Research Article

Gallai-Ramsey number for rainbow \boldsymbol{S}_{3}

Reji Thankachan, Ruby Rosemary*, Sneha Balakrishnan
Department of Mathematics, Government College Chittur, Palakkad, Kerala, India

(Received: 11 March 2022. Received in revised form: 23 April 2022. Accepted: 10 May 2022. Published online: 14 May 2022.)
© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For the given graphs G and H, and for a positive integer k, the Gallai-Ramsey number is denoted by $g r_{k}(G: H)$ and is defined as the minimum integer n such that every coloring of the complete graph K_{n} using at most k colors contains either a rainbow copy of G or a monochromatic copy of H. The k-color Ramsey number for G, denoted by $R_{k}(G)$, is the minimum integer n such that every coloring of K_{n} using at most k colors contains a monochromatic copy of G in some color. Let S_{n} be the star graph on n edges and let P_{n} be the path graph on n vertices. Denote by S_{n}^{+}the graph obtained from S_{n} by adding an edge between any two pendant vertices. Let T_{n+2} be the tree on $n+2$ vertices obtained from S_{n} by subdividing one of its edges. In this paper, we consider $g r_{k}\left(S_{3}: H\right)$, where $H \in\left\{S_{n}, S_{n}^{+}, P_{n}, T_{n+2}\right\}$, and obtain its relation with $R_{2}(H)$ and $R_{3}(H)$. We also obtain 3-color Ramsey numbers for S_{n}, S_{n}^{+}, and T_{n+2}.

Keywords: Gallai-Ramsey number; coloring; rainbow copy; monochromatic copy.
2020 Mathematics Subject Classification: 05C15, 05C55, 05D10.

1. Introduction

In this paper, edge-colorings of finite simple graphs are considered. Throughout this paper, by coloring we mean edgecoloring. For an integer $k \geq 1$, let $\mathcal{C}: E(G) \rightarrow\{1,2, \ldots, k\}$ be a k-coloring of a graph G. Thus, \mathcal{C} partitions the edge set of G, $E(G)$, into k sets $C_{1}, C_{2}, \cdots, C_{k}$, where C_{i} consists of those edges of G that are colored with color i. Note that \mathcal{C} need not be a proper coloring. The color i is represented at a vertex v if some edge incident with v has color i. A coloring of a graph is called monochromatic if all edges are colored the same, and a coloring is called rainbow if all edges are colored differently. Given a graph G, the k-color Ramsey number for G, denoted by $R_{k}(G)$, is the minimum integer n such that every coloring of the complete graph K_{n} using at most k colors contains a monochromatic copy of G in some color. For the given graphs G and H, and for a positive integer k, the Gallai-Ramsey number, denoted by $g r_{k}(G: H)$, is defined as the minimum integer n such that every coloring of K_{n} using at most k colors contains either a rainbow copy of G or a monochromatic copy of H. For any graph H, the inequality $g r_{k}(G: H) \leq R_{k}(H)$ holds.

In 1967, Gallai [4] investigated the structures of rainbow triangle-free (i.e., there is no rainbow K_{3}) colorings of complete graphs and proved the following result. In honor of Gallai's work, a coloring of a complete graph G is said to be Gallai coloring if G is rainbow triangle-free.

Theorem 1.1. [4] In any Gallai colored complete graph $G, V(G)$ can be partitioned into non-empty sets $H_{1}, H_{2}, \cdots, H_{l}$, with $l \geq 2$, such that there are at most two colors between the parts, and there is only one color on the edges between every pair of parts.

In recent years, many results on Gallai-Ramsey numbers concerning the case when G is a triangle have been reported [2, 3, 8]. However, Gallai-Ramsey numbers for other choices of G have been much less studied. In [6], the authors proved the following theorem for $G=P_{4}$ and posed a conjecture when $G=P_{5}$.

Theorem 1.2. [6] For any graph H with no isolated vertices, $g r_{k}\left(P_{4}: H\right)=R_{2}(H)$ except when $H=P_{3}$ and $k \geq 3$, in which case $g r_{k}\left(P_{4}: P_{3}\right)=5$.

