The automorphism group of the Andrásfai graph

Seyed Morteza Mirafzal*

Department of Mathematics, Lorestan University, Khorramabad, Iran

(Received: 11 February 2022. Received in revised form: 15 April 2022. Accepted: 16 May 2022. Published online: 2 June 2022.)

© 2022 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For \(n = 3k - 1 \), denote by \(Z_n \) the additive group of integers modulo \(n \), where \(k \) is an integer greater than 1. Let \(C \) be the subset of \(Z_n \) consisting of the elements congruent to 1 modulo 3. The Andrásfai graph \(\text{And}(k) \) is the Cayley graph \(\text{Cay}(Z_n; C) \). In this note, it is shown that the automorphism group of the graph \(\text{And}(k) \) is isomorphic to the dihedral group of order \(2n \).

Keywords: Cayley graph; Andrásfai graph; automorphism group.

2020 Mathematics Subject Classification: 05C25.

1. Introduction

In this paper, a graph \(\Gamma = (V, E) \) is considered as an undirected simple graph, where \(V = V(\Gamma) \) is the vertex set and \(E = E(\Gamma) \) is the edge set. The terminology and notation used in this paper are the same as given in [4, 15].

Let \(m \) be a positive integer. Denote by \(Z_m \) the additive group of integers modulo \(m \). Let \(k > 1 \) be an integer and \(n = 3k - 1 \). Let \(C = \{3t + 1 : 0 \leq t \leq k - 1\} \) be the subset of \(Z_n \) consisting of the elements congruent to 1 modulo 3. It is easy to see that \(C \) is a symmetric set; that is, \(C \) is an inverse closed subset of the group \(Z_n \). The Cayley graph \(\text{Cay}(Z_n; C) \) is known as the Andrásfai graph \(\text{And}(k) \). It is easy to check that the graph \(\text{And}(2) \) is isomorphic to the 5-cycle and the graph \(\text{And}(3) \) is the Möbius ladder of order 8. Also, the graph \(\text{And}(4) \) is depicted in Figure 1.

![Figure 1: The Andrásfai graph And(4).](image1.png)

The Cayley graph \(\text{And}(k) \) was first used by Andrásfai in [1] (such graphs were also appeared in his book [2]). It is not hard to show that the graph \(\text{And}(k) \) has diameter 2 and girth 4. The Andrásfai graph \(\text{And}(k) \) has some interesting properties and it is a classic example in the subject of graph homomorphism [4]. For a given graph \(G \), one of the problems concerning \(G \) is the determination of its automorphism group. To the best of the author’s knowledge, the automorphism group of the graph \(\text{And}(k) \) is still unknown. The main aim of the present paper is to determine the automorphism group \(\text{Aut}(\text{And}(k)) \) of \(\text{And}(k) \). It is shown that \(\text{Aut}(\text{And}(k)) \cong D_{2n} \), where \(D_{2n} \) denotes the dihedral group of order \(2n \) and \(n = 3k - 1 \).

2. Preliminaries

The graphs \(\Gamma_1 = (V_1, E_1) \) and \(\Gamma_2 = (V_2, E_2) \) are said to be isomorphic if there is a bijection \(\alpha : V_1 \rightarrow V_2 \) such that \(\{a, b\} \in E_1 \) if and only if \(\{\alpha(a), \alpha(b)\} \in E_2 \) for all \(a, b \in V_1 \). In such a case, the bijection \(\alpha \) is called an isomorphism. An automorphism of a graph \(\Gamma \) is an isomorphism of \(\Gamma \) with itself. The set of automorphisms of \(\Gamma \) with the operation of composition of functions is a group, known as the automorphism group of \(\Gamma \) and denoted by \(\text{Aut}(\Gamma) \).

*E-mail addresses: mirafzal.m@lu.ac.ir, smortezamirafzal@yahoo.com
The group of all permutations of a set \(V \) is denoted by \(\text{Sym}(V) \) or just by \(\text{Sym}(n) \) when \(|V| = n \). A permutation group \(G \) on \(V \) is a subgroup of \(\text{Sym}(V) \). In this case, it is said that \(G \) acts on \(V \). If \(G \) acts on \(V \), one says that \(G \) is transitive on \(V \) (or \(G \) acts transitively on \(V \)), when there is just one orbit. It means that for any two given elements \(u \) and \(v \) of \(V \), there is an element \(\beta \) of \(G \) such that \(\beta(u) = v \). If \(\Gamma \) is a graph with vertex set \(V \) then one can view each automorphism of \(\Gamma \) as a permutation on \(V \) and so \(\text{Aut}(\Gamma) = G \) is a permutation group on \(V \).

A graph \(\Gamma \) is said to be vertex-transitive if \(\text{Aut}(\Gamma) \) acts transitively on \(V(\Gamma) \). For \(v \in V(\Gamma) \) and \(G = \text{Aut}(\Gamma) \) the stabilizer subgroup \(G_v \) is the subgroup of \(G \) consisting of all automorphisms fixing \(v \). In the vertex-transitive case, all stabilizer subgroups \(G_v \) are conjugate in \(G \), and consequently, they are isomorphic.

