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Abstract

The generating function F-(x) that counts the involutions on n letters containing exactly r pairs of intersecting arcs in their
graphical representation is studied. More precisely, an algorithm that computes the generating function F,(z) for any given
r > 0 is presented. To derive the result for a given r, the algorithm performs certain routine checks on involutions of length
2r + 2 without fixed points. The algorithm is implemented in Maple and yields explicit formulas for 0 < r < 4.
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1. Introduction

In recent years, much attention has been paid to the problem of counting the permutations of length n containing a given
number r > 0 of occurrences of a certain pattern. Most of the researchers considered only the case » = 0; namely, studying
permutations avoiding a given pattern. Only a few of them considered the case r > 0, usually restricting themselves to the
patterns of length 3. For patterns of length 3, there are two different cases 7 = 123 and 7 = 132 (see Table 1).
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1 2 ( o ) [9]
n\n—3
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9 59n° 4+ 117Tn + 100 / 2n [4]
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r Number of permutations in S,, containing 132 exactly r times | Reference
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9 n> 4+ 17n 80n + 80 /2n — 6 8]
2n(n —1) n—2
r>3 (8]

Table 1: Counting occurrences of 123 (132) in a permutation.

Let I,, denote the set of all involutions in S, that is, I,, = {o € S,, | % = id}. On I,,, the focus of the pattern occurrence
counting problem has been on the cases r = 0,1, and patterns of size at most 4 (for instance, see [3, 5] and references
therein).
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In order to present the main result of this paper, a graphical representation of an involution and the following notation
is needed. For o = o105 - - - 0, € I, its graphical representation is a graph with vertices 1,2,...,n on a horizontal line and
arcs connecting (i, 0;) for o; # i. Henceforth, the involution is identified with its graphical representation. For example,
Figure 1 presents the involution 1462(10)37985.
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Figure 1: Graphical representation of the involution 1462(10)37985.

In this paper, we fix the pattern 7 to be :/2??,\2, or just say 7 is the arc-pattern 3412 (where the term arc-pattern
refers to the fact that each vertex of 7 is a termination point of an arc). We say that an involution o € I, contains 7 if there
exist two arcs (a,b) (¢, d) in o where the induced subgraph of o with vertices a, b, ¢, d equals 7. In other words, o contains 7
if there exists a pair of arcs (a,b) and (c,d) such that a < ¢ < b < d (i.e., (a,b) intersects (¢, d)). We define int(c) to be the
number of occurrences of 7 in 0. We denote the set of involutions o of I,, having int(c) = r by I,,, (see Table 2). We define
the generating function for the cardinality of I, , for a fixed r by F,.(x), that is, F.(x) = }_, < |In,r|2". In this paper, we

r\n H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572
1 0 0 0 0 1 5 21 77 266 882 2850 9042 28314 87802 270270 827190
2 0O 0 0 0 0 O 3 21 112 504 2070 7986 29502 105534 368368 1261260
3 0 0 0 0 0 O 1 7 48 264 1305 5907 25156 102232 400789 1526835
4 0 0 0 0 0 O 0 0 10 90 625 3575 18270 380594 1610010 6571660

Table 2: Number of involutions in I,, ., where 0 <n < 15and 0 < r < 4.

study the generating function F,.(z). More precisely, we present an algorithm that computes the generating function F,.(x)
for any given r > 0. To obtain the result for a given r, the algorithm performs certain routine checks on members of 15, o
without fixed points (recall that i is a fixed point of ¢ if o; = 7). The algorithm has been implemented in Maple and yields
explicit formulas for 0 < r < 4.

2. Main result

To any involution o € I,,, we assign a bipartite graph G, as follows. Let V; = [n] be the vertices in the first part of G,
and Vy = {abcd | (a,c) intersects (b, d) in o} be the vertices in the second part. Entry i € V; is connected by an edge to
occurrence g € V, if i is a letter in ¢. For example, Figure 2 presents the bipartite graph for the involution 1462(10)37985.
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Figure 2: The bipartite graph of the involution 1462(10)37985.

Let G’ be any arbitrary connected component of G, with vertices V’. Define V] = V; NV’ and V] = V, N V'. By the
definitions of the arc-pattern 7, we see that the greatest possible number of vertices in [n] of a connected component of G,
for which there are exactly r occurrences of 7 is realized with

This leads to the following basic lemma.
Lemma 2.1. For any connected component G’ of G,, we have that |V{| < 2|V/| + 2.

We denote the maximal connected component of G, containing the entry 1 by G/.. Clearly, there is no fixed point i # 1
such that i belongs to G/.. Thus, the number of vertices i € [n] belonging to G/, is even, or G/, consists only of the vertex 1.
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Let o’ = 04,04, - - - 04, be the entries of o that belong to G, and let 7, € Iy, be the corresponding involution. In this
context, o’ is called the kernel of o, with 7, referred to as the kernel shape of o and 2t the size of the kernel shape. The
capacity c,, of o is defined as the number of pairs of arcs that intersect in 7.

The following statement is implied immediately by Lemma 2.1.

Theorem 2.1. Let o € I,, .. Then the size of the kernel shape p of o is at most 2r + 2 and it has no fixed points.

