Research Article Involutions containing exactly r pairs of intersecting arcs

Toufik Mansour*

Department of Mathematics, University of Haifa, 3498838 Haifa, Israel

(Received: 30 March 2022. Received in revised form: 28 May 2022. Accepted: 30 May 2022. Published online: 4 June 2022.)

© 2022 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The generating function $F_r(x)$ that counts the involutions on n letters containing exactly r pairs of intersecting arcs in their graphical representation is studied. More precisely, an algorithm that computes the generating function $F_r(x)$ for any given $r \ge 0$ is presented. To derive the result for a given r, the algorithm performs certain routine checks on involutions of length 2r + 2 without fixed points. The algorithm is implemented in Maple and yields explicit formulas for $0 \le r \le 4$.

Keywords: involution; arc-pattern 3412.

2020 Mathematics Subject Classification: 05A15, 05A05.

1. Introduction

In recent years, much attention has been paid to the problem of counting the permutations of length n containing a given number $r \ge 0$ of occurrences of a certain pattern. Most of the researchers considered only the case r = 0; namely, studying permutations avoiding a given pattern. Only a few of them considered the case r > 0, usually restricting themselves to the patterns of length 3. For patterns of length 3, there are two different cases $\tau = 123$ and $\tau = 132$ (see Table 1).

r	Number of permutations in S_n containing 123 exactly r times	Reference
0	$\frac{1}{n+1}\binom{2n}{n}$	[6]
1	$\frac{3}{n}\binom{2n}{n-3}$	[9]
2	$\frac{59n^2 + 117n + 100}{2n(2n-1)(n+5)} \binom{2n}{n-4}$	[4]
$r = 3, 4, \dots, 10$		[7]
r	Number of permutations in S_n containing 132 exactly r times	Reference
0	$\frac{1}{n+1}\binom{2n}{n}$	[6]
1	$\binom{2n-3}{n-3}$	[1]
2	$\frac{n^3 + 17n^2 - 80n + 80}{2n(n-1)} \binom{2n-6}{n-2}$	[8]
$r \ge 3$		[8]

Table 1: Counting occurrences of 123 (132) in a permutation.

Let I_n denote the set of all involutions in S_n , that is, $I_n = \{\sigma \in S_n \mid \sigma^2 = id\}$. On I_n , the focus of the pattern occurrence counting problem has been on the cases r = 0, 1, and patterns of size at most 4 (for instance, see [3, 5] and references therein).

^{*}E-mail address: tmansour@univ.haifa.ac.il

In order to present the main result of this paper, a graphical representation of an involution and the following notation is needed. For $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in I_n$, its graphical representation is a graph with vertices $1, 2, \ldots, n$ on a horizontal line and arcs connecting (i, σ_i) for $\sigma_i \neq i$. Henceforth, the involution is identified with its graphical representation. For example, Figure 1 presents the involution 1462(10)37985.

Figure 1: Graphical representation of the involution 1462(10)37985.

In this paper, we fix the pattern τ to be 1 - 2 - 3 - 4, or just say τ is the arc-pattern 3412 (where the term *arc-pattern* refers to the fact that each vertex of τ is a termination point of an arc). We say that an involution $\sigma \in I_n$ contains τ if there exist two arcs (a, b) (c, d) in σ where the induced subgraph of σ with vertices a, b, c, d equals τ . In other words, σ contains τ if there exists a pair of arcs (a, b) and (c, d) such that a < c < b < d (i.e., (a, b) intersects (c, d)). We define $int(\sigma)$ to be the number of occurrences of τ in σ . We denote the set of involutions σ of I_n having $int(\sigma) = r$ by $I_{n,r}$ (see Table 2). We define the generating function for the cardinality of $I_{n,r}$ for a fixed r by $F_r(x)$, that is, $F_r(x) = \sum_{n>0} |I_{n,r}| x^n$. In this paper, we

