Research Article

Families of specialized Euler sums

Anthony Sofo ${ }^{*}$

College of Engineering and Science, Victoria University, Melbourne, Australia
(Received: 3 May 2022. Received in revised form: 1 June 2022. Accepted: 2 June 2022. Published online: 7 June 2022.)
(C) 2022 the author. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

A family of Euler sums is investigated that adds a new important class to the vast literature of existing knowledge of representation of Euler sums in terms of well-known special functions such as the Riemann zeta and Dirichet beta functions. Some examples are given to highlight the obtained theorems.

Keywords: Euler sums; polygamma functions; Riemann zeta function.
2020 Mathematics Subject Classification: 11M06, 11M35, 26B15, 33B15, 42A70.

1. Introduction

The study of Euler sums has its beginnings in the works of Euler [5, 6, 8]. In 1644, Mengoli was among the first to study the sum of the reciprocal of the square of the natural numbers

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots
$$

Euler's brilliance and insight eventually led him to the solution of the Basel problem

$$
\zeta(2)=\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\cdots=\sum_{n \geq 1} \frac{1}{n^{2}}
$$

Euler's enhanced insight and application is clear when he found the surprising result

$$
\zeta(2 k)=\sum_{n \geq 1} \frac{1}{n^{2 k}}=\frac{(-1)^{k+1} 2^{2 k-1} \pi^{2 k}}{(2 k)!} B_{2 k}
$$

Here k is a positive integer and B_{j} are the Bernoulli numbers defined by

$$
\sum_{j \geq 0} \frac{B_{j} t^{j}}{j!}=\frac{t}{e^{t}-1}, \quad(|t|<2 \pi)
$$

Remark 1.1. Let $f(t)$ be the above generating function of Bernoulli numbers. Since $\lim _{t \rightarrow 0} f(t)=1, f(t)$ is analytic at $t=0$. Also

$$
e^{t}-1=0 \Leftrightarrow t=2 k \pi, \quad(k=0, \pm 1, \pm 2, \cdots),
$$

which implies that $f(t)$ has simple poles at $t=2 k \pi, \quad(k= \pm 1, \pm 2, \cdots)$. Therefore $f(t)$ is analytic in an open disk of radius 2π centered at $t=0$. Hence the above Maclaurin series expansion of $f(t)$ is available and so $B_{j}=f^{(j)}(0),(j=0,1,2,3, \cdots)$.

Euler [6] gave a list of formula which for $q \in \mathbb{N} \backslash\{1\}$ can be written as

$$
S_{1, q}^{++}=\sum_{n \geq 1} \frac{H_{n}}{n^{q}}=\frac{q+2}{2} \zeta(q+1)-\frac{1}{2} \sum_{j=1}^{q-2} \zeta(q-j) \zeta(j+1)
$$

where the harmonic numbers $H_{n}^{(p)}, p \in \mathbb{N}, H_{n}^{(p)}=\sum_{j=1}^{n} \frac{1}{j^{p}}$ are the finite versions of the Riemann zeta function $\zeta(p)=\sum_{j \geq 1} \frac{1}{j^{p}}$ and its alternating version $\eta(p)=\sum_{j \geq 1} \frac{(-1)^{n+1}}{j^{p}}$. Here we define the set of natural numbers $\mathbb{N}:=\{1,2,3, \ldots\}, \mathbb{N}_{0}:=\{0,1,2,3, \ldots\}=\mathbb{N} \cup\{0\}, \mathbb{Z}^{-}:=\{-1,-2,-3, \ldots\}=\mathbb{Z}_{0}^{-} \backslash\{0\}$. The usual notation applies for \mathbb{C},

[^0]the set of complex numbers, \mathbb{R} the set of real numbers and \mathbb{R}^{+}the set of positive numbers. Significant further developments in Euler sums lay dormant for about a century and eventually Nielsen [9], Bailey et al. [2], Borwein et al. [3], Flajolet and Salvy [7], Sitaramanchandrarao [11] and others supplemented and extended the works of Euler. Nielsen and later Borwein gave closed form expressions of $S_{p, q}^{++}=\sum_{n \geq 1} \frac{H_{n}^{(p)}}{n^{q}}$ for $q \in \mathbb{N} \backslash\{1\}, p \in \mathbb{N}$. Sitaramanchandrarao gave an expression for
$$
S_{1, q}^{+-}=\sum_{n \geq 1} \frac{(-1)^{n+1} H_{n}}{n^{q}}
$$

