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Abstract
In this paper, a special formula for transforming integrals to series is presented. The resulting series involves binomial
transforms with the Taylor coefficients of the integrand. Five applications are provided for evaluating challenging integrals.
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1. Main theorem

The following result gives a rule for evaluating integrals in terms of series with binomial expressions.

Theorem 1.1. Let f(x) be a function defined and integrable on the interval (−r, λ] for some r > 0, λ > 0. Also, let f(x) be
analytic in a neighborhood of the origin with Taylor series

f(x) =

∞∑
n=0

anx
n.

Then, we have ∫ λ

0

f(x)dx =

∞∑
n=0

(
λ

λ+ 1

)n+1
1

(n+ 1)

n∑
m=0

bm =

∞∑
n=0

(
λ

λ+ 1

)n+1 n∑
k=0

(
n
k

)
ak
k + 1

where the sequence {bn} is the binomial transform of the sequence {an}:

bn =

n∑
k=0

(
n
k

)
ak.

In particular, for λ = 1, we have∫ 1

0

f(x)dx =

∞∑
n=0

1

2n+1(n+ 1)

n∑
m=0

bm =

∞∑
n=0

1

2n+1

n∑
k=0

(
n
k

)
ak
k + 1

and for λ→∞, we have ∫ ∞
0

f(x)dx =

∞∑
n=0

1

(n+ 1)

n∑
m=0

bm =

∞∑
n=0

n∑
k=0

(
n
k

)
ak
k + 1

.

Proof. With the substitution x = t
1−t , t =

x
x+1 , we get∫ λ

0

f(x)dx =

∫ λ/(λ+1)

0

1

(1− t)2
f

(
t

1− t

)
dt =

∫ λ/(λ+1)

0

1

1− t

{
1

1− t
f

(
t

1− t

)}
dt

=

∫ λ/(λ+1)

0

1

1− t

{ ∞∑
n=0

tn
n∑
k=0

(
n
k

)
ak

}
dt =

∫ λ/(λ+1)

0

1

1− t

{ ∞∑
n=0

bn t
n

}
dt

by using Euler’s series transformation formula

1

1− t
f

(
t

1− t

)
=

∞∑
n=0

tn

{
n∑
k=0

(
n
k

)
ak

}
=

∞∑
n=0

bn t
n
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where the sequence {bn} is the binomial transform of the sequence {an}as described above.
Expanding (1− t)−1 as geometric series and using Cauchy’s rule for multiplication of two power series, we write∫ λ/(λ+1)

0

1

1− t

{ ∞∑
n=0

bn t
n

}
dt =

∫ λ/(λ+1)

0

∞∑
n=0

{
n∑
k=0

bk

}
tndt =

∞∑
n=0

(
λ

λ+ 1

)n+1
1

n+ 1

n∑
k=0

bk

by the property
n∑
k=0

(
n
k

)
ak
k + 1

=
1

n+ 1

n∑
k=0

bk

(see p. 61 in [1]). The interchange of integration and summation is justified as we work with power series. This way the
theorem is proved.

Differentiating in Theorem 1.1 with respect to λ, we come to the following result.

Corollary 1.1. Under the conditions of Theorem 1.1, we have the representation

f(λ) =
1

(λ+ 1)2

∞∑
n=0

(
λ

λ+ 1

)n n∑
m=0

bm.

2. Applications

In this section, we give some applications of Theorem 1.1 in the form of examples.

Example 2.1. In this example, we evaluate the integral∫ ∞
0

log(1 + t)

t(1 + t)
dt.

We start from the well-known series
∞∑
n=1

Hn t
n =
− log (1− t)

1− t
,

(here Hn = 1 + 1
2 + . . .+ 1

n and H0 = 0 are the harmonic numbers). Replacing t by −t and dividing both sides by t, we get

log (1 + t)

t(1 + t)
=

∞∑
k=0

(−1)kHk+1 t
k

and we take ak = (−1)kHk+1. Equation (9.32) in [1] says that
n∑
k=0

(
n
k

)
ak
k + 1

=

n∑
k=0

(
n
k

)
(−1)kHk+1

k + 1
=

1

(n+ 1)2
.

