Research Article

Involutions containing exactly r pairs of intersecting arcs

Toufik Mansour*

Department of Mathematics, University of Haifa, 3498838 Haifa, Israel
(Received: 30 March 2022. Received in revised form: 28 May 2022. Accepted: 30 May 2022. Published online: 4 June 2022.)
(C) 2022 the author. This is an open access article under the CC BY (International 4.0) license (www. creativecommons.org/licenses/by/4.0/).

Abstract

The generating function $F_{r}(x)$ that counts the involutions on n letters containing exactly r pairs of intersecting arcs in their graphical representation is studied. More precisely, an algorithm that computes the generating function $F_{r}(x)$ for any given $r \geq 0$ is presented. To derive the result for a given r, the algorithm performs certain routine checks on involutions of length $2 r+2$ without fixed points. The algorithm is implemented in Maple and yields explicit formulas for $0 \leq r \leq 4$.

Keywords: involution; arc-pattern 3412.
2020 Mathematics Subject Classification: 05A15, 05A05.

1. Introduction

In recent years, much attention has been paid to the problem of counting the permutations of length n containing a given number $r \geq 0$ of occurrences of a certain pattern. Most of the researchers considered only the case $r=0$; namely, studying permutations avoiding a given pattern. Only a few of them considered the case $r>0$, usually restricting themselves to the patterns of length 3 . For patterns of length 3, there are two different cases $\tau=123$ and $\tau=132$ (see Table 1).

r	Number of permutations in S_{n} containing 123 exactly r times	Reference
0	$\frac{1}{n+1}\binom{2 n}{n}$	$[6]$
1	$\frac{3}{n}\binom{2 n}{n-3}$	$[9]$
2	$\frac{59 n^{2}+117 n+100}{2 n(2 n-1)(n+5)}\binom{2 n}{n-4}$	$[4]$
$r=3,4, \ldots, 10$	$\frac{\text { Number of permutations in } S_{n} \text { containing } 132 \text { exactly } r \text { times }}{n+1}\binom{2 n}{n}$	Reference
r	$\binom{2 n-3}{n-3}$	$[6]$
0	$\frac{n^{3}+17 n^{2}-80 n+80}{2 n(n-1)}\binom{2 n-6}{n-2}$	$[1]$
1	$[8]$	
2		[8]

Table 1: Counting occurrences of 123 (132) in a permutation.

Let I_{n} denote the set of all involutions in S_{n}, that is, $I_{n}=\left\{\sigma \in S_{n} \mid \sigma^{2}=i d\right\}$. On I_{n}, the focus of the pattern occurrence counting problem has been on the cases $r=0,1$, and patterns of size at most 4 (for instance, see [3,5] and references therein).
*E-mail address: tmansour@univ.haifa.ac.il

In order to present the main result of this paper, a graphical representation of an involution and the following notation is needed. For $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in I_{n}$, its graphical representation is a graph with vertices $1,2, \ldots, n$ on a horizontal line and arcs connecting $\left(i, \sigma_{i}\right)$ for $\sigma_{i} \neq i$. Henceforth, the involution is identified with its graphical representation. For example, Figure 1 presents the involution $1462(10) 37985$.

Figure 1: Graphical representation of the involution 1462(10)37985.

In this paper, we fix the pattern τ to be ${\underset{i}{2}}_{\sigma_{3}}^{4}$, or just say τ is the arc-pattern 3412 (where the term arc-pattern refers to the fact that each vertex of τ is a termination point of an arc). We say that an involution $\sigma \in I_{n}$ contains τ if there exist two arcs $(a, b)(c, d)$ in σ where the induced subgraph of σ with vertices a, b, c, d equals τ. In other words, σ contains τ if there exists a pair of arcs (a, b) and (c, d) such that $a<c<b<d$ (i.e., (a, b) intersects (c, d)). We define $\operatorname{int}(\sigma)$ to be the number of occurrences of τ in σ. We denote the set of involutions σ of I_{n} having $\operatorname{int}(\sigma)=r$ by $I_{n, r}$ (see Table 2). We define the generating function for the cardinality of $I_{n, r}$ for a fixed r by $F_{r}(x)$, that is, $F_{r}(x)=\sum_{n \geq 0}\left|I_{n, r}\right| x^{n}$. In this paper, we