$r \backslash n$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	1	2	4	9	21	51	127	323	835	2188	5798	15511	41835	113634	310572
1	0	0	0	0	1	5	21	77	266	882	2850	9042	28314	87802	270270	827190
2	0	0	0	0	0	0	3	21	112	504	2070	7986	29502	105534	368368	1261260
3	0	0	0	0	0	0	1	7	48	264	1305	5907	25156	102232	400789	1526835
4	0	0	0	0	0	0	0	0	10	90	625	3575	18270	380594	1610010	6571660

Table 2: Number of involutions in $I_{n,r}$, where $0 \le n \le 15$ and $0 \le r \le 4$.

study the generating function $F_r(x)$. More precisely, we present an algorithm that computes the generating function $F_r(x)$ for any given $r \ge 0$. To obtain the result for a given r, the algorithm performs certain routine checks on members of I_{2r+2} without fixed points (recall that i is a fixed point of σ if $\sigma_i = i$). The algorithm has been implemented in Maple and yields explicit formulas for $0 \le r \le 4$.

2. Main result

To any involution $\sigma \in I_n$, we assign a bipartite graph G_{σ} as follows. Let $V_1 = [n]$ be the vertices in the first part of G_{σ} and $V_4 = \{abcd \mid (a, c) \text{ intersects } (b, d) \text{ in } \sigma\}$ be the vertices in the second part. Entry $i \in V_1$ is connected by an edge to occurrence $q \in V_4$ if i is a letter in q. For example, Figure 2 presents the bipartite graph for the involution 1462(10)37985.

Figure 2: The bipartite graph of the involution 1462(10)37985.

Let G' be any arbitrary connected component of G_{σ} with vertices V'. Define $V'_1 = V_1 \cap V'$ and $V'_4 = V_4 \cap V'$. By the definitions of the arc-pattern τ , we see that the greatest possible number of vertices in [n] of a connected component of G_{σ} for which there are exactly r occurrences of τ is realized with

This leads to the following basic lemma.

Lemma 2.1. For any connected component G' of G_{σ} , we have that $|V'_1| \leq 2|V'_4| + 2$.

We denote the maximal connected component of G_{σ} containing the entry 1 by G'_{σ} . Clearly, there is no fixed point $i \neq 1$ such that *i* belongs to G'_{σ} . Thus, the number of vertices $i \in [n]$ belonging to G'_{σ} is even, or G'_{σ} consists only of the vertex 1.

Let $\sigma' = \sigma_{i_1}\sigma_{i_2}\cdots\sigma_{i_{2t}}$ be the entries of σ that belong to G'_{σ} and let $\pi_{\sigma} \in I_{2t}$ be the corresponding involution. In this context, σ' is called the *kernel* of σ , with π_{σ} referred to as the *kernel shape* of σ and 2t the *size* of the kernel shape. The *capacity* $c_{\pi_{\sigma}}$ of σ is defined as the number of pairs of arcs that intersect in π_{σ} .

The following statement is implied immediately by Lemma 2.1.

Theorem 2.1. Let $\sigma \in I_{n,r}$. Then the size of the kernel shape ρ of σ is at most 2r + 2 and it has no fixed points.

We say that ρ is a *kernel involution* if it is the kernel shape for some involution σ . Clearly, ρ is a kernel involution if and only if $\pi_{\rho} = \rho$. Let $\rho \in I_n$ be any kernel involution, and we denote the set of involutions of all possible sizes whose kernel shape equals ρ by $I(\rho)$.

For any $\sigma \in I(\rho)$, we decompose it into smaller involutions as follows. Let $\sigma \in I_n \cap I(\rho)$. By the definitions, any edge (i, σ_i) $(\sigma_i \neq i)$ of σ is either an edge of ρ or does not intersect any edge of ρ . Thus, σ satisfies either

