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Abstract

The (independent) chromatic vertex stability (ivsχ(G)) vsχ(G) is the minimum size of (independent) set S ⊆ V (G) such
that χ(G − S) = χ(G) − 1. The question of how large must the chromatic number χ(G) of a graph G be, in terms of the
maximum degree ∆(G), to ensure the equality ivsχ(G) = vsχ(G) was raised by Akbari et al. [European J. Combin. 102
(2022) #103504]; the authors showed that ivsχ(G) = vsχ(G) if χ(G) ∈ {∆(G),∆(G)+1}, and also pointed out to graphs with
χ(G) ≤ (∆(G) + 1)/2 for which ivsχ(G) > vsχ(G). In the light of their findings, they raised the following problem: Is it true
that χ(G) ≥ ∆(G)/2 + 1 always implies ivsχ(G) = vsχ(G)? This threshold question was recently answered in the negative
by Cambrie et al. [arXiv: 2203.13833v1, (2022)]. In this paper, we show that the smallest instance for counterexamples
is the case (χ(G),∆(G)) = (3, 4), with the smallest possible order being 9 (and there are 30 such graphs). We construct
exponentially many graphs G having ∆(G) = 4, χ(G) = 3, ivsχ(G) = 3, and vsχ(G) = 2.
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1. Introduction

Let G be a graph. Its edge stability number, esχ(G), is the minimum number of edges whose deletion results in a graph
H with χ(H) = χ(G) − 1. The edge stability number was introduced in 1980 by Staton [9], and rediscovered in 2008 by
Arumugam, Hamid, and Muthukamatchi [4]. For recent results on this invariant, see e.g. [1,3,6,8].

General concept of stability number appeared in [5], but the first paper on chromatic vertex stability number was
written by Akbari, Beikmohammadi, Klavžar, and Movarraei in 2021, see [2]. The chromatic vertex stability vsχ(G) ofG is
the minimum number of vertices of G such that their deletion results in a graphH with χ(H) = χ(G)−1. Analogously, the
independent chromatic vertex stability ivsχ(G) of G is the minimum number of independent vertices of G such that their
deletion results in a graph H with χ(H) = χ(G)− 1. Obviously, vsχ(G) ≤ ivsχ(G). The main result of [2] is the following.

Theorem 1.1. If G is a graph with χ(G) ∈ {∆(G),∆(G) + 1} then vsχ(G) = ivsχ(G).

The authors defined the threshold function f(∆) as the smallest quantity such that, for any graph G of maximum
degree ∆, it must hold that vsχ(G) = ivsχ(G) provided that χ(G) ≥ f(∆). Notice that Theorem 1.1 asserts f(∆) ≤ ∆. They
also showed that as soon as χ(G) ≤ (∆(G) + 1)/2 the equality vsχ(G) = ivsχ(G) need no longer be true, and consequently
asked the following question (see Problem 3.2 in [2]).

Problem 1.1. Is it true that f(∆) ≤ ∆(G)
2 + 1, that is, if G is a graph with χ(G) ≥ ∆(G)

2 + 1 does it then always hold that
vsχ(G) = ivsχ(G)?

The question of Problem 1.1 was recently answered in the negative by Cambie et al. [7], who proved that f(∆) = ∆ for
3 ≤ ∆ ≤ 10. Additionally, they determined the threshold f(∆) to within two values (and indeed sometimes a unique value)
for graphs of sufficiently large maximum degree.

In this paper, we focus on the smallest value χ(G) = 3 for which counterexamples to Problem 1.1 exist, i.e. we consider
the case when χ(G) = 3 and ∆(G) = 4. A simple ‘ladder-like’ counterexample on 9 vertices is depicted in Figure 1. Notice
that the ladder part of the counterexample can be of any length 4k for k ≥ 2.
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Figure 1: A graph G with ∆(G) = 4 and χ(G) = 3. The blue independent 3-set realizes ivsχ(G) = 3 and the yellow 2-set
realizes vsχ(G) = 2.

Our main result is the following.

Theorem 1.2. For each n ≥ 9 there are at least max
{

1, 2b
n−11

2 c
}

planar graphs with χ(G) = 3, ∆(G) = 4, ivsχ(G) = 3 and
vsχ(G) = 2.