$r \backslash n$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	1	2	4	9	21	51	127	323	835	2188	5798	15511	41835	113634	310572
1	0	0	0	0	1	5	21	77	266	882	2850	9042	28314	87802	270270	827190
2	0	0	0	0	0	0	3	21	112	504	2070	7986	29502	105534	368368	1261260
3	0	0	0	0	0	0	1	7	48	264	1305	5907	25156	102232	400789	1526835
4	0	0	0	0	0	0	0	0	10	90	625	3575	18270	380594	1610010	6571660

Table 2: Number of involutions in $I_{n, r}$, where $0 \leq n \leq 15$ and $0 \leq r \leq 4$.
study the generating function $F_{r}(x)$. More precisely, we present an algorithm that computes the generating function $F_{r}(x)$ for any given $r \geq 0$. To obtain the result for a given r, the algorithm performs certain routine checks on members of $I_{2 r+2}$ without fixed points (recall that i is a fixed point of σ if $\sigma_{i}=i$). The algorithm has been implemented in Maple and yields explicit formulas for $0 \leq r \leq 4$.

2. Main result

To any involution $\sigma \in I_{n}$, we assign a bipartite graph G_{σ} as follows. Let $V_{1}=[n]$ be the vertices in the first part of G_{σ} and $V_{4}=\{a b c d \mid(a, c)$ intersects (b, d) in $\sigma\}$ be the vertices in the second part. Entry $i \in V_{1}$ is connected by an edge to occurrence $q \in V_{4}$ if i is a letter in q. For example, Figure 2 presents the bipartite graph for the involution 1462(10)37985.

Figure 2: The bipartite graph of the involution 1462(10)37985.

Let G^{\prime} be any arbitrary connected component of G_{σ} with vertices V^{\prime}. Define $V_{1}^{\prime}=V_{1} \cap V^{\prime}$ and $V_{4}^{\prime}=V_{4} \cap V^{\prime}$. By the definitions of the arc-pattern τ, we see that the greatest possible number of vertices in $[n]$ of a connected component of G_{σ} for which there are exactly r occurrences of τ is realized with

This leads to the following basic lemma.
Lemma 2.1. For any connected component G^{\prime} of G_{σ}, we have that $\left|V_{1}^{\prime}\right| \leq 2\left|V_{4}^{\prime}\right|+2$.
We denote the maximal connected component of G_{σ} containing the entry 1 by G_{σ}^{\prime}. Clearly, there is no fixed point $i \neq 1$ such that i belongs to G_{σ}^{\prime}. Thus, the number of vertices $i \in[n]$ belonging to G_{σ}^{\prime} is even, or G_{σ}^{\prime} consists only of the vertex 1 .

Let $\sigma^{\prime}=\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{2 t}}$ be the entries of σ that belong to G_{σ}^{\prime} and let $\pi_{\sigma} \in I_{2 t}$ be the corresponding involution. In this context, σ^{\prime} is called the kernel of σ, with π_{σ} referred to as the kernel shape of σ and $2 t$ the size of the kernel shape. The capacity $c_{\pi_{\sigma}}$ of σ is defined as the number of pairs of arcs that intersect in π_{σ}.

The following statement is implied immediately by Lemma 2.1.
Theorem 2.1. Let $\sigma \in I_{n, r}$. Then the size of the kernel shape ρ of σ is at most $2 r+2$ and it has no fixed points.
We say that ρ is a kernel involution if it is the kernel shape for some involution σ. Clearly, ρ is a kernel involution if and only if $\pi_{\rho}=\rho$. Let $\rho \in I_{n}$ be any kernel involution, and we denote the set of involutions of all possible sizes whose kernel shape equals ρ by $I(\rho)$.

For any $\sigma \in I(\rho)$, we decompose it into smaller involutions as follows. Let $\sigma \in I_{n} \cap I(\rho)$. By the definitions, any edge $\left(i, \sigma_{i}\right)\left(\sigma_{i} \neq i\right)$ of σ is either an edge of ρ or does not intersect any edge of ρ. Thus, σ satisfies either

