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Abstract
A family of Euler sums is investigated that adds a new important class to the vast literature of existing knowledge of
representation of Euler sums in terms of well-known special functions such as the Riemann zeta and Dirichet beta functions.
Some examples are given to highlight the obtained theorems.
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1. Introduction

The study of Euler sums has its beginnings in the works of Euler [5, 6, 8]. In 1644, Mengoli was among the first to study
the sum of the reciprocal of the square of the natural numbers
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Euler’s brilliance and insight eventually led him to the solution of the Basel problem

ζ (2) =
π2
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Euler’s enhanced insight and application is clear when he found the surprising result

ζ (2k) =
∑
n≥1

1

n2k
=

(−1)
k+1

22k−1π2k

(2k)!
B2k.

Here k is a positive integer and Bj are the Bernoulli numbers defined by

∑
j≥0

Bjt
j

j!
=

t

et − 1
, (|t| < 2π) .

Remark 1.1. Let f (t) be the above generating function of Bernoulli numbers. Since lim
t→0

f (t) = 1, f (t) is analytic at t = 0.

Also
et − 1 = 0⇔ t = 2kπ, (k = 0,±1,±2, · · ·) ,

which implies that f (t) has simple poles at t = 2kπ, (k = ±1,±2, · · ·) . Therefore f (t) is analytic in an open disk of radius
2π centered at t = 0. Hence the above Maclaurin series expansion of f (t) is available and so Bj = f (j) (0) , (j = 0, 1, 2, 3, · · ·) .

Euler [6] gave a list of formula which for q ∈ N\ {1} can be written as

S++
1,q =

∑
n≥1

Hn

nq
=
q + 2

2
ζ (q + 1)− 1

2

q−2∑
j=1

ζ (q − j) ζ (j + 1)

where the harmonic numbers H
(p)
n , p ∈ N, H

(p)
n =

∑n
j=1

1
jp are the finite versions of the Riemann zeta function

ζ (p) =
∑
j≥1

1
jp and its alternating version η (p) =

∑
j≥1

(−1)n+1

jp . Here we define the set of natural numbers
N := {1, 2, 3, ...} , N0 := {0, 1, 2, 3, ...} = N ∪ {0} , Z− := {−1,−2,−3, ...} = Z−0 \ {0} . The usual notation applies for C,
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the set of complex numbers, R the set of real numbers and R+ the set of positive numbers. Significant further develop-
ments in Euler sums lay dormant for about a century and eventually Nielsen [9], Bailey et al. [2], Borwein et al. [3], Flajolet
and Salvy [7], Sitaramanchandrarao [11] and others supplemented and extended the works of Euler. Nielsen and later
Borwein gave closed form expressions of S++

p,q =
∑
n≥1

H(p)
n

nq for q ∈ N\ {1} , p ∈ N. Sitaramanchandrarao gave an expression

for
S+−
1,q =

∑
n≥1

(−1)
n+1

Hn

nq
.

For p+ q an odd weight, Flajolet and Salvy gave an identity for

S+−
p,q =

∑
n≥1

(−1)
n+1

H
(p)
n

nq

and recently, Alzer and Choi [1] published a result for, p ∈ N,

S+−
p,1 =

∑
n≥1

(−1)
n+1

H
(p)
n

n
.

Let us now define h(p)n =
n∑
j=1

1
(2j−1)p , p ∈ C, n ∈ C ≥ 1, then h

(p)
n = H

(p)
2n − 2−pH

(p)
n and we are interested in investigation of

the variant Euler sums

S++
p,q (0, a) =

∑
n≥1

H
(p)
n (0)

(n+ a)
q (1)

where H(p)
n (0) = H

(p)
n and a ∈ C\ {−1,−2,−3, ....} . An identity for S++

1,q (0, a) has recently been established by Sofo and
Cvijovic [17]. For q ≥ 2, and (p+ q) an odd weight, Nimbran and Sofo [10] gave an identity for

∑
n≥1

h
(p)
n(

n− 1
2

)q
from which one may extract an identity for

S++
p,q

(
0,−1

2

)
=
∑
n≥1

H
(p)
n(

n− 1
2

)q .
Later in [23] Xu and Wang published results for S++

1,q

(
0,− 1

2

)
and S++

p,q

(
0,− 1

2

)
and considered the more general sum

Tp1,p2,p3,...pk,q =
∑
n≥1

h
(p1)
n , h

(p2)
n , h

(p3)
n , ..., h

(pk)
n(

n− 1
2

)q , q ≥ 2.