Conjecture 1.1. [6] For any graph H with no isolated vertices, $\operatorname{gr}_{k}\left(P_{5}: H\right)=R_{3}(H)$.
Gyárfás et al. [5] proved the next result concerning 3-color Ramsey numbers of paths, which was conjectured by Faudree and Schelp in [1].

[^0]Theorem 1.3. [5] For sufficiently large $n, R_{3}\left(P_{n}\right)= \begin{cases}2 n-1 & \text { if } n \text { is odd, } \\ 2 n-2 & \text { if } n \text { is even. }\end{cases}$
In this paper, we consider $g r_{k}(G: H)$ for rainbow S_{3} and monochromatic stars, paths and some extensions of stars. Few results are known for the case when $G=S_{3}$ and finding this number for a path is a fundamental work. Let S_{n} be the star on $n+1$ vertices and n edges. Denote by S_{n}^{+}the graph obtained from S_{n} by adding an edge between any two pendant vertices. Let P_{n} be the path on n vertices and T_{n+2} be the tree on $n+2$ vertices obtained from the star S_{n} with one edge subdivided. Let $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be the vertex set of the complete graph K_{n}. For any non-empty subset V^{\prime} of V, the subgraph of K_{n} whose vertex set is V^{\prime} and edge set is the set of those edges of K_{n} that have both ends in V^{\prime} is called the subgraph of K_{n} induced by V^{\prime}, denoted by $K_{n}\left[V^{\prime}\right]$.

2. Main results

In this section, 3-color Ramsey numbers for S_{n}, S_{n}^{+}, and T_{n+2} are obtained. Also, in this section, it is shown that for all $k \geq 3$, the inequality $R_{2}(H) \leq g r_{k}\left(S_{3}: H\right) \leq R_{3}(H)$ holds when $H \in\left\{S_{n}, S_{n}^{+}, P_{n}, T_{n+2}\right\}$. It is clear that $g r_{2}\left(S_{3}: H\right)=R_{2}(H)$.

Theorem 2.1. $R_{3}\left(S_{n}\right)=3 n-1$.
Proof. To prove $R_{3}\left(S_{n}\right) \geq 3 n-1$, it is enough to show that there exist a 3-coloring of $K_{3 n-2}$ that does not contain a monochromatic copy of S_{n}. Let us take $G_{1}=K_{3 n-2}\left[\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}\right], G_{2}=K_{3 n-2}\left[\left\{v_{n}, v_{n+1}, \cdots, v_{2 n-2}\right\}\right]$ and $G_{3}=$ $K_{3 n-2}\left[\left\{v_{2 n-1}, v_{2 n}, \cdots, v_{3 n-3}\right\}\right]$. Color the edges of G_{i} with color i where $i=1,2,3$. The edge $e=u v$ is colored with color 1 if $u \in G_{2}, v \in G_{3}$, with color 2 if $u \in G_{1}, v \in G_{3}$ and with color 3 if $u \in G_{1}, v \in G_{2}$. Now, the edge $e=u v_{3 n-2}$ is assigned color 1 if $u \in G_{1}$, color 2 if $u \in G_{2}$ and color 3 if $u \in G_{3}$. Under this coloring each vertex in $K_{3 n-2}$ is represented by color i where $i=1,2,3$, at most $n-1$ times. Thus, $K_{3 n-2}$ does not contain a monochromatic copy of S_{n}. Hence, $R_{3}\left(S_{n}\right) \geq 3 n-1$.

Now, consider any 3 -coloring of $K_{3 n-1}$ and let v be any vertex in $K_{3 n-1}$. Since $\operatorname{deg}(v)=3 n-2$, at least n edges incident with v must be of same color giving a monochromatic copy of S_{n}. Thus, $R_{3}\left(S_{n}\right) \leq 3 n-1$ and hence $R_{3}\left(S_{n}\right)=3 n-1$.