This way ∫ ∞
0

log(1 + t)

t(1 + t)
dt =

∞∑
n=0

n∑
k=0

(
n
k

)
ak
k + 1

=

∞∑
n=0

1

(n+ 1)2
=
π2

6
,

(see Entry 4.291.12 in [3]). �

The integral given in the next example can be reduced to the one given in Example 2.1 using integration by parts, but
we evaluate it independently for illustrating the method.

Example 2.2. Here, we evaluate the difficult integral∫ ∞
0

(
log(1 + t)

t

)2

dt.

We start from the well-known power series (see (5.5.28) in [4])

log2(1− t)
2t

=

∞∑
n=1

Hn t
n

n+ 1

where we replace t by −t and then divide both sides by t to write

log2(1 + t)

2t2
=

∞∑
n=1

(−1)n−1Hn t
n−1

n+ 1
=

∞∑
k=0

(−1)kHk+1 t
k

k + 2
.
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So, we take

ak =
(−1)kHk+1

k + 2
,

n∑
k=0

(
n
k

)
ak
k + 1

=

n∑
k=0

(
n
k

)
(−1)kHk+1

(k + 1)(k + 2)
.

Now,
n∑
k=0

(
n
k

)
(−1)kHk+1

(k + 1)(k + 2)
=

n∑
k=0

(
n
k

)
(−1)kHk+1

k + 1
−

n∑
k=0

(
n
k

)
(−1)kHk+1

k + 2

=
1

(n+ 1)2
−

n∑
k=0

(
n
k

)
(−1)k

k + 2

(
Hk +

1

k + 1

)
(using again (9.32) of [1]). Next, applying property (5.5) from [1], we get

−
n∑
k=0

(
n
k

)
(−1)k

k + 2

(
Hk +

1

k + 1

)
= −

n∑
k=0

(
n
k

)
(−1)kHk

k + 2
−

n∑
k=0

(
n
k

)
(−1)k

(k + 1)(k + 2)

=
n+Hn

(n+ 1)(n+ 2)
− 1

n+ 2
=

Hn − 1

(n+ 1)(n+ 2)
.

It is easy to see that
∞∑
n=0

Hn − 1

(n+ 1)(n+ 2)
=

∞∑
n=0

Hn

(n+ 1)(n+ 2)
−
∞∑
n=0

1

(n+ 1)(n+ 2)
= 1− 1 = 0

and we compute ∫ ∞
0

log2(1 + t)

2t2
dt =

∞∑
n=0

n∑
k=0

(
n
k

)
ak
k + 1

=

∞∑
n=0

1

(n+ 1)2
=
π2

6
.

Finally, ∫ ∞
0

(
log(1 + t)

t

)2

dt =
π2

3
.

�

Example 2.3. Using some well-known generating functions, we evaluate the integral∫ 1

0

Li2

(
t

1 + t

)
dt.

Here Li2(x) is the dilogarithm [5]:

Li2(x) =

∞∑
n=1

xn

n2
(|x| < 1).

We have
Li2

(
t

1 + t

)
=

∞∑
n=1

(−1)n−1Hn t
n

n
(|t| < 1)

so that we take
an =

(−1)n−1Hn

n
,

ak
k + 1

=
(−1)k−1Hk

k(k + 1)
=

(−1)k−1Hk

k
− (−1)k−1Hk

k + 1
,

and using two binomial transform formulas (9.4a) and (9.32) from [1], we have
n∑
k=0

(
n
k

)
ak
k + 1

=

n∑
k=0

(
n
k

)
(−1)k−1Hk

k
−

n∑
k=0

(
n
k

)
(−1)k−1Hk

k + 1
= H(2)

n −
Hn

n+ 1
.

Here,
H(2)
n = 1 +

1

22
+ . . .+

1

n2
, H

(2)
0 = 0.

This way ∫ 1

0

Li2

(
t

1 + t

)
dt =

∞∑
n=0

H
(2)
n

2n+1
−
∞∑
n=0

Hn

2n+1(n+ 1)
.