For $p+q$ an odd weight, Flajolet and Salvy gave an identity for

$$
S_{p, q}^{+-}=\sum_{n \geq 1} \frac{(-1)^{n+1} H_{n}^{(p)}}{n^{q}}
$$

and recently, Alzer and Choi [1] published a result for, $p \in \mathbb{N}$,

$$
S_{p, 1}^{+-}=\sum_{n \geq 1} \frac{(-1)^{n+1} H_{n}^{(p)}}{n}
$$

Let us now define $h_{n}^{(p)}=\sum_{j=1}^{n} \frac{1}{(2 j-1)^{p}}, p \in \mathbb{C}, n \in \mathbb{C} \geq 1$, then $h_{n}^{(p)}=H_{2 n}^{(p)}-2^{-p} H_{n}^{(p)}$ and we are interested in investigation of the variant Euler sums

$$
\begin{equation*}
S_{p, q}^{++}(0, a)=\sum_{n \geq 1} \frac{H_{n}^{(p)}(0)}{(n+a)^{q}} \tag{1}
\end{equation*}
$$

where $H_{n}^{(p)}(0)=H_{n}^{(p)}$ and $a \in \mathbb{C} \backslash\{-1,-2,-3, \ldots\}$. An identity for $S_{1, q}^{++}(0, a)$ has recently been established by Sofo and Cvijovic [17]. For $q \geq 2$, and $(p+q)$ an odd weight, Nimbran and Sofo [10] gave an identity for

$$
\sum_{n \geq 1} \frac{h_{n}^{(p)}}{\left(n-\frac{1}{2}\right)^{q}}
$$

from which one may extract an identity for

$$
S_{p, q}^{++}\left(0,-\frac{1}{2}\right)=\sum_{n \geq 1} \frac{H_{n}^{(p)}}{\left(n-\frac{1}{2}\right)^{q}}
$$

Later in [23] Xu and Wang published results for $S_{1, q}^{++}\left(0,-\frac{1}{2}\right)$ and $S_{p, q}^{++}\left(0,-\frac{1}{2}\right)$ and considered the more general sum

$$
T_{p_{1}, p_{2}, p_{3}, \ldots p_{k}, q}=\sum_{n \geq 1} \frac{h_{n}^{\left(p_{1}\right)}, h_{n}^{\left(p_{2}\right)}, h_{n}^{\left(p_{3}\right)}, \ldots, h_{n}^{\left(p_{k}\right)}}{\left(n-\frac{1}{2}\right)^{q}}, q \geq 2 .
$$

In this paper we give a direct proof to the identity $S_{p, q}^{++}(0, a)=\sum_{n \geq 1} \frac{H_{n}^{(p)}}{(n+a)^{q}}$ and then develop a (presumably) new identity for

$$
T_{p, q}^{++}(a, t)=\sum_{n \geq 1} \frac{n^{t} H_{n}^{(p)}}{(n+a)^{q}},
$$

where $t \in \mathbb{N}_{0}, p \in \mathbb{N}, q \in \mathbb{N} \geq t+2$ and $a \in \mathbb{C} \backslash\{-1,-2,-3, \ldots\}$. For example, we evaluate the closed form

$$
\begin{equation*}
8 \sum_{n \geq 1} \frac{n H_{n}^{(2)}}{(2 n+1)^{3}}=32 \operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{4}{3} \ln ^{4} 2-8 \zeta(2) \ln ^{2} 2-\frac{121}{4} \zeta(4)+28 \zeta(3) \ln 2-\frac{49}{2} \zeta(2) \zeta(3)+\frac{93}{2} \zeta(5) . \tag{2}
\end{equation*}
$$

We recall the harmonic numbers

$$
H_{n}=\sum_{j=1}^{n} \frac{1}{j}=\gamma+\psi(n+1)
$$

where γ is the familiar Euler Mascheroni constant and for complex values of $z, z \in \mathbb{C} \backslash\{0,-1,-2, \cdots \cdots, \psi(z)$ is the digamma (or psi) function defined by

$$
\psi(z):=-\frac{d}{d z}\{\log \Gamma(z)\}=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}
$$

where $\Gamma(z)$ is the gamma function. In some examples that follow, we encounter the Clausen function where the generalized Clausen functions are defined for $z \in \mathbb{C}$ with $\Re(z)>1$ as,

$$
S_{z}(x)=\sum_{k \geq 1} \frac{\sin (k x)}{k^{z}}, C_{z}(x)=\sum_{k \geq 1} \frac{\cos (k x)}{k^{z}}
$$

and may be extended to all the complex plane through analytic continuation. When z is replaced by a non negative integer n, the standard Clausen functions are defined by the Fourier series

$$
\mathrm{Cl}_{n}(x)=\left\{\begin{array}{l}
\sum_{k \geq 1} \frac{\sin (k x)}{k^{n}}, \text { for } n \text { even } \\
\sum_{k \geq 1} \frac{\cos (k x)}{k^{n}}, \text { for } n \text { odd. }
\end{array}\right.
$$