In this paper we give a direct proof to the identity S++
p,q (0, a) =

∑
n≥1

H(p)
n

(n+a)q and then develop a (presumably) new identity for

T++
p,q (a, t) =

∑
n≥1

ntH
(p)
n

(n+ a)
q ,

where t ∈ N0, p ∈ N, q ∈ N ≥ t+ 2 and a ∈ C\ {−1,−2,−3, ....} . For example, we evaluate the closed form

8
∑
n≥1

nH
(2)
n

(2n+ 1)
3 = 32Li4

(
1

2

)
+

4

3
ln4 2− 8ζ (2) ln2 2− 121

4
ζ (4) + 28ζ (3) ln 2− 49

2
ζ (2) ζ (3) +

93

2
ζ (5) . (2)

We recall the harmonic numbers
Hn =

n∑
j=1

1

j
= γ + ψ (n+ 1)

where γ is the familiar Euler Mascheroni constant and for complex values of z, z ∈ C\ {0,−1,−2, · · ··} , ψ (z) is the digamma
(or psi) function defined by

ψ (z) := − d

dz
{log Γ (z)} =

Γ′ (z)

Γ (z)
,
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where Γ (z) is the gamma function. In some examples that follow, we encounter the Clausen function where the generalized
Clausen functions are defined for z ∈ C with < (z) > 1 as,

Sz (x) =
∑
k≥1

sin (kx)

kz
, Cz (x) =

∑
k≥1

cos (kx)

kz

and may be extended to all the complex plane through analytic continuation. When z is replaced by a non negative integer
n, the standard Clausen functions are defined by the Fourier series

Cln (x) =



∑
k≥1

sin (kx)

kn
, for n even,

∑
k≥1

cos (kx)

kn
, for n odd.

.

The polylogarithm function Lip(z) is, for |z| ≤ 1,

Lip(z) =

∞∑
m=1

zm

mp
(3)

and in terms of the Polylogarithm,

Cln (θ) =


i

2

(
Lin

(
e−iθ

)
− Lin

(
eiθ
))
, for even n,

1

2

(
Lin

(
e−iθ

)
+ Lin

(
eiθ
))
, for odd n.

.

The polygamma function

ψ(k)(z) =
dk

dzk
{ψ(z)} = (−1)

k+1
k!

∞∑
r=0

1

(r + z)
k+1

(4)

has the recurrence
ψ(k)(z + 1) = ψ(k)(z) +

(−1)
k
k!

zk+1

and can be connected to the Clausen function in the following way. The Clausen function of rational argument and even
integer order is

Cl2m

(
πp

q

)
=
∑
k≥1

sin
(
kπp
q

)
k2m

and if p is an odd integer, then

Cl2m
(
πp

q

)
=

(2q)
−2m

(2m− 1)!

q∑
j=1

sin

(
jπp

q

)(
ψ(2m−1)(

j

2q
)− ψ(2m−1)(

j + q

2q
)

)
, (5)

and if p is an even integer, then

(2m− 1)! (q)
2m Cl2m

(
πp

q

)
=

q∑
j=1

sin

(
jπp

q

)
ψ(2m−1)(

j

q
). (6)

There exists a large number of research papers exploring the representation, analysis and specific evaluations of Euler
sums, see [16, 20, 21]. Some pertinent papers dealing with Euler sums are [12, 14, 19] and the excellent books [20, 22].
Many specific cases of the type (7) may be represented in terms of special functions such as the Riemann zeta function, the
Clausen function and the polygamma functions. The papers [13, 15, 17, 18] also examined some representations of Euler
sums.

