\Delta(G)=4, \chi(G)=3, \operatorname{ivs}_{\chi}(G)=3$, and vs $\chi(G)=2$.

Keywords: chromatic vertex stability; independent chromatic vertex stability; chromatic number; maximum degree.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

Let G be a graph. Its edge stability number, $\mathrm{es}_{\chi}(\mathrm{G})$, is the minimum number of edges whose deletion results in a graph H with $\chi(H)=\chi(G)-1$. The edge stability number was introduced in 1980 by Staton [9], and rediscovered in 2008 by Arumugam, Hamid, and Muthukamatchi [4]. For recent results on this invariant, see e.g. [1, 3, 6, 8].

General concept of stability number appeared in [5], but the first paper on chromatic vertex stability number was written by Akbari, Beikmohammadi, Klavžar, and Movarraei in 2021, see [2]. The chromatic vertex stability vs ${ }_{\chi}(G)$ of G is the minimum number of vertices of G such that their deletion results in a graph H with $\chi(H)=\chi(G)-1$. Analogously, the independent chromatic vertex stability $\operatorname{ivs}_{\chi}(G)$ of G is the minimum number of independent vertices of G such that their deletion results in a graph H with $\chi(H)=\chi(G)-1$. Obviously, $\operatorname{vs}_{\chi}(G) \leq \operatorname{ivs}_{\chi}(G)$. The main result of [2] is the following.

Theorem 1.1. If G is a graph with $\chi(G) \in\{\Delta(G), \Delta(G)+1\}$ then $\operatorname{vs}_{\chi}(G)=\operatorname{ivs}_{\chi}(G)$.
The authors defined the threshold function $f(\Delta)$ as the smallest quantity such that, for any graph G of maximum degree Δ, it must hold that $\mathrm{vs}_{\chi}(G)=\operatorname{ivs}_{\chi}(G)$ provided that $\chi(G) \geq f(\Delta)$. Notice that Theorem 1.1 asserts $f(\Delta) \leq \Delta$. They also showed that as soon as $\chi(G) \leq(\Delta(G)+1) / 2$ the equality $\operatorname{vs}_{\chi}(G)=\operatorname{ivs}_{\chi}(G)$ need no longer be true, and consequently asked the following question (see Problem 3.2 in [2]).

Problem 1.1. Is it true that $f(\Delta) \leq \frac{\Delta(G)}{2}+1$, that is, if G is a graph with $\chi(G) \geq \frac{\Delta(G)}{2}+1$ does it then always hold that $\operatorname{vs}_{\chi}(G)=\operatorname{ivs}_{\chi}(G)$?

The question of Problem 1.1 was recently answered in the negative by Cambie et al. [7], who proved that $f(\Delta)=\Delta$ for $3 \leq \Delta \leq 10$. Additionally, they determined the threshold $f(\Delta)$ to within two values (and indeed sometimes a unique value) for graphs of sufficiently large maximum degree.

In this paper, we focus on the smallest value $\chi(G)=3$ for which counterexamples to Problem 1.1 exist, i.e. we consider the case when $\chi(G)=3$ and $\Delta(G)=4$. A simple 'ladder-like' counterexample on 9 vertices is depicted in Figure 1. Notice that the ladder part of the counterexample can be of any length $4 k$ for $k \geq 2$.

[^0]

Figure 1: A graph G with $\Delta(G)=4$ and $\chi(G)=3$. The blue independent 3 -set realizes ivs $(G)=3$ and the yellow 2 -set realizes $\mathrm{vs}_{\chi}(G)=2$.

Our main result is the following.
Theorem 1.2. For each $n \geq 9$ there are at least $\max \left\{1,2^{\left\lfloor\frac{n-11}{2}\right\rfloor}\right\}$ planar graphs with $\chi(G)=3, \Delta(G)=4$, $\mathrm{ivs}_{\chi}(G)=3$ and $\mathrm{vs}_{\chi}(G)=2$.

Observe that if $\chi(G)=3$ and $\Delta(G)=4$, then $\chi(G)=\frac{\Delta(G)}{2}+1=\Delta(G)-1$. Hence, the bound on $\chi(G)$ in Theorem 1.1 cannot be relaxed when $\chi(G)=3$.