The polylogarithm function $\operatorname{Li}_{p}(z)$ is, for $|z| \leq 1$,

$$
\begin{equation*}
\operatorname{Li}_{p}(z)=\sum_{m=1}^{\infty} \frac{z^{m}}{m^{p}} \tag{3}
\end{equation*}
$$

and in terms of the Polylogarithm,

$$
\mathrm{Cl}_{n}(\theta)=\left\{\begin{array}{l}
\frac{i}{2}\left(\operatorname{Li}_{n}\left(e^{-i \theta}\right)-\operatorname{Li}_{n}\left(e^{i \theta}\right)\right), \text { for even } n, \\
\frac{1}{2}\left(\operatorname{Li}_{n}\left(e^{-i \theta}\right)+\operatorname{Li}_{n}\left(e^{i \theta}\right)\right), \text { for odd } n
\end{array} .\right.
$$

The polygamma function

$$
\begin{equation*}
\psi^{(k)}(z)=\frac{d^{k}}{d z^{k}}\{\psi(z)\}=(-1)^{k+1} k!\sum_{r=0}^{\infty} \frac{1}{(r+z)^{k+1}} \tag{4}
\end{equation*}
$$

has the recurrence

$$
\psi^{(k)}(z+1)=\psi^{(k)}(z)+\frac{(-1)^{k} k!}{z^{k+1}}
$$

and can be connected to the Clausen function in the following way. The Clausen function of rational argument and even integer order is

$$
\mathrm{Cl}_{2 m}\left(\frac{\pi p}{q}\right)=\sum_{k \geq 1} \frac{\sin \left(\frac{k \pi p}{q}\right)}{k^{2 m}}
$$

and if p is an odd integer, then

$$
\begin{equation*}
\mathrm{Cl}_{2 m}\left(\frac{\pi p}{q}\right)=\frac{(2 q)^{-2 m}}{(2 m-1)!} \sum_{j=1}^{q} \sin \left(\frac{j \pi p}{q}\right)\left(\psi^{(2 m-1)}\left(\frac{j}{2 q}\right)-\psi^{(2 m-1)}\left(\frac{j+q}{2 q}\right)\right) \tag{5}
\end{equation*}
$$

and if p is an even integer, then

$$
\begin{equation*}
(2 m-1)!(q)^{2 m} \mathrm{Cl}_{2 m}\left(\frac{\pi p}{q}\right)=\sum_{j=1}^{q} \sin \left(\frac{j \pi p}{q}\right) \psi^{(2 m-1)}\left(\frac{j}{q}\right) \tag{6}
\end{equation*}
$$

There exists a large number of research papers exploring the representation, analysis and specific evaluations of Euler sums, see [16, 20, 21]. Some pertinent papers dealing with Euler sums are [12, 14, 19] and the excellent books [20, 22]. Many specific cases of the type (7) may be represented in terms of special functions such as the Riemann zeta function, the Clausen function and the polygamma functions. The papers [13, 15, 17, 18] also examined some representations of Euler sums.

2. Main results

Theorem 2.1. If $a \in \mathbb{C} \backslash\{-1,-2,-3, \ldots\},(p, q) \in \mathbb{N}, t \in \mathbb{N}_{0}$ with $p \geq 2, q \geq t+2$, then

$$
\begin{align*}
T_{p, q}^{++}(a, t) & =\sum_{n \geq 1} \frac{n^{t} H_{n}^{(p)}}{(n+a)^{q}} \tag{7}\\
& =\sum_{j=0}^{t}(-1)^{j+t+1}\binom{t}{j} a^{t-j}\left(\sum_{k \geq 1} \frac{H_{k+a-1}^{(q-j)}}{k^{p}}-\zeta(q-j) \zeta(p)\right) \tag{8}
\end{align*}
$$

where $H_{n}^{(p)}$ are harmonic numbers of order p and $\zeta(\cdot)$ are the Riemann zeta functions.