Observe that if χ(G) = 3 and ∆(G) = 4, then χ(G) = ∆(G)
2 + 1 = ∆(G) − 1. Hence, the bound on χ(G) in Theorem 1.1

cannot be relaxed when χ(G) = 3.

2. Proofs

We start with a pair of simple observations followed by a couple of lemmas.

Observation 2.1. For every graph G, ivsχ(G) equals the minimum size of a colour class over all proper χ(G)-colourings of
G. Hence |V (G)| ≥ ivsχ(G) · χ(G).

Proof. Let us first notice that there exists a proper χ(G)-colouring of G with a colour class of size ivsχ(G). Indeed, take
S ⊆ V (G) to be an independent set of size |S| = ivsχ(G) such that χ(G− S) = χ(G)− 1. Use a proper (χ(G)− 1)-colouring
of G− S and assign to all vertices of S a new colour. So ivsχ(G) is not less than the minimum size of a colour class over all
proper χ(G)-colourings of G.

Contrarily, consider a proper χ(G)-colouring ofGwhich minimizes the size of a colour class, and let S be such a minimum
colour class. Then S is an independent subset of V (G) and χ(G − S) ≤ χ(G) − 1. In fact, we must have equality here for
otherwiseG would admit a proper (χ(G)−1)-colouring. So ivsχ(G) is also not more than the minimum size of a colour class
over all proper χ(G)-colourings of G, which proves our point.

The inequality |V (G)| ≥ ivsχ(G) · χ(G) is now an immediate consequence.

Observation 2.2. If ∆(G) ≤ 2 then vsχ(G) = ivsχ(G).

Proof. We may assume that vsχ(G) ≥ 2. Indeed, if vsχ(G) = 1 then obviously ivsχ(G) = 1 as well. We may also assume
that G is connected. Then G is either a path or an even cycle. In either case

vsχ(G) = ivsχ(G) =

⌊
|V (G)|

2

⌋
.

As already mentioned, we are interested in finding graphs G for which χ(G) ≥ ∆(G)
2 + 1 and ivsχ(G) > vsχ(G). Our first

lemma establishes some implications for the order and the considered stability parameters.

Lemma 2.1. If ivsχ(G) > vsχ(G) and χ(G) ≥ ∆(G)
2 + 1 then |V (G)| ≥ 9, ivsχ(G) ≥ 3, vsχ(G) ≥ 2 and χ(G) ≥ 3. Moreover, if

|V (G)| = 9 then ivsχ(G) = 3, vsχ(G) = 2 and χ(G) = 3.

Proof. Since ivsχ(G) > vsχ(G), we must have vsχ(G) ≥ 2 and consequently ivsχ(G) ≥ 3.
If χ(G) ≤ 2 then from χ(G) ≥ ∆(G)

2 + 1 we get ∆(G) ≤ 2(χ(G) − 1) ≤ 2, which in view of Observation 2.2 contradicts
ivsχ(G) > vsχ(G). Hence χ(G) ≥ 3.

From the inequality stated in Observation 2.1, it follows that |V (G)| ≥ ivsχ(G) · χ(G) ≥ 3 · 3, that is, |V (G)| ≥ 9. And if
|V (G)| = 9 then χ(G) = ivsχ(G) = 3 and vsχ(G) = 2.
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Figure 2 depicts two graphs, respectively denoted by G9 and G10 in regard to their orders. The former one can be
obtained from the octahedron graph by subdividing the edges of a triangle. It has ∆(G9) = 4, χ(G9) = ivsχ(G9) = 3 and
vsχ(G9) = 2. Observe that χ(G9 − {x, y}) = 2 if and only if {x, y} = {vi, vj}, where 1 ≤ i < j ≤ 3, and for an independent
set of vertices {x, y, z} we have χ(G9 − {x, y, z}) = 2 if and only if {x, y, z} = {ui, vi, wi}, where 1 ≤ i ≤ 3. The graph G10 is
obtained from G9 by adding the vertex q and connecting it to w2 and w3. It also has ∆(G10) = 4, χ(G10) = ivsχ(G10) = 3

and vsχ(G10) = 2. Again χ(G10 − {x, y}) = 2 if and only if {x, y} = {vi, vj}, where 1 ≤ i < j ≤ 3, and for an independent set
of vertices {x, y, z} we have χ(G10 − {x, y, z}) = 2 if and only if {x, y, z} = {ui, vi, wi} where 2 ≤ i ≤ 3.

u1

u2u3

w1

w2 w3

v1

v2 v3

u1

u2u3

w1

w2 w3

v1

v2 v3

q

Figure 2: The graph G9 (left) and the graph G10 (right).