Theorem 2.2. $R_{3}\left(T_{n+2}\right)=3 n$.
Proof. The lower bound can be proved by showing that there exist a 3-coloring of $K_{3 n-1}$ that does not contain a monochromatic copy of T_{n+2}. Let $G_{1}=K_{3 n-1}\left[\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}\right], G_{2}=K_{3 n-1}\left[\left\{v_{n}, v_{n+1}, \cdots, v_{2 n-2}\right\}\right]$ and $G_{3}=K_{3 n-1}\left[\left\{v_{2 n-1}, v_{2 n}\right.\right.$, $\left.\left.\cdots, v_{3 n-3}\right\}\right]$. Color the edges of G_{i} and the edges $w_{i} v_{3 n-2}, w_{i} v_{3 n-1}, w_{i} \in V\left(G_{i}\right)$ with color i where $i=1,2,3$. The edge $e=u v$ is colored with color 1 if $u \in G_{2}, v \in G_{3}$, with color 2 if $u \in G_{1}, v \in G_{3}$ and with color 3 if $u \in G_{1}, v \in G_{2}$. Assign color 1 for the edge $v_{3 n-2} v_{3 n-1}$. Under this coloring $K_{3 n-1}$ does not contain a monochromatic copy of T_{n+2}. So, $R_{3}\left(T_{n+2}\right) \geq 3 n$.

To prove the upper bound consider a 3-coloring $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$ of $K_{3 n}$. Since $\operatorname{deg}\left(v_{3 n}\right)=3 n-1$, at least n edges incident with $v_{3 n}$ must be of same color. Let $\left\{v_{3 n} v_{1}, v_{3 n} v_{2}, \cdots, v_{3 n} v_{n}\right\} \subseteq C_{1}$. If there is an edge $v_{i} v_{j} \in C_{1}, 1 \leq i \leq n, n+1 \leq j \leq 3 n-1$, then $K_{3 n}$ contains a monochromatic copy of T_{n+2}.

Now, suppose that each edge $v_{i} v_{j}, 1 \leq i \leq n, n+1 \leq j \leq 3 n-1$ belongs to C_{2} or C_{3}. Then a monochromatic copy of T_{n+2} in $K_{3 n}$ can be obtained as follows. For $i=1,2,3$, let $E_{i}=\left\{v_{i} v_{j}, n+1 \leq j \leq 3 n-1\right\}$. Then $\left|E_{i}\right|=2 n-1$ and the edges of E_{i} are colored with color 2 or color 3 . So, in each E_{i}, n edges are of same color. Let $E_{i}^{\prime} \subset E_{i}$ be such that $\left|E_{i}^{\prime}\right|=n$ and all edges of E_{i}^{\prime} are of same color. Among $E_{1}^{\prime}, E_{2}^{\prime}, E_{3}^{\prime}$, two of the sets must have edges in same color. Suppose C_{2} contains E_{1}^{\prime} and E_{2}^{\prime}. Then for some $r, n+1 \leq r \leq 3 n-1$ there exists a vertex v_{r} such that the edges $v_{1} v_{r} \in E_{1}^{\prime}$ and $v_{2} v_{r} \in E_{2}^{\prime}$. If such a vertex v_{r} does not exist, then the set of n end vertices of edges in E_{1}^{\prime} and the set of n end vertices of edges in E_{2}^{\prime} are disjoint. This implies that there exist $2 n$ vertices in the set $\left\{v_{j}, n+1 \leq j \leq 3 n-1\right\}$, which is not possible. Then $E_{1}^{\prime} \cup\left\{v_{r} v_{2}\right\}$ will give a monochromatic copy of T_{n+2} in $K_{3 n}$ in color 2. Thus, $R_{3}\left(T_{n+2}\right) \leq 3 n$. Hence, $R_{3}\left(T_{n+2}\right)=3 n$.

Lemma 2.1. Any 2-coloring of $K_{2 k+1}$ contains a monochromatic copy of S_{k}^{+}.
Proof. Consider a 2-coloring $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ of $K_{2 k+1}$. Suppose there is a vertex v in $K_{2 k+1}$ such that $k+1$ edges incident with v have same color. Let $\left\{v_{2 k+1} v_{1}, v_{2 k+1} v_{2}, \cdots, v_{2 k+1} v_{k+1}\right\} \subseteq C_{1}$. If there exist some edge $v_{i} v_{j}, 1 \leq i<j \leq k+1$, in C_{1}, $K_{2 k+1}$ contains a monochromatic copy of S_{k}^{+}in color 1 . Suppose such an edge does not exist. This will imply that every edge of the induced subgraph $G^{\prime}=K_{2 k+1}\left[\left\{v_{1}, v_{2}, \cdots, v_{k+1}\right\}\right]$ is in C_{2}. Thus, G^{\prime} and hence $K_{2 k+1}$ contains a monochromatic copy of S_{k}^{+}in color 2.