Proof. We can write

$$
\begin{equation*}
T_{p, q}^{++}(a, t)=\sum_{n \geq 1} \frac{n^{t} H_{n}^{(p)}}{(n+a)^{q}}=\sum_{n \geq 1} \frac{n^{t}}{(n+a)^{q}} \sum_{k=1}^{n} \frac{1}{k^{p}} \tag{9}
\end{equation*}
$$

From [4], one notes the manipulation of a double series in the form

$$
\sum_{n \geq 0} \sum_{k=0}^{n} \Omega_{k, n}=\sum_{n \geq 0} \sum_{k \geq 0} \Omega_{k, n+k}
$$

one can rewrite (9) as

$$
\begin{align*}
\sum_{n \geq 1} \frac{n^{t} H_{n}^{(p)}}{(n+a)^{q}} & =\sum_{n \geq 1} \frac{n^{t}}{(n+a)^{q}} \sum_{k=1}^{n} \frac{1}{k^{p}}=\sum_{k \geq 1} \frac{1}{k^{p}} \sum_{n \geq 0} \frac{(n+k)^{t}}{(n+a+k)^{q}} \\
& =\sum_{k \geq 1} \frac{(-1)^{q}}{k^{p}} \sum_{j=0}^{t}\binom{t}{j} a^{t-j} \frac{\psi^{(q-1-j)}(a+k)}{(q-1-j)!}, \tag{10}
\end{align*}
$$

where the polygamma functions are defined for $a \in \mathbb{C} \backslash\{-1,-2,-3, \ldots\}$. Using the identity, relating the Polygamma function to the harmonic numbers

$$
H_{\rho}^{(q+1)}=\zeta(q+1)+\frac{(-1)^{q}}{q!} \psi^{(q)}(p+1)
$$

we get from (10)

$$
\begin{aligned}
\sum_{n \geq 1} \frac{n^{t} H_{n}^{(p)}}{(n+a)^{q}} & =\sum_{j=0}^{t}\binom{t}{j} a^{t-j} \sum_{k \geq 1} \frac{(-1)^{q} \psi^{(q-1-j)}(a+k)}{k^{p}(q-1-j)!} \\
& =\sum_{j=0}^{t}(-1)^{j+t+1}\binom{t}{j} a^{t-j}\left(\sum_{k \geq 1} \frac{H_{k+a-1}^{(q-j)}}{k^{p}}-\zeta(q-j) \zeta(p)\right)
\end{aligned}
$$

and Theorem 2.1 is proved.

The next corollary deals with the special case of $t=0$ for the representation of the sum in (7).
Corollary 2.1. If $a \in \mathbb{C} \backslash\{-1,-2,-3, \ldots\},(p, q) \in \mathbb{N}, t=0$ with $p \geq 2, q \geq 2$, then

$$
\begin{align*}
T_{p, q}^{++}(a, 0) & =\sum_{n \geq 1} \frac{H_{n}^{(p)}}{(n+a)^{q}} \tag{11}\\
& =\zeta(q) \zeta(p)-\sum_{k \geq 1} \frac{H_{k+a-1}^{(q)}}{k^{p}} .
\end{align*}
$$

Proof. Follows directly from (2.1).

Corollary 2.2. If $a=\frac{1}{2},(p, q) \in \mathbb{N}$ with $p \geq 2, q \geq 2$, then

$$
\begin{aligned}
\frac{1}{2^{q}} T_{p, q}^{++}\left(\frac{1}{2}, 0\right) & =\frac{1}{2^{q}} \sum_{n \geq 1} \frac{H_{n}^{(p)}}{\left(n+\frac{1}{2}\right)^{q}} \\
& =\zeta(p)\left(\frac{1}{2^{q}} \zeta(q)+\eta(q)\right)+2^{p-1} S_{q, p}^{+-}+\left(\frac{1}{2^{q}}-2^{p-1}\right) S_{q, p}^{++}
\end{aligned}
$$

where $\eta(q)$ is the Dirichlet eta, or the alternating zeta function and $S_{q, p}^{++}, S_{q, p}^{+-}$are defined below in the proof.
Proof. For $p \geq 1$ and $q \geq 2$, we utilize the following notation

$$
S_{p, q}^{++}(\alpha, \beta)=\sum_{n \geq 1} \frac{H_{n}^{(p)}(\alpha)}{(n+\beta)^{q}}, S_{p, q}^{+-}(\alpha, \beta)=\sum_{n \geq 1} \frac{(-1)^{n+1} H_{n}^{(p)}(\alpha)}{(n+\beta)^{q}}
$$

where

$$
\zeta(p, \alpha)=H_{n}^{(p)}(\alpha)=\sum_{j=1}^{n} \frac{1}{(n+\alpha)^{p}}, n \in \mathbb{N}, p \in \mathbb{C}, \alpha \in \mathbb{C} \backslash\{-1,-2,-3, \ldots .\}
$$