Our second lemma concerns the case χ(G) = ivsχ(G) = 3 and vsχ(G) = 2. Under the assumption χ(G) ≥ ∆(G)
2 + 1 we

establish the maximum degree of G and the vertex degrees of every 2-set which realizes vsχ(G).

Lemma 2.2. Let G be a graph with χ(G) = ivsχ(G) = 3, vsχ(G) = 2 and χ(G) ≥ ∆(G)
2 + 1. Then ∆(G) = 4 and for every

v1, v2 ∈ V (G) such that χ(G− {v1, v2}) = 2 we have degG(v1) = degG(v2) = 4.

Proof. Let G satisfy the assumptions of the lemma and let v1, v2 ∈ V (G) be such that χ(G− {v1, v2}) = 2. Then

∆(G) ≤ 2(χ(G)− 1) = 4.

For argument’s sake, suppose that degG(v1) ≤ 3. Since ivsχ(G) = 3 > 2, we have v1v2 ∈ E(G). Further, since χ(G − v2) =

3, there must be an odd cycle in G − v2; moreover, every such cycle passes through v1 since G − {v1, v2} is bipartite.
Consequently degG(v1) = 3.

Let u1, u2 be the neighbours of v1 in G− v2. Since every odd cycle in G− v2 passes through both u1, u2, we conclude that
G− {ui, v2} is bipartite as well, i ∈ {1, 2}. From ivsχ(G) = 3 > 2 it follows that u1v2, u2v2 ∈ E(G). Moreover, u1u2 /∈ E(G),
for otherwise v1, v2, u1, u2 induces a K4, implying χ(G) ≥ 4.

Since ivsχ(G) = 3, there must be an odd cycle inG−{u1, u2}. This cycle cannot pass through v1 since degG−{u1,u2}(v1) = 1.
If this cycle does not pass through v2 as well then it is in G−{v1, v2} which means that χ(G−{v1, v2}) = 3, a contradiction.
Hence, there is an odd cycle passing through v2 in G − {u1, u2, v1}, which means that degG(v2) ≥ 5. This contradiction
settles the lemma.

A computer search shows that there are precisely 30 graphs G of order 9 and having ∆(G) = 4, χ(G) = 3, ivsχ(G) = 3

and vsχ(G) = 2. Several of them (including G9) are planar and four are obtained by adding an edge to another graph from
the same collection.

For every n ≥ 9 let Sn be the set of graphs G on n vertices such that ∆(G) = 4, χ(G) = 3, ivsχ(G) = 3 and vsχ(G) = 2.
Thus G9 ∈ S9 and G10 ∈ S10. By Cχ(G) we denote the set of vertices x ∈ V (G) such that there is some y ∈ V (G) for which
χ(G− {x, y}) = 2; note that every such y is a neighbour of x. For example, Cχ(G9) = Cχ(G10) = {v1, v2, v3}. In view of our
next result, for every n ≥ 9 there is a planar graph in Sn which is topologically equivalent to G9 or G10.
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Proposition 2.1. Let G ∈ Sn and e1, e2, . . . , et ∈ E(G)\E([Cχ(G)]), i.e., each ei has at most one endvertex in Cχ(G). Let
n1, n2, . . . , nt be positive even integers. For every i, 1 ≤ i ≤ t, subdivide ei with ni new vertices, and denote the resulting
graph by H. Then ∆(H) = 4, χ(H) = 3, ivsχ(H) = 3 and vsχ(H) = 2. In other words, H ∈ Sn+(n1+···+nt).

Proof. Obviously ∆(H) = ∆(G) = 4. Since χ(G) = 3, the graph G has an odd cycle. Since to any edge of this cycle we added
an even number (possibly zero) of vertices, H also has an odd cycle; thus χ(H) ≥ 3. Moreover, if S ⊆ V (G) is such that
G− S is bipartite then H − S is bipartite as well. Hence, χ(H) = 3, ivsχ(H) ≤ 3 and vsχ(H) ≤ 2.