We say that p is a kernel involution if it is the kernel shape for some involution o. Clearly, p is a kernel involution if and
only if 7, = p. Let p € I,, be any kernel involution, and we denote the set of involutions of all possible sizes whose kernel
shape equals p by I(p).

For any o € I(p), we decompose it into smaller involutions as follows. Let o € I,, N I(p). By the definitions, any edge
(i,04) (o; # 1) of o is either an edge of p or does not intersect any edge of p. Thus, o satisfies either

e If oy =1, then int(c) = int(oz - - 0,). In this case, we say that the kernel shape of o is p = 1;

e If ¢/ = 0y, --- 0y, is the kernel of o, then o can be written as o;,6(!) - 0;,,0(*) € I,, such that int(c) = int(p) +
int(cW ... oY), that is, any edge of o is either in ¢’ or in o(") - - - ¢(2)) | and any fixed point of o belongs to (V) - .. 5(2t),
Clearly, any letter of o(*) is smaller than any letter of ot1) for i =1,2,...,2t — 1.

Hence, the generating function for the number of involutions ¢ € I,, , with kernel shape p € I, is given by
zF,.(z) ifp=1,
2t
z? Z H F;,(z) otherwise.
i1+ Fig=r—c, j=1

Define K, to be the set of all kernel shapes p € I, having ¢, = r, where 1 < n < r + 1 (see Theorem 2.1). Hence, we can
state our main result.

Theorem 2.2. The generating function F,.(x) for r > 0 is given by
2t
Fo(x) =6+ aFp(z)+ Y 2™ > 17 @.
pGU'J'f:OKj i1+ Figr=r—c, j=1

Next, we apply this theorem for 0 < r < 4.

Casesr =0,1,...,4

Note that Ky = {21}. Thus, Theorem 2.2 gives
Fo(x) = 1+ aFy(a) + 2 F§ (x),

which leads to
1—2—+v1—-2x— 32
Fo(z) = M(2) = - ,

the generating function for the Mozkin numbers, as shown in [5]. For » = 1, we have K; = {3412}. Thus, Theorem 2.2

gives

Fi(x) = oFy(z) + 222 Fy (2) Fo(z) + 2* Ff (),
which implies
B M (z)
C1l—2—222M(z)’
For r = 2, we have Ky = {351624,465132,546213}. Thus, Theorem 2.2 gives

F1 (!L‘)

Fy(x) = aFy(x) + 2:L'2F0(m)F2(:):) + :E2F12(.T) + 4:c4F§’(x)F1 (z) + SxGFg(x),

which implies
Fy(z) = 2 MO (2)(1 — 2 — 2° M (2))(3 — 3z — 522 M (z))
(1~ 20°M(@)) ~

Similarly, for » = 3,4, we have
P.(x)
(1—x—222M(z))2—1’

F.(z) =
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where
Py(x) = 25M5(2) ((x — D+ 82%(x — 1)3M () + 1222 (322 — 2z + 1)(x — 1)2M?(x)

+ 22 (2 — 1)(492% — 662 + 33) M3 () + 82°(1922 — 34z + 17)M*(2)
+ 42%(x — 1) (2322 + 162 — 8) M (x) — 62%(2522 — 642 + 32) MO (z)

— 38429z — )M (z) — 256x12M8(x)),

Py(x) = 2®M8(z) (10(1: —1)% 4+ 11022 (x — 1) M (z) + 2*(5672* — 1302 + 65)(x — 1)*M?(z)

+ 224(8992% — 582x + 291)(z — 1)3M3(x) + 225(19372% — 22262 + 1113)(z — 1)>M*(z)
+ 225 (2 — 1)(27252% — 38702 + 114322 + 7922 — 198) M° () + 22°(12032* + 153823
— 795322 4 T184x — 1796) M°(2) — 562'%(x — 1)(1652% — 4642 4 232) M " (x)

— 2'%(223552% — 46848z + 23424) M8 (2) — 210562 (x — 1) M (x) — 75521’16]\/[10(1')).

General r

By induction on r, Theorem 2.2, together with the cases r = 0, 1, 2, yields the following result.
Theorem 2.3. The generating function F,.(x) for r > 0 is rational in x and /1 — 22 — 3z2. Moreover, it can be written as
Qr(x)/vV1—2x — 3x22r_1, where Q. (x) is a polynomial in /1 — 2x — 322 with rational function coefficients.

3. Further results

Theorem 2.2 can be extended as follows. Let F,.(z,q) be the generating function for the number of involutions in I, ,
according to the number of fixed points. Then, by our structure, we have the following result.

Theorem 3.1. The generating function F,.(x,q) for r > 0 is given by
2t
Fr(x,q) = 6,0 + 2qFy(x) + Y a* > 117 @ 9.
pGU}':OKj i1+ Figr=r—c, j=1

For example, Theorem 3.1 gives
Fo(l', q) =1+ quO(x,q) + x2F0(£7q)

and
Fl(x7Q) = qul(x7Q) + 2$2F1($,Q)F0(.’E,q) + $4(F0(.’E,q))4.

Hence,

1—2q— /(1 —2q)?— 422

F =
O(Iaq) 21‘2

and A

1—xq— 1—2q)2 — 422

Fileq) = (1 —zq— /(1 —=q) )

1624/ (1 — zq)? — 422
We conclude this paper by referring the reader to [2] for the ¢ = 0 case of Theorem 3.1.
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