2. Proofs

We start with a pair of simple observations followed by a couple of lemmas.
Observation 2.1. For every graph G, ivs ${\underset{\chi}{\chi}}(G)$ equals the minimum size of a colour class over all proper $\chi(G)$-colourings of G. Hence $|V(G)| \geq \operatorname{ivs}_{\chi}(G) \cdot \chi(G)$.

Proof. Let us first notice that there exists a proper $\chi(G)$-colouring of G with a colour class of size ivs $\chi_{\chi}(G)$. Indeed, take $S \subseteq V(G)$ to be an independent set of size $|S|=\operatorname{ivs}_{\chi}(G)$ such that $\chi(G-S)=\chi(G)-1$. Use a proper $(\chi(G)-1)$-colouring of $G-S$ and assign to all vertices of S a new colour. So ivs $_{\chi}(G)$ is not less than the minimum size of a colour class over all proper $\chi(G)$-colourings of G.

Contrarily, consider a proper $\chi(G)$-colouring of G which minimizes the size of a colour class, and let S be such a minimum colour class. Then S is an independent subset of $V(G)$ and $\chi(G-S) \leq \chi(G)-1$. In fact, we must have equality here for otherwise G would admit a proper $(\chi(G)-1)$-colouring. So ivs $_{\chi}(G)$ is also not more than the minimum size of a colour class over all proper $\chi(G)$-colourings of G, which proves our point.

The inequality $|V(G)| \geq \operatorname{ivs}_{\chi}(G) \cdot \chi(G)$ is now an immediate consequence.
Observation 2.2. If $\Delta(G) \leq 2$ then $\operatorname{vs}_{\chi}(G)=\operatorname{ivs} \chi_{\chi}(G)$.
Proof. We may assume that $\mathrm{vs}_{\chi}(G) \geq 2$. Indeed, if $\mathrm{vs}_{\chi}(G)=1$ then obviously $\mathrm{ivs}_{\chi}(G)=1$ as well. We may also assume that G is connected. Then G is either a path or an even cycle. In either case

$$
\operatorname{vs}_{\chi}(G)=\operatorname{ivs}_{\chi}(G)=\left\lfloor\frac{|V(G)|}{2}\right\rfloor .
$$

As already mentioned, we are interested in finding graphs G for which $\chi(G) \geq \frac{\Delta(G)}{2}+1$ and ivs $\chi_{\chi}(G)>\mathrm{vs}_{\chi}(G)$. Our first lemma establishes some implications for the order and the considered stability parameters.

Lemma 2.1. If $\mathrm{ivs}_{\chi}(G)>\mathrm{vs}_{\chi}(G)$ and $\chi(G) \geq \frac{\Delta(G)}{2}+1$ then $|V(G)| \geq 9, \mathrm{ivs}_{\chi}(G) \geq 3, \mathrm{vs}_{\chi}(G) \geq 2$ and $\chi(G) \geq 3$. Moreover, if $|V(G)|=9$ then $\operatorname{ivs}_{\chi}(G)=3$, vs $_{\chi}(G)=2$ and $\chi(G)=3$.

Proof. Since ivs $\chi_{\chi}(G)>\operatorname{vs}_{\chi}(G)$, we must have $\mathrm{vs}_{\chi}(G) \geq 2$ and consequently ivs $(G) \geq 3$.
If $\chi(G) \leq 2$ then from $\chi(G) \geq \frac{\Delta(G)}{2}+1$ we get $\Delta(G) \leq 2(\chi(G)-1) \leq 2$, which in view of Observation 2.2 contradicts $\operatorname{ivs}_{\chi}(G)>\mathrm{vs}_{\chi}(G)$. Hence $\chi(G) \geq 3$.

From the inequality stated in Observation 2.1, it follows that $|V(G)| \geq \operatorname{ivs}_{\chi}(G) \cdot \chi(G) \geq 3 \cdot 3$, that is, $|V(G)| \geq 9$. And if $|V(G)|=9$ then $\chi(G)=\operatorname{ivs}_{\chi}(G)=3$ and $\mathrm{vs}_{\chi}(G)=2$.