If there is some v ∈ V (H) such that χ(H − v) = 2, then v /∈ V (G). So v is obtained by subdividing an edge, say xy, of G.
However, as H − v is bipartite, both G− x and G− y are bipartite, a contradiction. Hence, vsχ(H) = 2.

Finally, let us show that ivsχ(H) = 3. Supposing the opposite, there are u, v ∈ V (H) such that χ(H − {u, v}) = 2 and
uv /∈ E(H). It cannot be that both u and v are in V (G), because we did not subdivide edges connecting vertices of Cχ(G).
So we may assume that v is obtained by subdividing an edge xy of G, where y /∈ Cχ(G). Since H − {u, v} is bipartite, so is
H − {u, y}. But then u cannot be a vertex of G as well. Hence, u is obtained by subdividing an edge wz of G. As H − {u, y}
is bipartite, so is H − {z, y}. However, this contradicts the fact that y /∈ Cχ(G).

From Proposition 2.1 we deduce that Sn 6= ∅ for every n ≥ 9. Indeed, if n is odd then take G9, subdivide the edge u2w1

with n− 9 new vertices and denote the resulting graph by Gn. Analogously if n is even then take G10, subdivide the edge
u2w1 with n − 10 new vertices and denote the resulting graph by Gn. Then Gn is a connected planar graph and Gn ∈ Sn,
by Proposition 2.1. Our next result shows that Sn contains exponentially many planar graphs.

Theorem 2.1. For each n ≥ 11 there are at least 2b
n−11

2 c 2-connected planar graphs in Sn.

Proof. In view of G11 and G12, we assume n ≥ 13. Take Gn and relabel the vertices of the u2−u3 path that passes through
w1 by u2 = a0, a1, a2, . . . , a`−1 = w1, a` = u3; here ` = n − 7 if n is odd and ` = n − 8 if n is even. Note that ` is even. Let
En = {a1a`−2, a2a`−3, . . . , a`/2−2a`/2+1}. For everyE′ ⊆ En, denote byHn,E′ the graph obtained fromGn by adding the edges
of E′. Obviously Hn,E′ is planar, ∆(Hn,E′) = 4 and χ(Hn,E′) = 3. Moreover, Hn,E′ − {x, y} is bipartite if {x, y} = {vi, vj}
where 1 ≤ i < j ≤ 3, which implies that vsχ(Hn,E′) = 2. Also, Hn,E′ − {u2, v2, w2} is bipartite which gives ivsχ(Hn,E′) ≤ 3.
On the other hand, since Gn is a subgraph of Hn,E′ of certain chromaticity and ivsχ(Gn) = 3, we have ivsχ(Hn,E′) = 3 as
well. Thus Hn,E′ ∈ Sn.

u1

u2u3
w1

w2 w3

v1

v2 v3

q

a8
a7
a6

a5

a4

a3

a2

a1

Figure 3: The graph H18,E18
.

Let E′, E∗ ⊆ En, where E′ 6= E∗. We show that the graphs Hn,E′ and Hn,E∗ are not isomorphic. This is obvious if
|E′| 6= |E∗|. So assume that |E′| = |E∗| ≥ 1. We show that Aut(Hn,E′), the group of automorphisms of Hn,E′ , (and also
Aut(Hn,E∗)) is trivial. That is, every automorphism of Hn,E′ fixes all the vertices of Hn,E′ .

There are exactly 6 vertices of degree 4 inHn,E′ , namely u1, u2, u3, v1, v2, v3. Since each of u1, u2, u3 is in only one triangle
in Hn,E′ whereas each of v1, v2, v3 is in three such triangles, every automorphism must preserve the sets {u1, u2, u3} and
{v1, v2, v3}. The vertices u1 and u2 are both adjacent to the same vertex of Hn,E′ − {v1, v2, v3}. Also the vertices u1 and
u3 are both adjacent to the same vertex of Hn,E′ − {v1, v2, v3}. But u2 and u3 are not adjacent to the same vertex of
Hn,E′ − {v1, v2, v3}, because n ≥ 13. Consequently, every automorphism of Hn,E′ fixes u1.
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In view of a`−1(= w1), the vertex u3 has a neighbour of degree 2 which is not connected to u1. If u2 does not have such
a neighbour, then every automorphism of Hn,E′ fixes also u2 and u3. So assume that also u2 has a neighbour of degree 2