2. Main results

Theorem 2.1. If a ∈ C\ {−1,−2,−3, ...}, (p, q) ∈ N, t ∈ N0 with p ≥ 2, q ≥ t+ 2, then

T++
p,q (a, t) =

∑
n≥1

ntH
(p)
n

(n+ a)
q (7)

=
t∑

j=0

(−1)
j+t+1

(
t
j

)
at−j

∑
k≥1

H
(q−j)
k+a−1
kp

− ζ (q − j) ζ (p)

 (8)

where H(p)
n are harmonic numbers of order p and ζ (·) are the Riemann zeta functions.
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Proof. We can write

T++
p,q (a, t) =

∑
n≥1

ntH
(p)
n

(n+ a)
q =

∑
n≥1

nt

(n+ a)
q

n∑
k=1

1

kp
(9)

From [4], one notes the manipulation of a double series in the form

∑
n≥0

n∑
k=0

Ωk,n =
∑
n≥0

∑
k≥0

Ωk,n+k

one can rewrite (9) as

∑
n≥1

ntH
(p)
n

(n+ a)
q =

∑
n≥1

nt

(n+ a)
q

n∑
k=1

1

kp
=
∑
k≥1

1

kp

∑
n≥0

(n+ k)
t

(n+ a+ k)
q

=
∑
k≥1

(−1)
q

kp

t∑
j=0

(
t
j

)
at−j

ψ(q−1−j) (a+ k)

(q − 1− j)!
, (10)

where the polygamma functions are defined for a ∈ C\ {−1,−2,−3, ...} .Using the identity, relating the Polygamma function
to the harmonic numbers

H(q+1)
ρ = ζ (q + 1) +

(−1)
q

q!
ψ(q) (p+ 1)

we get from (10)

∑
n≥1

ntH
(p)
n

(n+ a)
q =

t∑
j=0

(
t
j

)
at−j

∑
k≥1

(−1)
q
ψ(q−1−j) (a+ k)

kp (q − 1− j)!

=

t∑
j=0

(−1)
j+t+1

(
t
j

)
at−j

∑
k≥1

H
(q−j)
k+a−1
kp

− ζ (q − j) ζ (p)


and Theorem 2.1 is proved.

The next corollary deals with the special case of t = 0 for the representation of the sum in (7).

Corollary 2.1. If a ∈ C\ {−1,−2,−3, ...}, (p, q) ∈ N, t = 0 with p ≥ 2, q ≥ 2, then

T++
p,q (a, 0) =

∑
n≥1

H
(p)
n

(n+ a)
q (11)

= ζ (q) ζ (p)−
∑
k≥1

H
(q)
k+a−1
kp

.

Proof. Follows directly from (2.1).

Corollary 2.2. If a = 1
2 , (p, q) ∈ N with p ≥ 2, q ≥ 2, then

1

2q
T++
p,q

(
1

2
, 0

)
=

1

2q

∑
n≥1

H
(p)
n(

n+ 1
2

)q
= ζ (p)

(
1

2q
ζ (q) + η (q)

)
+ 2p−1S+−

q,p +

(
1

2q
− 2p−1

)
S++
q,p

where η (q) is the Dirichlet eta, or the alternating zeta function and S++
q,p , S

+−
q,p are defined below in the proof.

Proof. For p ≥ 1 and q ≥ 2, we utilize the following notation

S++
p,q (α, β) =

∑
n≥1

H
(p)
n (α)

(n+ β)
q , S

+−
p,q (α, β) =

∑
n≥1

(−1)
n+1

H
(p)
n (α)

(n+ β)
q

where
ζ (p, α) = H(p)

n (α) =

n∑
j=1

1

(n+ α)
p , n ∈ N, p ∈ C, α ∈ C\ {−1,−2,−3, ....} .
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Consider from Corollary 2.1,

T++
p,q

(
1

2
, 0

)
= S++

p,q

(
0,

1

2

)
= ζ (q) ζ (p)−

∑
n≥1

H
(q)

n− 1
2

np

and from the double argument of the polygamma function [14]

H
(q)
2n = η (q) +

1

2q
H(q)
n +

1

2q
H

(q)

n− 1
2

we have

S++
p,q

(
0,

1

2

)
= ζ (q) ζ (p)−

∑
n≥1

2q

np

(
H

(q)
2n − η (q)− 1

2q
H(q)
n

)

= ζ (q) ζ (p) + 2qη (q) ζ (p) +
∑
n≥1

H
(q)
n

np
− 2q

∑
n≥1

H
(q)
2n

np

= ζ (q) ζ (p) + 2qη (q) ζ (p) + S++
q,p − 2q+p−1

(
S++
q,p − S+−

q,p

)
,

and therefore
S++
p,q

(
0,

1

2

)
= ζ (p)

(
1

2q
ζ (q) + η (q)

)
+ 2p−1S+−

q,p +

(
1

2q
− 2p−1

)
S++
q,p .