Figure 2 depicts two graphs, respectively denoted by G_{9} and G_{10} in regard to their orders. The former one can be obtained from the octahedron graph by subdividing the edges of a triangle. It has $\Delta\left(G_{9}\right)=4, \chi\left(G_{9}\right)=\operatorname{ivs}_{\chi}\left(G_{9}\right)=3$ and $\operatorname{vs}_{\chi}\left(G_{9}\right)=2$. Observe that $\chi\left(G_{9}-\{x, y\}\right)=2$ if and only if $\{x, y\}=\left\{v_{i}, v_{j}\right\}$, where $1 \leq i<j \leq 3$, and for an independent set of vertices $\{x, y, z\}$ we have $\chi\left(G_{9}-\{x, y, z\}\right)=2$ if and only if $\{x, y, z\}=\left\{u_{i}, v_{i}, w_{i}\right\}$, where $1 \leq i \leq 3$. The graph G_{10} is obtained from G_{9} by adding the vertex q and connecting it to w_{2} and w_{3}. It also has $\Delta\left(G_{10}\right)=4, \chi\left(G_{10}\right)=\operatorname{ivs} \chi\left(G_{10}\right)=3$ and $\operatorname{vs}_{\chi}\left(G_{10}\right)=2$. Again $\chi\left(G_{10}-\{x, y\}\right)=2$ if and only if $\{x, y\}=\left\{v_{i}, v_{j}\right\}$, where $1 \leq i<j \leq 3$, and for an independent set of vertices $\{x, y, z\}$ we have $\chi\left(G_{10}-\{x, y, z\}\right)=2$ if and only if $\{x, y, z\}=\left\{u_{i}, v_{i}, w_{i}\right\}$ where $2 \leq i \leq 3$.

Figure 2: The graph G_{9} (left) and the graph G_{10} (right).
Our second lemma concerns the case $\chi(G)=\operatorname{ivs}_{\chi}(G)=3$ and $\mathrm{vs}_{\chi}(G)=2$. Under the assumption $\chi(G) \geq \frac{\Delta(G)}{2}+1$ we establish the maximum degree of G and the vertex degrees of every 2-set which realizes vs (G).

Lemma 2.2. Let G be a graph with $\chi(G)=\operatorname{ivs}_{\chi}(G)=3, \operatorname{vs}_{\chi}(G)=2$ and $\chi(G) \geq \frac{\Delta(G)}{2}+1$. Then $\Delta(G)=4$ and for every $v_{1}, v_{2} \in V(G)$ such that $\chi\left(G-\left\{v_{1}, v_{2}\right\}\right)=2$ we have $\operatorname{deg}_{G}\left(v_{1}\right)=\operatorname{deg}_{G}\left(v_{2}\right)=4$.

Proof. Let G satisfy the assumptions of the lemma and let $v_{1}, v_{2} \in V(G)$ be such that $\chi\left(G-\left\{v_{1}, v_{2}\right\}\right)=2$. Then

$$
\Delta(G) \leq 2(\chi(G)-1)=4
$$

For argument's sake, suppose that $\operatorname{deg}_{G}\left(v_{1}\right) \leq 3$. Since ivs ${ }_{\chi}(G)=3>2$, we have $v_{1} v_{2} \in E(G)$. Further, since $\chi\left(G-v_{2}\right)=$ 3, there must be an odd cycle in $G-v_{2}$; moreover, every such cycle passes through v_{1} since $G-\left\{v_{1}, v_{2}\right\}$ is bipartite. Consequently $\operatorname{deg}_{G}\left(v_{1}\right)=3$.

Let u_{1}, u_{2} be the neighbours of v_{1} in $G-v_{2}$. Since every odd cycle in $G-v_{2}$ passes through both u_{1}, u_{2}, we conclude that $G-\left\{u_{i}, v_{2}\right\}$ is bipartite as well, $i \in\{1,2\}$. From $\operatorname{ivs}_{\chi}(G)=3>2$ it follows that $u_{1} v_{2}, u_{2} v_{2} \in E(G)$. Moreover, $u_{1} u_{2} \notin E(G)$, for otherwise $v_{1}, v_{2}, u_{1}, u_{2}$ induces a K_{4}, implying $\chi(G) \geq 4$.