which is not connected to u1. Now start at u2, proceed with the above mentioned neighbour of u2 and construct a longest
path P2, interior vertices of which have all degree 2. Analogously start at u3, proceed with the above mentioned neighbour
of u3 and construct a longest path P3, interior vertices of which have all degree 2. Finally, let i be the smallest index such
that aia`−1−i ∈ E′. Then P2 has length iwhile P3 has length i+1. Hence, every automorphism ofHn,E′ must fix also u2 and
u3. Consequently, every automorphism of Hn,E′ fixes all the vertices of Hn,E′ , and so Hn,E′ and Hn,E∗ are not isomorphic
graphs.

Since En has `
2 − 2 = bn−7

2 c − 2 = bn−11
2 c edges and every subset gives different graph, there are exactly 2b

n−11
2 c

nonisomorphic graphs Hn,E′ .

Remark. Observe that considering subsets of a zig-zag path al−1, a1, al−2, a2, . . . instead of set of isolated edges, one can
obtain 2n−11 graphs satisfying the assumptions of Theorem 2.1, since the obtained graphs G have |Aut(G)| ≤ 2, and still
different subsets distinguish them.

We conclude the paper by presenting another, more general, construction of graphs G with ∆(G) = 4, χ(G) = 3,
ivsχ(G) = 3 and vsχ(G) = 2. Let H be a bipartite graph with ∆(H) ≤ 4 such that there exists a cycle C2k ⊆ H with k ≥ 3

and a pair a, b ∈ V (C2k) of non-adjacent vertices in H on odd distance dH(a, b) and having degH(a) = degH(b) = 2. Take the
union of H with a disjoint triangle uvw and add the edges av, bv, aw, bw. Denote the resulting graph by G (see Figure 4).

a bu

v

w

Figure 4: The graph G if H = C6.

Proposition 2.2. If H is of order m then G ∈ Sm+3. Moreover, if H is 2-connected (resp. planar) then G has the same
property.

Proof. Clearly, the order of G is m+ 3. As ∆(H) ≤ 4 and degH(a) = degH(b) = 2 we have ∆(G) = 4. In view of the triangle
uvw, the graph G is not bipartite. In order to show χ(G) = 3, note that G−{u, v, w} is bipartite. Take a proper 2-colouring
ϕ of G− {u, v, w} with colours 1 and 3 such that, without loss of generality, ϕ(a) = 1 and ϕ(b) = 3 (here we use that d(a, b)

is odd). Now change the colour of b to 1 and the colour of every c ∈ NG−{u,v,w}(b) to 2. Note that by assigning the colour 1

to u, the colour 2 to v and the colour 3 to w we obtain a proper 3-colouring of G.
Let us show next that ivsχ(G) = 3. Since G−{a, b, u} is bipartite, we have ivsχ(G) ≤ 3. Suppose there are non-adjacent

vertices x, y such that G − {x, y} is bipartite. In view of the triangle uvw, the intersection {x, y} ∩ {u, v, w} is a singleton.
We argue that this intersection is not the vertex u due to the triangles avw and bvw. Let P and Q be the two a − b paths
in C2k, and recall that both these paths are of odd lengths. Consequently, each of the cycles C ′ = P ∪ avb, C ′′ = P ∪ awb,
C ′′′ = Q∪ avb, and C ′′′′ = Q∪ awb is odd. Hence {x, y} ∩ {v, w} 6= ∅, which further implies that {x, y} ∩ {a, b} = ∅. However,
then at least one of the cycles C ′, C ′′, C ′′′, C ′′′′ appears in G− {x, y}. The obtained contradiction shows ivsχ(G) = 3.

Finally, we prove that vsχ(G) = 2. Clearly vsχ(G) ≤ 2, because G − {v, w} is bipartite. And since vsχ(G) = 1 implies
ivsχ(G) = 1, we have vsχ(G) = 2.

Remark. Note in passing that the order of the bound |Sn| ≥ 2b
n−11

2 c obtained in Theorem 2.1 is not (asymptotically) opti-
mal. Propositions 2.1 and 2.2 enable one to construct connected planar graphs within Sn with considerable ease. However,
establishing a more precise asymptotic estimate of |Sn| was not the focus of this short article; instead, the aim was simply to
point out to the existence of exponentially many graphs in Sn.
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