Now, suppose there is no vertex in $K_{2 k+1}$ incident with $k+1$ edges in same color. Then every vertex is incident with exactly k edges in C_{1} and k edges in C_{2}. Let $\left\{v_{2 k+1} v_{1}, v_{2 k+1} v_{2}, \cdots, v_{2 k+1} v_{k}\right\} \subseteq C_{1}$. As in the case above if there exist some edge $v_{i} v_{j}, 1 \leq i<j \leq k$, in $C_{1}, K_{2 k+1}$ contains a monochromatic copy of S_{k}^{+}in color 1 . If not, then every edge of $K_{2 k+1}\left[\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}\right]$ is colored with color 2 . Since v_{k} is incident to k edges that are colored with color 2 , there exist an
edge $v_{k} v_{t}$ in C_{2}, where $k+1 \leq t \leq 2 k$. Thus, $\left\{v_{k} v_{i}, 1 \leq i \leq k-1\right\} \cup\left\{v_{k} v_{t}\right\} \cup\left\{v_{1} v_{2}\right\}$ is a monochromatic copy of S_{k}^{+}in color 2 contained in $K_{2 k+1}$.

Theorem 2.3. $R_{3}\left(S_{n}^{+}\right)=5 n+1$.
Proof. To prove the lower bound consider $K_{5 n}$. Let $G_{1}=K_{5 n}\left[\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\right], G_{2}=K_{5 n}\left[\left\{v_{n+1}, v_{n+2}, \cdots, v_{2 n}\right\}\right], G_{3}=$ $K_{5 n}\left[\left\{v_{2 n+1}, v_{2 n+2}, \cdots, v_{3 n}\right\}\right], G_{4}=K_{5 n}\left[\left\{v_{3 n+1}, v_{3 n+2}, \cdots, v_{4 n}\right\}\right]$ and $G_{5}=K_{5 n}\left[\left\{v_{4 n+1}, v_{4 n+2}, \cdots, v_{5 n}\right\}\right]$. Assign color 1 to the edges in G_{i} for $1 \leq i \leq 5$. All edges in $K_{5 n}$ between G_{1} and G_{2}, G_{1} and G_{3}, G_{2} and G_{4}, G_{3} and G_{5}, G_{4} and G_{5} are colored with color 2. Remaining edges in $K_{5 n}$ are colored with color 3 . This gives a 3-coloring of $K_{5 n}$ which contains a monochromatic copy of S_{n} but does not contain a monochromatic copy of S_{n}^{+}. So, $R_{3}\left(S_{n}^{+}\right) \geq 5 n+1$.

Consider a 3-coloring $\mathcal{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$ of $K_{5 n+1}$. Since $\operatorname{deg}\left(v_{5 n+1}\right)=5 n$ and for $n \geq 3,3(n+2) \leq 5 n$, at least $n+2$ edges incident with $v_{5 n+1}$ must have same color. Now, either $n+2$ or $n+1$ must be an odd number and let that odd number be $2 k+1$ for some integer k. Let $\left\{v_{5 n+1} v_{1}, v_{5 n+1} v_{2}, \cdots, v_{5 n+1} v_{n+2}\right\} \subseteq C_{1}$. If there is an edge $v_{i} v_{j} \in C_{1}, 1 \leq i<j \leq n+2$, then $K_{5 n+1}$ contains a monochromatic copy of S_{n}^{+}.

If there is no such edge, $G_{1}=K_{5 n+1}\left[\left\{v_{1}, v_{2}, \cdots, v_{2 k+1}\right\}\right]$ must be 2-colored. Also G_{1} is isomorphic to the complete graph $K_{2 k+1}$. Then by Lemma 2.1, G_{1} contains a monochromatic copy of S_{k}^{+}in color 2 and let $\left\{v_{1}, v_{2}, \cdots, v_{k}, v_{k+1}\right\}$ be the vertices of $S_{k}^{+} \subseteq G_{1}$, where v_{k+1} is the hub vertex. If there are $n-k$ edges in $K_{5 n+1} \backslash S_{k}^{+}$in color 2 incident with v_{k+1}, then $K_{5 n+1}$ contains a monochromatic copy of S_{n}^{+}.