In this case, the index of \(G_v \) in \(G \) is given by the equation

\[
|G : G_v| = \frac{|G|}{|G_v|} = |V(\Gamma)|.
\]

This fact is known as the Orbit-Stabilizer theorem, which is a useful tool in finding the automorphism group of vertex-transitive graphs. Let \(G \) be any abstract finite group with identity 1 and suppose that \(\Omega \) is a set of \(G \) with the following two properties.

(i). \(x \in \Omega \implies x^{-1} \in \Omega \);

(ii). \(1 \notin \Omega \).

The Cayley graph \(\Gamma = \Gamma(G; \Omega) \) is the (simple) graph whose edge set and vertex set are \(E(\Gamma) = \{(g, h) : g^{-1}h \in \Omega\} \) and \(V(\Gamma) = G \), respectively.

Although, in most situations, it is difficult to determine the automorphism group of a graph \(G \), and see how it acts on its vertex set or edge set, there are various papers in the literature on this topic; for example [3, 5–14, 16, 17].

A group \(G \) is said to be a semidirect product of \(N \) by \(Q \), denoted by \(G = N \rtimes Q \), if \(G \) contains subgroups \(N \) and \(Q \) such that:

(i). \(N \trianglelefteq G \) (\(N \) is a normal subgroup of \(G \));

(ii). \(NQ = G \);

(iii). \(N \cap Q = 1 \).

3. Main result

Definition 3.1. Let \(k > 1 \) be an integer and \(n = 3k - 1 \). Let \(C = \{3t + 1 : 0 \leq t \leq k - 1\} \) be the subset of \(\mathbb{Z}_n \) consisting of the elements congruent to 1 modulo 3. It is easy to see that \(C \) is a symmetric set; that is, \(C \) is an inverse closed subset of the group \(\mathbb{Z}_n \). The Cayley graph \(\text{Cay}(\mathbb{Z}_n; C) \) is known as the Andrásfai graph, denoted by \(\text{And}(k) \).

It follows from Definition 3.1 that \(\text{And}(k) \) is a regular graph of valency \(k \) and the vertex set of \(\text{And}(k) \) is the set \(V = V_0 \cup V_1 \cup V_2 \), where \(V_0 = \{3t : 0 \leq t \leq k - 1\}, V_1 = \{3t + 1 : 0 \leq t \leq k - 1\} \), and \(V_2 = \{3t + 2 : 0 \leq t \leq k - 2\} \). Thus, one has \(|V_0| = |V_1| = k \) and \(|V_2| = k - 1 \). If \(v \in V_0 \), then \(v = 3j \) for some \(j \) with \(0 \leq j \leq k - 1 \). Now, it is easy to see that

\[
N(v) = \{3i + 1 : j \leq i \leq k - 1\} \cup \{3l + 2 : 0 \leq l \leq j - 1\}.
\]

(1)

Also, if \(w \in V_2 \), then \(w = 3j + 2, 0 \leq j \leq k - 2 \), and thus we have

\[
N(w) = \{3i + 1 : 0 \leq i \leq j\} \cup \{3l : j + 1 \leq l \leq k - 1\}.
\]

(2)

Now, from (1) and (2), it follows that the graph induced by the set \(V_0 \cup V_2 \) in \(\text{And}(k) \) is a bipartite graph such that the vertex \(3j = v \in V_0 \) has \(j \) neighbors in \(V_2 \) and the vertex \(3j + 2 = w \in V_2 \) has \(k - j - 1 \) neighbors in \(V_0 \). Note that all the neighbors of the vertex \(v = 0 \) are in \(V_1 \). Let \(H = \{(V_0 - \{0\}) \cup V_2\} \) be the subgraph induced by the set \((V_0 - \{0\}) \cup V_2 \) in \(\text{And}(k) \). Thus, \(H \) is a connected bipartite graph such that if \(v, w \) are distinct vertices in \(H \), then we have \(N(v) \neq N(w) \) (note that the vertex \(v = 3(k - 1) \) is adjacent to every vertex in \(V_2 \) and the vertex \(w = 2 \) is adjacent to any vertex in \(V_0 \)).

In the sequel, the following fact is needed.

Lemma 3.1. Let \(\Gamma = (U \cup W, E) \) be a connected bipartite graph, where \(U \cap W = \emptyset \). If \(f \) is an automorphism of the graph \(\Gamma \), then \(f(U) = U \) and \(f(W) = W \), or \(f(U) = W \) and \(f(W) = U \).
Proof. Since automorphisms of Γ preserve distance between vertices and because two vertices are in the same part if and only if they are at even distance from each other, the result follows.

\[\text{Theorem 3.1. Let } k > 1 \text{ be an integer and } n = 3k - 1. \text{ For the automorphism group } \text{Aut}(\text{And}(k)) \text{ of the graph } \text{And}(k), \text{ it holds that } \text{Aut}(\text{And}(k)) \cong \mathbb{D}_{2n}, \text{ where } \mathbb{D}_{2n} \text{ denotes the dihedral group of order } 2n. \]

Proof. Let $\Gamma = (V,E) = \text{And}(k)$. Let $A = \text{Aut}(\Gamma)$ be the automorphism group of Γ. Consider the vertex $v = 0$ and let A_0 be its stabilizer subgroup; that is, $A_0 = \{ a \in A : a(0) = 0 \}$. The graph Γ, being a Cayley graph, is a vertex-transitive graph. From the well-known Orbit-Stabilizer theorem, it follows that

$$|V| = \frac{|A|}{|A_v|},$$

and hence $|A| = |V||A_v|$, where v is a vertex in Γ.