Since $\operatorname{ivs}_{\chi}(G)=3$, there must be an odd cycle in $G-\left\{u_{1}, u_{2}\right\}$. This cycle cannot pass through $v_{1} \operatorname{since} \operatorname{deg}_{G-\left\{u_{1}, u_{2}\right\}}\left(v_{1}\right)=1$. If this cycle does not pass through v_{2} as well then it is in $G-\left\{v_{1}, v_{2}\right\}$ which means that $\chi\left(G-\left\{v_{1}, v_{2}\right\}\right)=3$, a contradiction. Hence, there is an odd cycle passing through v_{2} in $G-\left\{u_{1}, u_{2}, v_{1}\right\}$, which means that $\operatorname{deg}_{G}\left(v_{2}\right) \geq 5$. This contradiction settles the lemma.

A computer search shows that there are precisely 30 graphs G of order 9 and having $\Delta(G)=4, \chi(G)=3$, ivs $\chi_{\chi}(G)=3$ and $\mathrm{vs}_{\chi}(G)=2$. Several of them (including G_{9}) are planar and four are obtained by adding an edge to another graph from the same collection.

For every $n \geq 9$ let S_{n} be the set of graphs G on n vertices such that $\Delta(G)=4, \chi(G)=3$, ivs $\chi_{\chi}(G)=3$ and vs $(G)=2$. Thus $G_{9} \in S_{9}$ and $G_{10} \in S_{10}$. By $C_{\chi}(G)$ we denote the set of vertices $x \in V(G)$ such that there is some $y \in V(G)$ for which $\chi(G-\{x, y\})=2$; note that every such y is a neighbour of x. For example, $C_{\chi}\left(G_{9}\right)=C_{\chi}\left(G_{10}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. In view of our next result, for every $n \geq 9$ there is a planar graph in S_{n} which is topologically equivalent to G_{9} or G_{10}.

Proposition 2.1. Let $G \in S_{n}$ and $e_{1}, e_{2}, \ldots, e_{t} \in E(G) \backslash E\left(\left[C_{\chi}(G)\right]\right)$, i.e., each e_{i} has at most one endvertex in $C_{\chi}(G)$. Let $n_{1}, n_{2}, \ldots, n_{t}$ be positive even integers. For every $i, 1 \leq i \leq t$, subdivide e_{i} with n_{i} new vertices, and denote the resulting graph by H. Then $\Delta(H)=4, \chi(H)=3, \operatorname{ivs}_{\chi}(H)=3$ and $\mathrm{vs}_{\chi}(H)=2$. In other words, $H \in S_{n+\left(n_{1}+\cdots+n_{t}\right)}$.
Proof. Obviously $\Delta(H)=\Delta(G)=4$. Since $\chi(G)=3$, the graph G has an odd cycle. Since to any edge of this cycle we added an even number (possibly zero) of vertices, H also has an odd cycle; thus $\chi(H) \geq 3$. Moreover, if $S \subseteq V(G)$ is such that $G-S$ is bipartite then $H-S$ is bipartite as well. Hence, $\chi(H)=3, \operatorname{ivs}_{\chi}(H) \leq 3$ and $\operatorname{vs}_{\chi}(H) \leq 2$.

If there is some $v \in V(H)$ such that $\chi(H-v)=2$, then $v \notin V(G)$. So v is obtained by subdividing an edge, say $x y$, of G. However, as $H-v$ is bipartite, both $G-x$ and $G-y$ are bipartite, a contradiction. Hence, $\operatorname{vs}_{\chi}(H)=2$.

Finally, let us show that $\operatorname{ivs}_{\chi}(H)=3$. Supposing the opposite, there are $u, v \in V(H)$ such that $\chi(H-\{u, v\})=2$ and $u v \notin E(H)$. It cannot be that both u and v are in $V(G)$, because we did not subdivide edges connecting vertices of $C_{\chi}(G)$. So we may assume that v is obtained by subdividing an edge $x y$ of G, where $y \notin C_{\chi}(G)$. Since $H-\{u, v\}$ is bipartite, so is $H-\{u, y\}$. But then u cannot be a vertex of G as well. Hence, u is obtained by subdividing an edge $w z$ of G. As $H-\{u, y\}$ is bipartite, so is $H-\{z, y\}$. However, this contradicts the fact that $y \notin C_{\chi}(G)$.