Consider from Corollary 2.1,

$$
T_{p, q}^{++}\left(\frac{1}{2}, 0\right)=S_{p, q}^{++}\left(0, \frac{1}{2}\right)=\zeta(q) \zeta(p)-\sum_{n \geq 1} \frac{H_{n-\frac{1}{2}}^{(q)}}{n^{p}}
$$

and from the double argument of the polygamma function [14]

$$
H_{2 n}^{(q)}=\eta(q)+\frac{1}{2^{q}} H_{n}^{(q)}+\frac{1}{2^{q}} H_{n-\frac{1}{2}}^{(q)}
$$

we have

$$
\begin{aligned}
S_{p, q}^{++}\left(0, \frac{1}{2}\right) & =\zeta(q) \zeta(p)-\sum_{n \geq 1} \frac{2^{q}}{n^{p}}\left(H_{2 n}^{(q)}-\eta(q)-\frac{1}{2^{q}} H_{n}^{(q)}\right) \\
& =\zeta(q) \zeta(p)+2^{q} \eta(q) \zeta(p)+\sum_{n \geq 1} \frac{H_{n}^{(q)}}{n^{p}}-2^{q} \sum_{n \geq 1} \frac{H_{2 n}^{(q)}}{n^{p}} \\
& =\zeta(q) \zeta(p)+2^{q} \eta(q) \zeta(p)+S_{q, p}^{++}-2^{q+p-1}\left(S_{q, p}^{++}-S_{q, p}^{+-}\right),
\end{aligned}
$$

and therefore

$$
S_{p, q}^{++}\left(0, \frac{1}{2}\right)=\zeta(p)\left(\frac{1}{2^{q}} \zeta(q)+\eta(q)\right)+2^{p-1} S_{q, p}^{+-}+\left(\frac{1}{2^{q}}-2^{p-1}\right) S_{q, p}^{++}
$$

As noted earlier this result, in a modified form, was proved by Nimbran and Sofo [10] and later by Xu and Wang [23].

Remark 2.1. Similar analysis allows us to evaluate $T_{p, q}^{++}\left(\frac{1}{2}, t\right)$, so that after some simplification we have

$$
\begin{aligned}
T_{p, q}^{++}\left(\frac{1}{2}, t\right) & =\sum_{n \geq 1} \frac{n^{t} H_{n}^{(p)}}{\left(n+\frac{1}{2}\right)^{q}} \\
& =\sum_{j=0}^{t}(-1)^{j+t+1}\binom{t}{j}\left(\frac{1}{2}\right)^{t-j}\binom{\left(2^{p+q-j-1}-1\right) S_{q-j, p}^{++}-2^{p+q-j-1} S_{q-j, p}^{+-}}{-\left(2^{q-j} \eta(q-j)+\zeta(q-j)\right) \zeta(p)},
\end{aligned}
$$

where $\eta(\cdot)$ is the alternating zeta function.

The following required Euler sum identity appears in [17].
Corollary 2.3. Let x be a real number $x \in \mathbb{C} \backslash\{-1,-2,-1, \ldots\}$ and assume that $q \in \mathbb{N} \backslash\{1\}$. Then

$$
\begin{align*}
T_{1, q}^{++}(x, 0) & =\sum_{n \geq 1} \frac{H_{n}}{(n+x)^{q}}=S_{1, q}^{++}(0, x) \\
& =\frac{(-1)^{q}}{(q-1)!}\binom{\psi(x)+\gamma) \psi^{(q-1)}(x)}{-\frac{1}{2} \psi^{(q)}(x)+\sum_{j=1}^{q-2}\binom{q-2}{j} \psi^{(j)}(x) \psi^{(q-j-1)}(x)} \tag{12}
\end{align*}
$$

where γ is the Euler Mascheroni constant.
The following proposition generalizes the result (12).
Proposition 2.1. Let x be a real number, $x \neq-1,-2,-1, \ldots$, and assume that $q \in \mathbb{N} \backslash\{1\}$. Then