As noted earlier this result, in a modified form, was proved by Nimbran and Sofo [10] and later by Xu and Wang [23].

Remark 2.1. Similar analysis allows us to evaluate T++
p,q

(
1
2 , t
)
, so that after some simplification we have

T++
p,q

(
1

2
, t

)
=
∑
n≥1

ntH
(p)
n(

n+ 1
2

)q
=

t∑
j=0

(−1)
j+t+1

(
t
j

)(
1

2

)t−j (
2p+q−j−1 − 1

)
S++
q−j,p − 2p+q−j−1S+−

q−j,p

−
(
2q−jη (q − j) + ζ (q − j)

)
ζ (p)

 ,

where η (·) is the alternating zeta function.

The following required Euler sum identity appears in [17].

Corollary 2.3. Let x be a real number x ∈ C\ {−1,−2,−1, ...} and assume that q ∈ N\ {1} . Then

T++
1,q (x, 0) =

∑
n≥1

Hn

(n+ x)
q = S++

1,q (0, x)

=
(−1)

q

(q − 1)!


(ψ (x) + γ)ψ(q−1) (x)

− 1
2ψ

(q) (x) +
∑q−2
j=1

(
q − 2
j

)
ψ(j) (x)ψ(q−j−1) (x)

 (12)

where γ is the Euler Mascheroni constant.

The following proposition generalizes the result (12).

Proposition 2.1. Let x be a real number, x 6= −1,−2,−1, ..., and assume that q ∈ N\ {1} . Then

T++
1,q (x, 1) =

∑
n≥1

n Hn

(n+ x)
q+1 = S++

1,q (0, x) (13)

+
x

q

(
(γ + ψ (x))ψ(q) (x) + ψ(q−1) (x)ψ(′) (x)− 1

2
ψ(q+1) (x)

)

+
α

q

q−2∑
j=1

(
q − 2
j

)(
ψ(j+1) (x)ψ(q−j−1) (x) + ψ(j) (x)ψ(q−j) (x)

)
,

the sum S++
1,q (0, x) is given by (12) and ψ(q) (x) are the polygamma functions.

Proof. In (12) we put x = 1
y , y 6= 0, differentiate with respect to y and then rename y as x so that (13) follows. Similar

analysis allows us to evaluate T++
1,q (x, t) for t ∈ N and q ≥ t+ 2.
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3. Examples

In what follows, some examples are discussed. From (12) put x = 2
3 and q = 3, therefore

T++
1,3

(
2

3
, 0

)
=
∑
n≥1

Hn(
n+ 2

3

)3 = S++
1,3

(
0,

2

3

)

= −1

2

(
ψ

(
2

3

)
+ γ

)
ψ(2)

(
2

3

)
− 1

4
ψ(3)

(
2

3

)
− 1

2
ψ(1)

(
2

3

)
ψ(1)

(
2

3

)

=
π3
√

3

3
ln 3 +

13π
√

3

6
ζ (3)− 39

2
ζ (3) ln 3− 10ζ (4)− 1

2

(
ψ(1)

(
2

3

))2

+
1

4
ψ(3)

(
2

3

)
,

since
ψ(1)

(
2

3

)
=

2π2

3
− 3
√

3Cl2
(

2π

3

)
, ψ(3)

(
2

3

)
=

8π4

3
− 162

√
3Cl4

(
2π

3

)
we can simplify as

∑
n≥1

Hn(
n+ 2

3

)3 =
π4

3
+
π3
√

3

3
ln 3 +

13π
√

3

6
ζ (3)− 39

2
ζ (3) ln 3

+2
√

3π2Cl2
(

2π

3

)
− 27

2

(
Cl2

(
2π

3

))2

− 81
√

3

2
Cl4

(
2π

3

)
.