From Proposition 2.1 we deduce that $S_{n} \neq \emptyset$ for every $n \geq 9$. Indeed, if n is odd then take G_{9}, subdivide the edge $u_{2} w_{1}$ with $n-9$ new vertices and denote the resulting graph by G_{n}. Analogously if n is even then take G_{10}, subdivide the edge $u_{2} w_{1}$ with $n-10$ new vertices and denote the resulting graph by G_{n}. Then G_{n} is a connected planar graph and $G_{n} \in S_{n}$, by Proposition 2.1. Our next result shows that S_{n} contains exponentially many planar graphs.

Theorem 2.1. For each $n \geq 11$ there are at least $2^{\left\lfloor\frac{n-11}{2}\right\rfloor} 2$-connected planar graphs in S_{n}.
Proof. In view of G_{11} and G_{12}, we assume $n \geq 13$. Take G_{n} and relabel the vertices of the $u_{2}-u_{3}$ path that passes through w_{1} by $u_{2}=a_{0}, a_{1}, a_{2}, \ldots, a_{\ell-1}=w_{1}, a_{\ell}=u_{3}$; here $\ell=n-7$ if n is odd and $\ell=n-8$ if n is even. Note that ℓ is even. Let $E_{n}=\left\{a_{1} a_{\ell-2}, a_{2} a_{\ell-3}, \ldots, a_{\ell / 2-2} a_{\ell / 2+1}\right\}$. For every $E^{\prime} \subseteq E_{n}$, denote by $H_{n, E^{\prime}}$ the graph obtained from G_{n} by adding the edges of E^{\prime}. Obviously $H_{n, E^{\prime}}$ is planar, $\Delta\left(H_{n, E^{\prime}}\right)=4$ and $\chi\left(H_{n, E^{\prime}}\right)=3$. Moreover, $H_{n, E^{\prime}}-\{x, y\}$ is bipartite if $\{x, y\}=\left\{v_{i}, v_{j}\right\}$ where $1 \leq i<j \leq 3$, which implies that $\operatorname{vs}_{\chi}\left(H_{n, E^{\prime}}\right)=2$. Also, $H_{n, E^{\prime}}-\left\{u_{2}, v_{2}, w_{2}\right\}$ is bipartite which gives ivs $\left(H_{n, E^{\prime}}\right) \leq 3$. On the other hand, since G_{n} is a subgraph of $H_{n, E^{\prime}}$ of certain chromaticity and ivs $\chi_{\chi}\left(G_{n}\right)=3$, we have ivs $\chi\left(H_{n, E^{\prime}}\right)=3$ as well. Thus $H_{n, E^{\prime}} \in S_{n}$.

Figure 3: The graph $H_{18, E_{18}}$.
Let $E^{\prime}, E^{*} \subseteq E_{n}$, where $E^{\prime} \neq E^{*}$. We show that the graphs $H_{n, E^{\prime}}$ and $H_{n, E^{*}}$ are not isomorphic. This is obvious if $\left|E^{\prime}\right| \neq\left|E^{*}\right|$. So assume that $\left|E^{\prime}\right|=\left|E^{*}\right| \geq 1$. We show that Aut $\left(H_{n, E^{\prime}}\right)$, the group of automorphisms of $H_{n, E^{\prime}}$, (and also $\left.\operatorname{Aut}\left(H_{n, E^{*}}\right)\right)$ is trivial. That is, every automorphism of $H_{n, E^{\prime}}$ fixes all the vertices of $H_{n, E^{\prime}}$.

There are exactly 6 vertices of degree 4 in $H_{n, E^{\prime}}$, namely $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}$. Since each of u_{1}, u_{2}, u_{3} is in only one triangle in $H_{n, E^{\prime}}$ whereas each of v_{1}, v_{2}, v_{3} is in three such triangles, every automorphism must preserve the sets $\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$. The vertices u_{1} and u_{2} are both adjacent to the same vertex of $H_{n, E^{\prime}}-\left\{v_{1}, v_{2}, v_{3}\right\}$. Also the vertices u_{1} and u_{3} are both adjacent to the same vertex of $H_{n, E^{\prime}}-\left\{v_{1}, v_{2}, v_{3}\right\}$. But u_{2} and u_{3} are not adjacent to the same vertex of $H_{n, E^{\prime}}-\left\{v_{1}, v_{2}, v_{3}\right\}$, because $n \geq 13$. Consequently, every automorphism of $H_{n, E^{\prime}}$ fixes u_{1}.