$$
\begin{align*}
T_{1, q}^{++}(x, 1)= & \sum_{n \geq 1} \frac{n H_{n}}{(n+x)^{q+1}}=S_{1, q}^{++}(0, x) \tag{13}\\
& +\frac{x}{q}\left((\gamma+\psi(x)) \psi^{(q)}(x)+\psi^{(q-1)}(x) \psi^{(\prime)}(x)-\frac{1}{2} \psi^{(q+1)}(x)\right) \\
& +\frac{\alpha}{q} \sum_{j=1}^{q-2}\binom{q-2}{j}\left(\psi^{(j+1)}(x) \psi^{(q-j-1)}(x)+\psi^{(j)}(x) \psi^{(q-j)}(x)\right),
\end{align*}
$$

the sum $S_{1, q}^{++}(0, x)$ is given by (12) and $\psi^{(q)}(x)$ are the polygamma functions.
Proof. In (12) we put $x=\frac{1}{y}, y \neq 0$, differentiate with respect to y and then rename y as x so that (13) follows. Similar analysis allows us to evaluate $T_{1, q}^{++}(x, t)$ for $t \in \mathbb{N}$ and $q \geq t+2$.

3. Examples

In what follows, some examples are discussed. From (12) put $x=\frac{2}{3}$ and $q=3$, therefore

$$
\begin{aligned}
T_{1,3}^{++}\left(\frac{2}{3}, 0\right) & =\sum_{n \geq 1} \frac{H_{n}}{\left(n+\frac{2}{3}\right)^{3}}=S_{1,3}^{++}\left(0, \frac{2}{3}\right) \\
& =-\frac{1}{2}\left(\psi\left(\frac{2}{3}\right)+\gamma\right) \psi^{(2)}\left(\frac{2}{3}\right)-\frac{1}{4} \psi^{(3)}\left(\frac{2}{3}\right)-\frac{1}{2} \psi^{(1)}\left(\frac{2}{3}\right) \psi^{(1)}\left(\frac{2}{3}\right) \\
& =\frac{\pi^{3} \sqrt{3}}{3} \ln 3+\frac{13 \pi \sqrt{3}}{6} \zeta(3)-\frac{39}{2} \zeta(3) \ln 3-10 \zeta(4)-\frac{1}{2}\left(\psi^{(1)}\left(\frac{2}{3}\right)\right)^{2}+\frac{1}{4} \psi^{(3)}\left(\frac{2}{3}\right),
\end{aligned}
$$

since

$$
\psi^{(1)}\left(\frac{2}{3}\right)=\frac{2 \pi^{2}}{3}-3 \sqrt{3} \mathrm{Cl}_{2}\left(\frac{2 \pi}{3}\right), \psi^{(3)}\left(\frac{2}{3}\right)=\frac{8 \pi^{4}}{3}-162 \sqrt{3} \mathrm{Cl}_{4}\left(\frac{2 \pi}{3}\right)
$$

we can simplify as

$$
\begin{aligned}
\sum_{n \geq 1} \frac{H_{n}}{\left(n+\frac{2}{3}\right)^{3}}= & \frac{\pi^{4}}{3}+\frac{\pi^{3} \sqrt{3}}{3} \ln 3+\frac{13 \pi \sqrt{3}}{6} \zeta(3)-\frac{39}{2} \zeta(3) \ln 3 \\
& +2 \sqrt{3} \pi^{2} \mathrm{Cl}_{2}\left(\frac{2 \pi}{3}\right)-\frac{27}{2}\left(\mathrm{Cl}_{2}\left(\frac{2 \pi}{3}\right)\right)^{2}-\frac{81 \sqrt{3}}{2} \mathrm{Cl}_{4}\left(\frac{2 \pi}{3}\right) .
\end{aligned}
$$