From (12) put x = 1
4 and q = 3, therefore∑

n≥1

Hn(
n+ 1

4

)3 = 192β (4)− 32G2 − 8π2G− 14πζ (3)− 84ζ (3) ln 2 + π4 − 3π3 ln 2,

where the Catalan constant
G = β (2) =

∞∑
n=1

(−1)
n+1

(2n− 1)
2 ≈ 0.91597

is a special case of the Dirichlet beta function

β (z) =

∞∑
n=1

(−1)
n+1

(2n− 1)
z , ( for Re (z) > 0 )

=
1

(−2)
2z

(z − 1)!

(
ψ(z−1)

(
1

4

)
− ψ(z−1)

(
3

4

))

=
i

2

(
Liz(−i)− Liz(i)

)
with functional equation

β (1− z) =

(
2

π

)z
sin
(πz

2

)
Γ (z)β (z)

extending the Dirichlet Beta function to the left hand side of the complex plane Re(z) ≤ 0.

From (13) put x = 2
3 and q = 2, therefore

T++
1,3

(
2

3
, 1

)
=
∑
n≥1

n Hn(
n+ 2

3

)3 = S++
1,2

(
0,

2

3

)

+
1

3

((
γ + ψ

(
2

3

))
ψ(2)

(
2

3

)
+ ψ(1)

(
2

3

)
ψ(1)

(
2

3

)
− 1

2
ψ(3)

(
2

3

))

= 13ζ (3) ln 3 + 13ζ (3)− 2π3
√

3

9
ln 3− π2 ln 3− 2π4

9
− π3

√
3

9
− 22

√
3Cl4

(
2π

3

)

+

(
9
√

3

2
ln 3− 4π2

√
3

9
− 3π

2
+ 9Cl2

(
2π

3

)
− 27

2

)
Cl2

(
2π

3

)
− 13π

√
3

9
ζ (3) .
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From (7) put a = 1
2 and p = 2, q = 3, t = 1, therefore

T++
2,3

(
1

2
, 1

)
= 8

∑
n≥1

nH
(2)
n

(2n+ 1)
3 =

∑
n≥1

nH
(2)
n(

n+ 1
2

)3
=

1∑
j=0

(−1)
j

(
1
j

)(
1

2

)1−j
∑
k≥1

H
(3−j)
k− 1

2

k2
− ζ (3− j) ζ (2)


= 32Li4

(
1

2

)
+

4

3
ln4 2− 8ζ (2) ln2 2− 121

4
ζ (4) + 28ζ (3) ln 2− 49

2
ζ (2) ζ (3) +

93

2
ζ (5) ,

where Li4( 1
2 ) is the polylogarithm function described by (3).

From (7) put a = 2 and p = 3, q = 5, t = 3, therefore

T++
3,5 (2, 3) =

∑
n≥1

n3H
(3)
n

(n+ 2)
5

=

3∑
j=0

(−1)
j+1

(
3
j

)
(2)

3−j

∑
k≥1

H
(5−j)
k+1

k3
− ζ (5− j) ζ (3)


=

3∑
j=0

(−1)
j+1

(
3
j

)
(2)

3−j

(
S++
5−j,3 +

1

n3 (n+ 1)
5−j − ζ (5− j) ζ (3)

)

= 96− 33ζ (2)− 12ζ (4) + 3ζ (6) + 8S++
5,3 − 17ζ (3)− 2ζ (2) ζ (3)− 3ζ2 (3)

+ 204ζ (7)− 7

2
ζ (5)− 120ζ (2) ζ (5)− 8ζ (3) ζ (5) ,

We know from Borwein [3] that for the Euler sum S++
p,q there exists closed form solutions, in terms of Riemann zeta

functions, for integers (p, q) , q ≥ 2 and of p + q being an odd weight. Also S++
p,q admits a closed form solution for p = q

and the pair (p, q) = (4, 2) and (2, 4) .

4. Concluding remarks

We have studied families of Euler sums. We have given a direct proof of the Euler family S++
p,q (0, a) and given a closed form

representation of the new Euler family T++
p,q (a, t) . Some examples are highlighted in which we detail the representation

of these sums in terms of special functions such as Beta functions, Clausen functions and Zeta functions.
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