- If $\sigma_1 = 1$, then $int(\sigma) = int(\sigma_2 \cdots \sigma_n)$. In this case, we say that the kernel shape of σ is $\rho = 1$;
- If $\sigma' = \sigma_{i_1} \cdots \sigma_{i_{2t}}$ is the kernel of σ , then σ can be written as $\sigma_{i_1}\sigma^{(1)} \cdots \sigma_{i_{2t}}\sigma^{(2t)} \in I_n$ such that $int(\sigma) = int(\rho) + int(\sigma^{(1)} \cdots \sigma^{(2t)})$, that is, any edge of σ is either in σ' or in $\sigma^{(1)} \cdots \sigma^{(2t)}$, and any fixed point of σ belongs to $\sigma^{(1)} \cdots \sigma^{(2t)}$. Clearly, any letter of $\sigma^{(i)}$ is smaller than any letter of $\sigma^{(i+1)}$ for $i = 1, 2, \dots, 2t - 1$.

Hence, the generating function for the number of involutions $\sigma \in I_{n,r}$ with kernel shape $\rho \in I_{2t}$ is given by

$$\begin{cases} xF_r(x) & \text{if } \rho = 1, \\ x^{2t} \sum_{i_1 + \dots + i_{2t} = r - c_\rho} \prod_{j=1}^{2t} F_{i_j}(x) & \text{otherwise.} \end{cases}$$

Define K_r to be the set of all kernel shapes $\rho \in I_{2n}$ having $c_{\rho} = r$, where $1 \le n \le r+1$ (see Theorem 2.1). Hence, we can state our main result.

Theorem 2.2. The generating function $F_r(x)$ for $r \ge 0$ is given by

$$F_r(x) = \delta_{r=0} + xF_r(x) + \sum_{\rho \in \bigcup_{j=0}^r K_j} x^{2t} \sum_{i_1 + \dots + i_{2t} = r - c_\rho} \prod_{j=1}^{2t} F_{i_j}(x).$$

<u>.</u>

Next, we apply this theorem for $0 \le r \le 4$.

Cases r = 0, 1, ..., 4

Note that $K_0 = \{21\}$. Thus, Theorem 2.2 gives

$$F_0(x) = 1 + xF_0(x) + x^2F_0^2(x),$$

which leads to

$$F_0(x) = M(x) = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$

the generating function for the Mozkin numbers, as shown in [5]. For r = 1, we have $K_1 = \{3412\}$. Thus, Theorem 2.2 gives

$$F_1(x) = xF_1(x) + 2x^2F_1(x)F_0(x) + x^4F_0^4(x),$$

which implies

$$F_1(x) = \frac{x^4 M^4(x)}{1 - x - 2x^2 M(x)}$$

For r = 2, we have $K_2 = \{351624, 465132, 546213\}$. Thus, Theorem 2.2 gives

$$F_2(x) = xF_2(x) + 2x^2F_0(x)F_2(x) + x^2F_1^2(x) + 4x^4F_0^3(x)F_1(x) + 3x^6F_0^6(x),$$

which implies

$$F_2(x) = \frac{x^6 M^6(x)(1 - x - x^2 M(x))(3 - 3x - 5x^2 M(x))}{(1 - x - 2x^2 M(x))^3}.$$

Similarly, for r = 3, 4, we have

$$F_r(x) = \frac{P_r(x)}{(1 - x - 2x^2 M(x))^{2r-1}},$$

where

$$\begin{split} P_{3}(x) &= x^{6}M^{6}(x) \bigg((x-1)^{4} + 8x^{2}(x-1)^{3}M(x) + 12x^{2}(3x^{2}-2x+1)(x-1)^{2}M^{2}(x) \\ &\quad + 2x^{4}(x-1)(49x^{2}-66x+33)M^{3}(x) + 8x^{6}(19x^{2}-34x+17)M^{4}(x) \\ &\quad + 4x^{6}(x-1)(23x^{2}+16x-8)M^{5}(x) - 6x^{8}(25x^{2}-64x+32)M^{6}(x) \\ &\quad - 384x^{10}(x-1)M^{7}(x) - 256x^{12}M^{8}(x) \bigg), \end{split}$$