Otherwise at most $n-k-1$ edges in color 2 are incident with v_{k+1}. So, at least $4 n+1$ edges incident with v_{k+1} are in C_{1} or C_{3}. Among these, $2 n+1$ edges must be in C_{t} where $t=1$ or 3 . Let $\left\{v_{k+1} v_{5 n}, v_{k+1} v_{5 n-1}, \cdots, v_{k+1} v_{3 n}\right\} \subseteq C_{t}$ and let $G_{2}=K_{5 n+1}\left[\left\{v_{3 n}, v_{3 n+1}, \cdots, v_{5 n}\right\}\right]$. If there is an edge $v_{r} v_{s}, 3 n \leq r<s \leq 5 n$ in color t, then $K_{5 n+1}$ contains a monochromatic copy of S_{n}^{+}.

If there is no such edge, then G_{2} is 2-colored. Then by Lemma 2.1, there is a monochromatic copy of S_{n}^{+}in G_{2} and hence in $K_{5 n+1}$. So, $R_{3}\left(S_{n}^{+}\right) \leq 5 n+1$. Hence, $R_{3}\left(S_{n}^{+}\right)=5 n+1$.

Lemma 2.2. $g r_{k}\left(S_{3}: H\right) \geq R_{2}(H)$, where $H \in\left\{S_{n}, T_{n+2}, P_{n}, S_{n}^{+}\right\}$.
Proof. By the definition of $R_{2}(H)$, there is a 2-coloring of K_{m} where $m=R_{2}(H)-1$ which has no monochromatic copy of H. Since only two colors are used, K_{m} cannot have a rainbow copy of S_{3}. So, $g r_{k}\left(S_{3}: H\right) \geq R_{2}(H)$.

Theorem 2.4. $g r_{k}\left(S_{3}: S_{n}\right)=2 n$.
Proof. Consider $K_{2 n-1}$. Color the edges of the induced subgraphs $G_{1}=K_{2 n-1}\left[\left\{v_{1}, v_{2}, \cdots, v_{n-1}\right\}\right]$ and $G_{2}=K_{2 n-1}\left[\left\{v_{n}, v_{n+1}\right.\right.$, $\left.\cdots, v_{2 n-2}\right\}$] with color 1 and color 2 respectively. Use color 3 for the edges between G_{1} and G_{2}. The edges between the vertices of G_{1} and $v_{2 n-1}$ are colored with color 1 and those between G_{2} and $v_{2 n-1}$ are colored with color 2. Now, every vertex of $K_{2 n-1}$ are two colored and hence there does not exist a rainbow S_{3} in $K_{2 n-1}$. Only a monochromatic S_{n-1} could be obtained with the above coloring. Hence, $g r_{k}\left(S_{3}: S_{n}\right) \geq 2 n$.

Let \mathcal{C} be a k-coloring of $K_{2 n}$. If there is a vertex in $K_{2 n}$ represented by at least 3 colors, a rainbow copy of S_{3} is obtained. If not, \mathcal{C} is such that every vertex of $K_{2 n}$ is at most 2-colored. Let v be a vertex of $K_{2 n}$. Since degree of v is $2 n-1, n$ edges incident with v must be of same color. These n edges gives a monochromatic copy of S_{n} in $K_{2 n}$. Hence, $g r_{k}\left(S_{3}: S_{n}\right) \leq 2 n$. Thus, $g r_{k}\left(S_{3}: S_{n}\right)=2 n$.