- If $\sigma_{1}=1$, then $\operatorname{int}(\sigma)=\operatorname{int}\left(\sigma_{2} \cdots \sigma_{n}\right)$. In this case, we say that the kernel shape of σ is $\rho=1$;
- If $\sigma^{\prime}=\sigma_{i_{1}} \cdots \sigma_{i_{2 t}}$ is the kernel of σ, then σ can be written as $\sigma_{i_{1}} \sigma^{(1)} \cdots \sigma_{i_{2 t}} \sigma^{(2 t)} \in I_{n}$ such that $\operatorname{int}(\sigma)=\operatorname{int}(\rho)+$ $\operatorname{int}\left(\sigma^{(1)} \cdots \sigma^{(2 t)}\right)$, that is, any edge of σ is either in σ^{\prime} or in $\sigma^{(1)} \cdots \sigma^{(2 t)}$, and any fixed point of σ belongs to $\sigma^{(1)} \cdots \sigma^{(2 t)}$. Clearly, any letter of $\sigma^{(i)}$ is smaller than any letter of $\sigma^{(i+1)}$ for $i=1,2, \ldots, 2 t-1$.

Hence, the generating function for the number of involutions $\sigma \in I_{n, r}$ with kernel shape $\rho \in I_{2 t}$ is given by

$$
\begin{cases}x F_{r}(x) & \text { if } \rho=1 \\ x^{2 t} \sum_{i_{1}+\cdots+i_{2 t}=r-c_{\rho}} \prod_{j=1}^{2 t} F_{i_{j}}(x) & \text { otherwise }\end{cases}
$$

Define K_{r} to be the set of all kernel shapes $\rho \in I_{2 n}$ having $c_{\rho}=r$, where $1 \leq n \leq r+1$ (see Theorem 2.1). Hence, we can state our main result.

Theorem 2.2. The generating function $F_{r}(x)$ for $r \geq 0$ is given by

$$
F_{r}(x)=\delta_{r=0}+x F_{r}(x)+\sum_{\rho \in \cup_{j=0}^{r} K_{j}} x^{2 t} \sum_{i_{1}+\cdots+i_{2 t}=r-c_{\rho}} \prod_{j=1}^{2 t} F_{i_{j}}(x)
$$

Next, we apply this theorem for $0 \leq r \leq 4$.
Cases $r=0,1, \ldots, 4$
Note that $K_{0}=\{21\}$. Thus, Theorem 2.2 gives

$$
F_{0}(x)=1+x F_{0}(x)+x^{2} F_{0}^{2}(x)
$$

which leads to

$$
F_{0}(x)=M(x)=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}
$$

the generating function for the Mozkin numbers, as shown in [5]. For $r=1$, we have $K_{1}=\{3412\}$. Thus, Theorem 2.2 gives

$$
F_{1}(x)=x F_{1}(x)+2 x^{2} F_{1}(x) F_{0}(x)+x^{4} F_{0}^{4}(x)
$$

which implies

$$
F_{1}(x)=\frac{x^{4} M^{4}(x)}{1-x-2 x^{2} M(x)}
$$

For $r=2$, we have $K_{2}=\{351624,465132,546213\}$. Thus, Theorem 2.2 gives

$$
F_{2}(x)=x F_{2}(x)+2 x^{2} F_{0}(x) F_{2}(x)+x^{2} F_{1}^{2}(x)+4 x^{4} F_{0}^{3}(x) F_{1}(x)+3 x^{6} F_{0}^{6}(x)
$$

which implies

$$
F_{2}(x)=\frac{x^{6} M^{6}(x)\left(1-x-x^{2} M(x)\right)\left(3-3 x-5 x^{2} M(x)\right)}{\left(1-x-2 x^{2} M(x)\right)^{3}}
$$