In view of $a_{\ell-1}\left(=w_{1}\right)$, the vertex u_{3} has a neighbour of degree 2 which is not connected to u_{1}. If u_{2} does not have such a neighbour, then every automorphism of $H_{n, E^{\prime}}$ fixes also u_{2} and u_{3}. So assume that also u_{2} has a neighbour of degree 2 which is not connected to u_{1}. Now start at u_{2}, proceed with the above mentioned neighbour of u_{2} and construct a longest path P_{2}, interior vertices of which have all degree 2 . Analogously start at u_{3}, proceed with the above mentioned neighbour of u_{3} and construct a longest path P_{3}, interior vertices of which have all degree 2 . Finally, let i be the smallest index such that $a_{i} a_{\ell-1-i} \in E^{\prime}$. Then P_{2} has length i while P_{3} has length $i+1$. Hence, every automorphism of $H_{n, E^{\prime}}$ must fix also u_{2} and u_{3}. Consequently, every automorphism of $H_{n, E^{\prime}}$ fixes all the vertices of $H_{n, E^{\prime}}$, and so $H_{n, E^{\prime}}$ and $H_{n, E^{*}}$ are not isomorphic graphs.

Since E_{n} has $\frac{\ell}{2}-2=\left\lfloor\frac{n-7}{2}\right\rfloor-2=\left\lfloor\frac{n-11}{2}\right\rfloor$ edges and every subset gives different graph, there are exactly $2^{\left\lfloor\frac{n-11}{2}\right\rfloor}$ nonisomorphic graphs $H_{n, E^{\prime}}$.

Remark. Observe that considering subsets of a zig-zag path $a_{l-1}, a_{1}, a_{l-2}, a_{2}, \ldots$ instead of set of isolated edges, one can obtain 2^{n-11} graphs satisfying the assumptions of Theorem 2.1, since the obtained graphs G have $|\operatorname{Aut}(G)| \leq 2$, and still different subsets distinguish them.

We conclude the paper by presenting another, more general, construction of graphs G with $\Delta(G)=4, \chi(G)=3$, $\operatorname{ivs}_{\chi}(G)=3$ and $\operatorname{vs}_{\chi}(G)=2$. Let H be a bipartite graph with $\Delta(H) \leq 4$ such that there exists a cycle $C_{2 k} \subseteq H$ with $k \geq 3$ and a pair $a, b \in V\left(C_{2 k}\right)$ of non-adjacent vertices in H on odd distance $d_{H}(a, b)$ and having $\operatorname{deg}_{H}(a)=\operatorname{deg}_{H}(b)=2$. Take the union of H with a disjoint triangle $u v w$ and add the edges $a v, b v, a w, b w$. Denote the resulting graph by G (see Figure 4).

Figure 4: The graph G if $H=C_{6}$.

Proposition 2.2. If H is of order m then $G \in S_{m+3}$. Moreover, if H is 2-connected (resp. planar) then G has the same property.

Proof. Clearly, the order of G is $m+3$. As $\Delta(H) \leq 4$ and $\operatorname{deg}_{H}(a)=\operatorname{deg}_{H}(b)=2$ we have $\Delta(G)=4$. In view of the triangle $u v w$, the graph G is not bipartite. In order to show $\chi(G)=3$, note that $G-\{u, v, w\}$ is bipartite. Take a proper 2 -colouring φ of $G-\{u, v, w\}$ with colours 1 and 3 such that, without loss of generality, $\varphi(a)=1$ and $\varphi(b)=3$ (here we use that $d(a, b)$ is odd). Now change the colour of b to 1 and the colour of every $c \in N_{G-\{u, v, w\}}(b)$ to 2 . Note that by assigning the colour 1 to u, the colour 2 to v and the colour 3 to w we obtain a proper 3-colouring of G.