Theorem 2.5. $R_{2}\left(S_{n}\right) \leq g r_{k}\left(S_{3}: S_{n}\right) \leq R_{3}\left(S_{n}\right)$.
Proof. From Lemma 2.2, Theorem 2.1, and Theorem 2.4, the result follows.
Theorem 2.6. $\operatorname{gr} r_{k}\left(S_{3}: T_{n+2}\right)=2 n+1$.
Proof. Consider the complete graph $K_{2 n}$. Color the edges of the induced subgraph $G_{1}=K_{2 n}\left[\left\{v_{1}, v_{2}, \cdots, v_{n+1}\right\}\right]$ with color 1. Now, color all the edges except the edge $v_{1} v_{n+1}$ of the induced subgraph $G_{2}=K_{2 n}\left[\left\{v_{n+1}, v_{n+2}, \cdots, v_{2 n}, v_{1}\right\}\right]$ with color 2 . Use color 3 for the edges connecting the vertices of $G_{1} \backslash\left\{v_{1}, v_{n+1}\right\}$ and $G_{2} \backslash\left\{v_{1}, v_{n+1}\right\}$. Only a monochromatic S_{n} is obtained with the above coloring in color 1 and color 2 . In color 3 a monochromatic S_{n-1} is obtained. $\operatorname{So,} g_{k}\left(S_{3}: T_{n+2}\right) \geq 2 n+1$.

Let $\mathcal{C}=\left\{C_{1}, C_{2}, \cdots, C_{k}\right\}$ be a k-coloring of $K_{2 n+1}$. If there is a vertex in $K_{2 n+1}$ represented by at least 3 colors, a rainbow copy of S_{3} is obtained. If not, \mathcal{C} is such that every vertex of $K_{2 n+1}$ is at most 2-colored. Since degree of $v_{2 n+1}$ is $2 n$, at least n edges incident with $v_{2 n+1}$ must be of same color. Without loss of generality, let the edges $v_{2 n+1} v_{i}, 1 \leq i \leq n$ be in C_{1}. Let $W_{1}=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $W_{2}=\left\{v_{n+1}, v_{n+2}, \cdots, v_{2 n}\right\}$. If there is an edge in C_{1} with one end in W_{1} and other end in W_{2}, a monochromatic copy of T_{n+2} in color 1 exist. If not, each $v_{1} w, w \in W_{2}$ must be in C_{2}. Now, if each $v_{2} w, w \in W_{2}$ is in $C_{2},\left\{v_{1} w: w \in W_{2}\right\} \cup\left\{v_{2} v_{2 n}\right\}$ gives a monochromatic copy of T_{n+2} in color 2. If each $v_{2} w, w \in W_{2}$ is in
$C_{3}, v_{3} v_{2 n}$ must be in C_{2} or C_{3}. If $v_{3} v_{2 n} \in C_{2},\left\{v_{1} w: w \in W_{2}\right\} \cup\left\{v_{3} v_{2 n}\right\}$ gives a monochromatic copy of T_{n+2} in color 2 . Otherwise $\left\{v_{2} w: w \in W_{2}\right\} \cup\left\{v_{3} v_{2 n}\right\}$ gives a monochromatic copy of T_{n+2} in color 3 . Hence, $g r_{k}\left(S_{3}: T_{n+2}\right) \leq 2 n+1$. Thus, $g r_{k}\left(S_{3}: T_{n+2}\right)=2 n+1$.

Theorem 2.7. $R_{2}\left(T_{n+2}\right) \leq g r_{k}\left(S_{3}: T_{n+2}\right) \leq R_{3}\left(T_{n+2}\right)$.
Proof. From Lemma 2.2, Theorem 2.2, and Theorem 2.6, the result follows.
Theorem 2.8. $g r_{k}\left(S_{3}: S_{n}^{+}\right)=2 n+1$, where S_{n}^{+}is obtained from S_{n} by adding an edge between any two pendant vertices.
Proof. Consider the complete graph $K_{2 n}$. Color the edges of the induced subgraphs $G_{1}=K_{2 n}\left[\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\right]$ and $G_{2}=$ $K_{2 n}\left[\left\{v_{n+1}, v_{n+2}, \cdots, v_{2 n}\right\}\right]$ with color 1 and color 2 respectively. Use color 3 for the edges between G_{1} and G_{2}. Now, every vertex of $K_{2 n}$ are two colored and hence there does not exist a rainbow S_{3} in $K_{2 n}$. Only a monochromatic S_{n} could be obtained with the above coloring. Hence, $g r_{k}\left(S_{3}: S_{n}^{+}\right) \geq 2 n+1$.