From (12) put $x=\frac{1}{4}$ and $q=3$, therefore

$$
\sum_{n \geq 1} \frac{H_{n}}{\left(n+\frac{1}{4}\right)^{3}}=192 \beta(4)-32 G^{2}-8 \pi^{2} G-14 \pi \zeta(3)-84 \zeta(3) \ln 2+\pi^{4}-3 \pi^{3} \ln 2,
$$

where the Catalan constant

$$
G=\beta(2)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{2}} \approx 0.91597
$$

is a special case of the Dirichlet beta function

$$
\begin{aligned}
\beta(z) & =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{z}},(\text { for } \operatorname{Re}(z)>0) \\
& =\frac{1}{(-2)^{2 z}(z-1)!}\left(\psi^{(z-1)}\left(\frac{1}{4}\right)-\psi^{(z-1)}\left(\frac{3}{4}\right)\right) \\
& =\frac{i}{2}\left(\operatorname{Li}_{z}(-i)-\operatorname{Li}_{z}(i)\right)
\end{aligned}
$$

with functional equation

$$
\beta(1-z)=\left(\frac{2}{\pi}\right)^{z} \sin \left(\frac{\pi z}{2}\right) \Gamma(z) \beta(z)
$$

extending the Dirichlet Beta function to the left hand side of the complex plane $\operatorname{Re}(z) \leq 0$.
From (13) put $x=\frac{2}{3}$ and $q=2$, therefore

$$
\begin{aligned}
T_{1,3}^{++}\left(\frac{2}{3}, 1\right)= & \sum_{n \geq 1} \frac{n H_{n}}{\left(n+\frac{2}{3}\right)^{3}}=S_{1,2}^{++}\left(0, \frac{2}{3}\right) \\
& +\frac{1}{3}\left(\left(\gamma+\psi\left(\frac{2}{3}\right)\right) \psi^{(2)}\left(\frac{2}{3}\right)+\psi^{(1)}\left(\frac{2}{3}\right) \psi^{(1)}\left(\frac{2}{3}\right)-\frac{1}{2} \psi^{(3)}\left(\frac{2}{3}\right)\right) \\
= & 13 \zeta(3) \ln 3+13 \zeta(3)-\frac{2 \pi^{3} \sqrt{3}}{9} \ln 3-\pi^{2} \ln 3-\frac{2 \pi^{4}}{9}-\frac{\pi^{3} \sqrt{3}}{9}-22 \sqrt{3} \mathrm{Cl}_{4}\left(\frac{2 \pi}{3}\right) \\
& +\left(\frac{9 \sqrt{3}}{2} \ln 3-\frac{4 \pi^{2} \sqrt{3}}{9}-\frac{3 \pi}{2}+9 \mathrm{Cl}_{2}\left(\frac{2 \pi}{3}\right)-\frac{27}{2}\right) \mathrm{Cl}_{2}\left(\frac{2 \pi}{3}\right)-\frac{13 \pi \sqrt{3}}{9} \zeta(3)
\end{aligned}
$$

From (7) put $a=\frac{1}{2}$ and $p=2, q=3, t=1$, therefore

$$
\begin{aligned}
T_{2,3}^{++}\left(\frac{1}{2}, 1\right) & =8 \sum_{n \geq 1} \frac{n H_{n}^{(2)}}{(2 n+1)^{3}}=\sum_{n \geq 1} \frac{n H_{n}^{(2)}}{\left(n+\frac{1}{2}\right)^{3}} \\
& =\sum_{j=0}^{1}(-1)^{j}\binom{1}{j}\left(\frac{1}{2}\right)^{1-j}\left(\sum_{k \geq 1} \frac{H_{k-\frac{1}{2}}^{(3-j)}}{k^{2}}-\zeta(3-j) \zeta(2)\right) \\
& =32 \operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{4}{3} \ln ^{4} 2-8 \zeta(2) \ln ^{2} 2-\frac{121}{4} \zeta(4)+28 \zeta(3) \ln 2-\frac{49}{2} \zeta(2) \zeta(3)+\frac{93}{2} \zeta(5),
\end{aligned}
$$

where $\operatorname{Li}_{4}\left(\frac{1}{2}\right)$ is the polylogarithm function described by (3).
From (7) put $a=2$ and $p=3, q=5, t=3$, therefore

$$
\begin{aligned}
T_{3,5}^{++}(2,3)= & \sum_{n \geq 1} \frac{n^{3} H_{n}^{(3)}}{(n+2)^{5}} \\
= & \sum_{j=0}^{3}(-1)^{j+1}\binom{3}{j}(2)^{3-j}\left(\sum_{k \geq 1} \frac{H_{k+1}^{(5-j)}}{k^{3}}-\zeta(5-j) \zeta(3)\right) \\
= & \sum_{j=0}^{3}(-1)^{j+1}\binom{3}{j}(2)^{3-j}\left(S_{5-j, 3}^{++}+\frac{1}{n^{3}(n+1)^{5-j}}-\zeta(5-j) \zeta(3)\right) \\
= & 96-33 \zeta(2)-12 \zeta(4)+3 \zeta(6)+8 S_{5,3}^{++}-17 \zeta(3)-2 \zeta(2) \zeta(3)-3 \zeta^{2}(3) \\
& +204 \zeta(7)-\frac{7}{2} \zeta(5)-120 \zeta(2) \zeta(5)-8 \zeta(3) \zeta(5),
\end{aligned}
$$