In the first step of the proof, $|A_0|$ is determined. Let $f \in A_0$. Let V_0, V_1, and V_2 be the subsets of V which are defined preceding (1) and take $W_0 = V_0 - \{0\}$. Thus, for the restriction of f to $N(0) = V_1$, one has $f(V_1) = V_1$ and hence $f(W_0 \cup V_2) = W_0 \cup V_2$. Let H be the subgraph induced by the set $W_0 \cup V_2$ in the graph $\Gamma = \text{And}(k)$ and $g = f|_{W_0 \cup V_2}$. Hence, g is an automorphism of H. It is clear that H is a connected bipartite graph with parts W_0 and V_2 such that $|W_0| = |V_2| = k - 1$. In each part of the graph H there is exactly one vertex x_j of degree j, $1 \leq j \leq k - 1$. In other words, the vertex $v_j = 3j$ is the unique vertex in W_0 of degree j. Also, the vertex $w_j = 3k - 1 - 3j = (3(k - j) - 1 = 3(k - j - 1) + 2$ is the unique vertex in V_2 of degree j. Note that $w_j = 3k - 1 - 3j$ is the inverse of $v_j = 3j$ in the cyclic group $\mathbb{Z}_{3k - 1}$ and hence it is denoted by $-v_j$.

Note that the mapping g is an automorphism of the connected bipartite graph H. Thus, from Lemma 3.1, it follows that

(i) $g(W_0) = W_0$ or
(ii) $g(W_0) = V_2$.

(i) Assume that $g(W_0) = W_0$. Since the vertex $v = 3j$ is the unique vertex of W_0 of degree j, for every $w \in W_0$ one has $g(w) = w$. Similarly, for every $v \in V_2$ one has $g(v) = v$. In other words, the restriction of the automorphism f to the set $W_0 \cup V_2$ is the identity mapping. We show that if $x \in V_1$, then $f(x) = x$. Note that we have $f(V_1) = V_1$. If $v = 3j + 1$ is a vertex in V_j, then the set of neighbors of v in W_0 is $V_j = \{ 3t : 1 \leq t \leq j \}$. Hence, v has exactly j neighbors in W_0. Since the number of neighbors of v and $f(v)$ in W_0 are equal, hence we must have $v = f(v)$. From our discussion it follows that if $g(W_0) = 0$, then the automorphism f is the identity automorphism of the graph $\text{And}(k)$, that is, $f = 1$.

(ii) Suppose that $g(W_0) = V_2$. Let $v \in W_0$. We saw that the vertex $-v$ is the unique vertex in V_2 such that its degree in the graph H is equal to the degree of v; that is, $\text{deg}_H(-v) = \text{deg}_H(v)$. It follows that for every vertex x of H we have $g(x) = -x$. Since $\Gamma = \text{And}(k)$ is an Abelian Cayley graph, the mapping $a : V(\Gamma) \to V(\Gamma)$ defined by the rule $a(v) = -v$ is an automorphism of the graph Γ. Let $b = af$. Thus, b is an automorphism of Γ such that its restriction to W_0 is the identity automorphism. Now, by what is proved in (i), it follows that $b = 1$. Since a has order 2 in $\text{Aut}(\Gamma)$, one has $f = a$.

We now conclude that if $A = \text{Aut}(\Gamma)$ and A_0 is the stabilizer subgroup of the vertex $v = 0$, then $A_0 = \{ 1, a \}$, and hence we have $|A_0| = 2$. Now, from Orbit-Stabilizer theorem it follows that $|A| = |A_0||V(\Gamma)| = 2(3k - 1)$. On the other hand, we know that $\text{Aut}(\Gamma)$ has a subgroup isomorphic to the cyclic group $\mathbb{Z}_{3k - 1}$; that is, $S = \{ f_v \mid v \in \mathbb{Z}_{3k - 1} \}$, where $f_v : V(\Gamma) \to V(\Gamma)$, $f_v(x) = x + v$ for every $x \in \mathbb{Z}_{3k - 1}$. It is easy to check that $A_0 \cap S = \{ 1 \}$. Hence,

$$|A_0S| = \frac{|A_0||S|}{|A_0 \cap S|} = 2(3k - 1) = |A|.$$

Thus, $A = SA_0$. Since the index of S in A is 2, S is a normal subgroup of A. Now, one has $A \cong S \times A_0 \cong \mathbb{Z}_{3k - 1} \times \mathbb{Z}_2 \cong \mathbb{D}_{2n}$, where $n = 3k - 1$.

\[\square \]

References