Similarly, for $r=3,4$, we have

$$
F_{r}(x)=\frac{P_{r}(x)}{\left(1-x-2 x^{2} M(x)\right)^{2 r-1}}
$$

where

$$
\begin{aligned}
P_{3}(x)= & x^{6} M^{6}(x)\left((x-1)^{4}+8 x^{2}(x-1)^{3} M(x)+12 x^{2}\left(3 x^{2}-2 x+1\right)(x-1)^{2} M^{2}(x)\right. \\
& +2 x^{4}(x-1)\left(49 x^{2}-66 x+33\right) M^{3}(x)+8 x^{6}\left(19 x^{2}-34 x+17\right) M^{4}(x) \\
& +4 x^{6}(x-1)\left(23 x^{2}+16 x-8\right) M^{5}(x)-6 x^{8}\left(25 x^{2}-64 x+32\right) M^{6}(x) \\
& \left.-384 x^{10}(x-1) M^{7}(x)-256 x^{12} M^{8}(x)\right), \\
P_{4}(x)= & x^{8} M^{8}(x)\left(10(x-1)^{6}+110 x^{2}(x-1)^{5} M(x)+x^{2}\left(567 x^{2}-130 x+65\right)(x-1)^{4} M^{2}(x)\right. \\
& +2 x^{4}\left(899 x^{2}-582 x+291\right)(x-1)^{3} M^{3}(x)+2 x^{6}\left(1937 x^{2}-2226 x+1113\right)(x-1)^{2} M^{4}(x) \\
& +2 x^{6}(x-1)\left(2725 x^{4}-3870 x^{3}+1143 x^{2}+792 x-198\right) M^{5}(x)+2 x^{8}\left(1203 x^{4}+1538 x^{3}\right. \\
& \left.-7953 x^{2}+7184 x-1796\right) M^{6}(x)-56 x^{10}(x-1)\left(165 x^{2}-464 x+232\right) M^{7}(x) \\
& \left.-x^{12}\left(22355 x^{2}-46848 x+23424\right) M^{8}(x)-21056 x^{14}(x-1) M^{9}(x)-7552 x^{16} M^{10}(x)\right) .
\end{aligned}
$$

General r

By induction on r, Theorem 2.2, together with the cases $r=0,1,2$, yields the following result.
Theorem 2.3. The generating function $F_{r}(x)$ for $r \geq 0$ is rational in x and $\sqrt{1-2 x-3 x^{2}}$. Moreover, it can be written as $Q_{r}(x) / \sqrt{1-2 x-3 x^{2 r-1}}$, where $Q_{r}(x)$ is a polynomial in $\sqrt{1-2 x-3 x^{2}}$ with rational function coefficients.

3. Further results

Theorem 2.2 can be extended as follows. Let $F_{r}(x, q)$ be the generating function for the number of involutions in $I_{n, r}$ according to the number of fixed points. Then, by our structure, we have the following result.

Theorem 3.1. The generating function $F_{r}(x, q)$ for $r \geq 0$ is given by

$$
F_{r}(x, q)=\delta_{r=0}+x q F_{r}(x)+\sum_{\rho \in \cup_{j=0}^{r} K_{j}} x^{2 t} \sum_{i_{1}+\cdots+i_{2 t}=r-c_{\rho}} \prod_{j=1}^{2 t} F_{i_{j}}(x, q) .
$$

For example, Theorem 3.1 gives

$$
F_{0}(x, q)=1+x q F_{0}(x, q)+x^{2} F_{0}(x, q)
$$

and

$$
F_{1}(x, q)=x q F_{1}(x, q)+2 x^{2} F_{1}(x, q) F_{0}(x, q)+x^{4}\left(F_{0}(x, q)\right)^{4} .
$$

Hence,

$$
F_{0}(x, q)=\frac{1-x q-\sqrt{(1-x q)^{2}-4 x^{2}}}{2 x^{2}}
$$

and

$$
F_{1}(x, q)=\frac{\left(1-x q-\sqrt{(1-x q)^{2}-4 x^{2}}\right)^{4}}{16 x^{4} \sqrt{(1-x q)^{2}-4 x^{2}}}
$$

We conclude this paper by referring the reader to [2] for the $q=0$ case of Theorem 3.1.

References

[1] M. Bóna, Permutations with one or two 132-subsequences, Discrete Math. 181 (1998) 267-274.
[2] W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley, C. H. Yan, Crossings and nestings of matchings and partitions, Trans. Amer. Math. Soc. 359 (2007) 1555-1575.
[3] E. Egge, T. Mansour, Bivariate generating functions for involutions restricted by 3412, Adv. in Appl. Math. 36 (2006) 118-137.
[4] M. Fulemk, Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three, Adv. in Appl. Math. 30 (2003) 607-632
[5] O. Guibert, Combinatoire Des Permutations á Motifs Exclus en Liaison Avec Mots, Cartes Planaires et Tableaux de Young, Ph.D. thesis, Université Bordeaux-I, Bordeaux, 1995.
[6] D. E. Knuth, The Art of Computer Programming, 2nd Edition, Addison Wesley, Reading, 1973.
[7] T. Mansour, Counting occurrences of 123 in a permutation, Preprint.
[8] T. Mansour, A. Vainshtein, Counting occurrences of 132 in a permutation, Adv. in Appl. Math. 28 (2002) 185-195.
[9] J. Noonan, The number of permutations containing exactly one increasing subsequence of length three, Discrete Math. 152 (1996) $307-313$.