$$P_{4}(x) &= x^{8}M^{8}(x) \bigg(10(x-1)^{6} + 110x^{2}(x-1)^{5}M(x) + x^{2}(567x^{2}-130x+65)(x-1)^{4}M^{2}(x) \\ &\quad + 2x^{4}(899x^{2}-582x+291)(x-1)^{3}M^{3}(x) + 2x^{6}(1937x^{2}-2226x+1113)(x-1)^{2}M^{4}(x) \\ &\quad + 2x^{6}(x-1)(2725x^{4}-3870x^{3}+1143x^{2}+792x-198)M^{5}(x) + 2x^{8}(1203x^{4}+1538x^{3} \\ &\quad - 7953x^{2}+7184x-1796)M^{6}(x) - 56x^{10}(x-1)(165x^{2}-464x+232)M^{7}(x) \\ &\quad - x^{12}(22355x^{2}-46848x+23424)M^{8}(x) - 21056x^{14}(x-1)M^{9}(x) - 7552x^{16}M^{10}(x) \bigg). \end{split}$$

General r

By induction on *r*, Theorem 2.2, together with the cases r = 0, 1, 2, yields the following result.

Theorem 2.3. The generating function $F_r(x)$ for $r \ge 0$ is rational in x and $\sqrt{1-2x-3x^2}$. Moreover, it can be written as $Q_r(x)/\sqrt{1-2x-3x^2}^{2r-1}$, where $Q_r(x)$ is a polynomial in $\sqrt{1-2x-3x^2}$ with rational function coefficients.

3. Further results

Theorem 2.2 can be extended as follows. Let $F_r(x,q)$ be the generating function for the number of involutions in $I_{n,r}$ according to the number of fixed points. Then, by our structure, we have the following result.

Theorem 3.1. The generating function $F_r(x,q)$ for $r \ge 0$ is given by

$$F_r(x,q) = \delta_{r=0} + xqF_r(x) + \sum_{\rho \in \cup_{j=0}^r K_j} x^{2t} \sum_{i_1 + \dots + i_{2t} = r-c_\rho} \prod_{j=1}^{2t} F_{i_j}(x,q).$$

For example, Theorem 3.1 gives

$$F_0(x,q) = 1 + xqF_0(x,q) + x^2F_0(x,q)$$

and

$$F_1(x,q) = xqF_1(x,q) + 2x^2F_1(x,q)F_0(x,q) + x^4(F_0(x,q))^4.$$

Hence,

$$F_0(x,q) = \frac{1 - xq - \sqrt{(1 - xq)^2 - 4x^2}}{2x^2}$$

and

$$F_1(x,q) = \frac{(1 - xq - \sqrt{(1 - xq)^2 - 4x^2})^4}{16x^4\sqrt{(1 - xq)^2 - 4x^2}}.$$

We conclude this paper by referring the reader to [2] for the q = 0 case of Theorem 3.1.

References

- [1] M. Bóna, Permutations with one or two 132-subsequences, Discrete Math. 181 (1998) 267-274.
- [2] W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley, C. H. Yan, Crossings and nestings of matchings and partitions, Trans. Amer. Math. Soc. 359 (2007) 1555–1575.
- [3] E. Egge, T. Mansour, Bivariate generating functions for involutions restricted by 3412, Adv. in Appl. Math. 36 (2006) 118–137.
- [4] M. Fulemk, Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three, Adv. in Appl. Math. 30 (2003) 607–632
- [5] O. Guibert, Combinatoire Des Permutations à Motifs Exclus en Liaison Avec Mots, Cartes Planaires et Tableaux de Young, Ph.D. thesis, Université Bordeaux-I, Bordeaux, 1995.
- [6] D. E. Knuth, The Art of Computer Programming, 2nd Edition, Addison Wesley, Reading, 1973.
- [7] T. Mansour, Counting occurrences of 123 in a permutation, Preprint.
- [8] T. Mansour, A. Vainshtein, Counting occurrences of 132 in a permutation, Adv. in Appl. Math. 28 (2002) 185–195.
- [9] J. Noonan, The number of permutations containing exactly one increasing subsequence of length three, Discrete Math. 152 (1996) 307-313.