These two series are easy to evaluate. We have (see p. 292 in [2])
∞∑
n=0

H(2)
n xn =

Li2(x)

1− x
,

∞∑
n=0

Hn x
n

n+ 1
=

log2(1− x)
2x

(|x| < 1)
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and we compute with x = 1
2 , ∫ 1

0

Li2

(
t

1 + t

)
dt = Li2

(
1

2

)
− log2(2)

2
=
π2

12
− log2(2),

here we used the well-known formula:
Li2

(
1

2

)
=
π2

12
− log2 2

2
.

�

Example 2.4. Let q be a positive integer. In this example, we evaluate the integral∫ 1

0

xq

(1 + x)q+1
dx.

Let ak =

(
k
q

)
(−1)k. Then

f(x) =

∞∑
k=0

akx
k =

∞∑
k=0

(
k
q

)
(−1)kxk =

∞∑
k=q

(
k
q

)
(−x)k =

(−x)q

(1 + x)q+1
=

(−1)qxq

(1 + x)q+1
.

∫ 1

0

f(x)dx = (−1)q
∫ 1

0

xq

(1 + x)q+1
dx =

∞∑
n=0

1

2n+1

n∑
k=0

(
n
k

)
ak
k + 1

=

∞∑
n=0

1

2n+1

n∑
k=0

(
n
k

)(
k
q

)
(−1)k

k + 1
= (−1)q

∞∑
n=q

1

2n+1(n+ 1)

because (see Equation (10.28) in [1])
n∑
k=0

(
n
k

)(
k
q

)
(−1)k

k + 1
=

(−1)q

n+ 1
.

This way ∫ 1

0

xq

(1 + x)q+1
dx =

∞∑
n=0

1

2n+1(n+ 1)
−
q−1∑
n=0

1

2n+1(n+ 1)
= log 2−

q∑
n=1

1

2nn
,

(see Entry 3.194.8 in [3]). �

Example 2.5. In this example, we evaluate the challenging integral∫ 1

0

log2(1 + x)

2x
dx.

We have the expansion (see (5.5.2) in [4])

log2(1 + t)

2t
=

∞∑
k=0

(−1)k−1Hk t
k

k + 1
(|t| < 1)

and here
ak =

(−1)k−1Hk

k + 1
,

n∑
k=0

(
n
k

)
(−1)k−1Hk

k + 1
=

Hn

n+ 1

(see (9.32) in [1]). Also, (see (5.7) in [1])
n∑
k=0

(
n
k

)
ak
k + 1

=
1

n+ 1

n∑
k=0

Hk

k + 1
.

Therefore, ∫ 1

0

log2(1 + x)

2x
dx =

∞∑
n=0

1

2n+1(n+ 1)

n∑
k=0

Hk

k + 1
.

A simple computation shows that
n∑
k=0

Hk

k + 1
=

1

2

(
H2
n −H(2)

n

)
+

Hn

n+ 1
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(an identity interesting by itself). From this, one gets∫ 1

0

log2(1 + x)

2x
dx =

1

2

∞∑
n=0

H2
n −H

(2)
n

2n+1(n+ 1)
+

∞∑
n=0

Hn

2n+1(n+ 1)2
.

These two sums can be evaluated easily by using the generating functions
∞∑
n=0

(H2
n −H

(2)
n ) tn+1

n+ 1
= −1

3
log3(1− t),

∞∑
n=0

Hn t
n+1

(n+ 1)2
=

1

2
log(t) log2(1− t) + log(1− t)Li2(1− t)− Li3(1− t) + ζ(3)

(see p. 303 in [5]). Here,

Li3(x) =

∞∑
n=1

xn

n3
(|x| < 1)

is the trilogarithm [5]. Setting here t = 1
2 and using the values

Li2

(
1

2

)
=
π2

12
− log2 2

2
, Li3

(
1

2

)
=

7

8
ζ(3)− π2

12
log(2) +

1

6
log2(2),

we come to the evaluation ∫ 1

0

log2(1 + x)

2x
dx =

1

8
ζ(3).

�
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