Let us show next that $\operatorname{ivs}_{\chi}(G)=3$. Since $G-\{a, b, u\}$ is bipartite, we have ivs $\chi_{\chi}(G) \leq 3$. Suppose there are non-adjacent vertices x, y such that $G-\{x, y\}$ is bipartite. In view of the triangle $u v w$, the intersection $\{x, y\} \cap\{u, v, w\}$ is a singleton. We argue that this intersection is not the vertex u due to the triangles $a v w$ and $b v w$. Let P and Q be the two $a-b$ paths in $C_{2 k}$, and recall that both these paths are of odd lengths. Consequently, each of the cycles $C^{\prime}=P \cup a v b, C^{\prime \prime}=P \cup a w b$, $C^{\prime \prime \prime}=Q \cup a v b$, and $C^{\prime \prime \prime \prime}=Q \cup a w b$ is odd. Hence $\{x, y\} \cap\{v, w\} \neq \emptyset$, which further implies that $\{x, y\} \cap\{a, b\}=\emptyset$. However, then at least one of the cycles $C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}, C^{\prime \prime \prime \prime}$ appears in $G-\{x, y\}$. The obtained contradiction shows ivs $(G)=3$.

Finally, we prove that $\operatorname{vs}_{\chi}(G)=2$. Clearly $\operatorname{vs}_{\chi}(G) \leq 2$, because $G-\{v, w\}$ is bipartite. And since $\mathrm{vs}_{\chi}(G)=1$ implies $\operatorname{ivs}_{\chi}(G)=1$, we have $\operatorname{vs}_{\chi}(G)=2$.
Remark. Note in passing that the order of the bound $\left|S_{n}\right| \geq 2^{\left\lfloor\frac{n-11}{2}\right\rfloor}$ obtained in Theorem 2.1 is not (asymptotically) optimal. Propositions 2.1 and 2.2 enable one to construct connected planar graphs within S_{n} with considerable ease. However, establishing a more precise asymptotic estimate of $\left|S_{n}\right|$ was not the focus of this short article; instead, the aim was simply to point out to the existence of exponentially many graphs in S_{n}.

Acknowledgements

The first author acknowledges partial support by Slovak research grants VEGA 1/0567/22, VEGA 1/0206/20, APVV-190308, APVV-17-0428. All authors acknowledge partial support of the Slovenian research agency ARRS program P1-0383 and ARRS project J1-3002.

References

[1] S. Akbari, A. Beikmohammadi, B. Brešar, T. Dravec, M. M. Habibollahi, N. Movarraei, On the chromatic edge stability index of graphs, arXiv:2108.10657 [math.CO]; European J. Combin., To appear.
[2] S. Akbari, A. Beikmohammadi, S. Klavžar, N. Movarraei, On the chromatic vertex stability number of graphs, European J. Combin. 102 (2022) \#103504.
[3] S. Akbari, S. Klavžar, N. Movarraei, M. Nahvi, Nordhaus-Gaddum and other bounds for the chromatic edge-stability number, European J. Combin. 84 (2020) \#103042.
[4] S. Arumugam, I. S. Hamid, A. Muthukamatchi, Independent domination and graph colorings, In: R. Balakrishnan, C. E. V. Madhavan (Eds.), Proceedings of the International Conference on Discrete Mathematics (Indian Institute of Science, Bangalore, 2006), Ramanujan Math. Soc. Lect. Notes Ser. 7, International Press, Boston, 2008, pp. 195-203
[5] D. Bauer, F. Harary, J. Nieminen, C. L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1993) 153-161.
[6] B. Brešar, S. Klavžar, N. Movarraei, Critical graphs for the chromatic edge-stability number, Discrete Math. 343 (2020) \#111845.
[7] S. Cambie, J. Haslegrave, R. J. Kang, When removing an independent set is optimal for reducing the chromatic number, arXiv:2203.13833v1 [math.CO], (2022).
[8] A. Kemnitz, M. Marangio, N. Movarraei, On the chromatic edge stability number of graphs, Graphs Combin. 34 (2018) $1539-1551$.
[9] W. Staton, Edge deletions and the chromatic number, Ars Combin. 10 (1990) 103-106.

[^0]: *Corresponding author (mirko.petrushevski@gmail.com).