We know from Borwein [3] that for the Euler sum $S_{p, q}^{++}$there exists closed form solutions, in terms of Riemann zeta functions, for integers $(p, q), q \geq 2$ and of $p+q$ being an odd weight. Also $S_{p, q}^{++}$admits a closed form solution for $p=q$ and the pair $(p, q)=(4,2)$ and $(2,4)$.

4. Concluding remarks

We have studied families of Euler sums. We have given a direct proof of the Euler family $S_{p, q}^{++}(0, a)$ and given a closed form representation of the new Euler family $T_{p, q}^{++}(a, t)$. Some examples are highlighted in which we detail the representation of these sums in terms of special functions such as Beta functions, Clausen functions and Zeta functions.

Acknowledgement

The author is grateful to one of the anonymous referees for her/his constructive and encouraging comments, which helped to improve the presentation of this article.

References

[1] H. Alzer, J. Choi, Four parametric linear Euler sums, J. Math. Anal. Appl. 484 (2020) \#123661.
[2] D. H. Bailey, J. M. Borwein, R. Girgensohn, Experimental evaluation of Euler sums, Exp. Math. 3 (1994) 17-30.
[3] D. Borwein, J. M. Borwein, R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. 38 (1995) $277-294$.
[4] J. Choi, Notes on formal manipulations of double series, Commun. Korean Math. Soc. 18 (2003) 781-789.
[5] L. Euler, De summis serierum reciprocarum, Commun. Acad. Sci. Petrop. 7 (1734/35) 123-134.
[6] L. Euler, Meditationes circa singulare serierum genus, Novi Comment. Acad. Sci. Petrop. 20 (1776) 140-186.
[7] P. Flajolet, B. Salvy, Euler Sums and contour integral representations, Exp. Math. 7 (1998) 15-35.
[8] F. Lemmermeyer, M. Mattmüller (Eds.), Correspondence of Leonhard Euler with Christian Goldbach: Part I, Springer, Basel, 2015.
[9] N. Nielsen, Handbuch der Theorie der Gammafunktion, Reprinted by Chelsea Publishing Company, New York, 1965; Druck und Verlag von B. G. Teubner, Leipzig, 1906.
[10] S. S. Nimbran, A. Sofo, New interesting Euler sums, J. Class. Anal. 15 (2019) 9-22.
[11] R. Sitaramachandrarao, A formula of S. Ramanujan, J. Number Theory 25 (1987) 1-19
[12] A. Sofo, New classes of harmonic number identities, J. Integer Seq. 15 (2012) \#12.7.4.
[13] A. Sofo, Shifted harmonic sums of order two, Commun. Korean Math. Soc. 29 (2014) 239-255.
[14] A. Sofo, General order Euler sums with multiple argument, J. Number Theory 189 (2018) 255-271.
[15] A. Sofo, General order Euler sums with rational argument, Integral Transforms Spec. Funct. 30 (2019) 978-991.
[16] A. Sofo, A family of definite integrals, Scientia Ser. A Math. Sci. 31 (2021) 61-74.
[17] A. Sofo, D. Cvijović, Extensions of Euler harmonic sums, Appl. Anal. Discrete Math. 6 (2012) 317-328.
[18] A. Sofo, A. S. Nimbran, Euler-like sums via powers of log, arctan and arctanh functions, Integral Transforms Spec. Funct. 31 (2020) $966-981$.
[19] A. Sofo, H. M. Srivastava, A family of shifted harmonic sums, Ramanujan J. 37 (2015) 89-108.
[20] H. M. Srivastava, J. Choi, Series Associated With the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, 2001.
[21] S. M. Stewart, Explicit evaluation of some quadratic Euler-type sums containing double-index harmonic numbers, Tatra Mt. Math. Publ. 77 (2020) 73-98.
[22] C. I. Vălean, (Almost) Impossible Integrals, Sums, and Series, Springer, Cham, 2019.
[23] C. Xu, W. Wang, Two variants of Euler sums, Monatsh. Math., DOI: 10.1007/s00605-022-01683-4, In press.

[^0]: *E-mail address: anthony.sofo@vu.edu.au