Let $\mathcal{C}=\left\{C_{1}, C_{2}, \cdots, C_{k}\right\}$ be a k-coloring of $K_{2 n+1}$. If there is a vertex in $K_{2 n+1}$ represented by at least 3 colors, a rainbow copy of S_{3} is obtained. If not, \mathcal{C} is such that every vertex of $K_{2 n+1}$ is at most 2-colored.

Assume that there is a vertex in $K_{2 n+1}$ incident with $n+1$ edges and all these edges have the same color. Let $\left\{v_{1} v_{2 n+1}, v_{2} v_{2 n+1}, \cdots, v_{n+1} v_{2 n+1}\right\} \subseteq C_{1}$ and let $G_{1}=K_{2 n+1}\left[\left\{v_{1}, v_{2}, \cdots, v_{n+1}\right\}\right]$. If there is an edge in C_{1} which belongs to G_{1}, we get a monochromatic copy of S_{n}^{+}in color 1 . If not, every edge of G_{1} must be in C_{2}. Then G_{1} contains a monochromatic copy of S_{n}^{+}in color 2 .

Now, assume that there does not exist such a vertex. Then each vertex must have n edges in one color and n edges in another color. Let these edges be $v_{1} v_{2 n+1}, v_{2} v_{2 n+1}, \cdots, v_{n} v_{2 n+1}$ in C_{1} and let $G_{2}=K_{2 n+1}\left[\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}\right]$. If there is an edge in C_{1} which belongs to G_{2}, a monochromatic copy of S_{n}^{+}is obtained in color 1 . If not, every edge of G_{2} is in C_{2}. Now, v_{n} is incident with $n-1$ edges in C_{2}. Since v_{n} must have n edges in color 2 , there must exist an edge $v_{r} v_{n}$ in C_{2} for some $r, n+1 \leq r \leq 2 n$. Then $v_{1} v_{n}, v_{2} v_{n}, \cdots, v_{n-1} v_{n}, v_{r} v_{n}$ and $v_{1} v_{2}$ gives a monochromatic copy of S_{n}^{+}in color 2. Hence, $g r_{k}\left(S_{3}: S_{n}^{+}\right) \leq 2 n+1$. So, $g r_{k}\left(S_{3}: S_{n}^{+}\right)=2 n+1$.

Theorem 2.9. $R_{2}\left(S_{n}^{+}\right) \leq g r_{k}\left(S_{3}: S_{n}^{+}\right) \leq R_{3}\left(S_{n}^{+}\right)$.
Proof. From Lemma 2.2, Theorem 2.3, and Theorem 2.8, the result follows.
Theorem 2.10. For $n \geq 3, R_{2}\left(P_{n}\right) \leq g r_{k}\left(S_{3}: P_{n}\right) \leq R_{3}\left(P_{n}\right)$.
Proof. The lower bound is clear from Lemma 2.2. When at most three colors are used, from the definition of $R_{3}\left(P_{n}\right)$ it is clear that $g r_{k}\left(S_{3}: P_{n}\right) \leq R_{3}\left(P_{n}\right)$. Suppose at least four colors are used. The upper bound is established by applying induction on n. $R_{3}\left(P_{3}\right)=5$ (from [7]) and in any k-coloring of K_{5} without a rainbow S_{3}, each vertex of K_{5} must be incident with at most 2 colors. Since $\operatorname{deg}(v)=4 \forall v \in K_{5}$, at least two edges incident to v must be of same color, which is a monochromatic copy of P_{3}. Thus, $g r_{k}\left(S_{3}: P_{3}\right) \leq R_{3}\left(P_{3}\right)$.

Suppose that $g r_{k}\left(S_{3}: P_{n-1}\right) \leq R_{3}\left(P_{n-1}\right)$. The inequality $g r_{k}\left(S_{3}: P_{n}\right) \leq R_{3}\left(P_{n}\right)$ is to be proved. Let $m=R_{3}\left(P_{n}\right)$. It is enough to show that any k-coloring of K_{m} contains a rainbow copy of S_{3} or a monochromatic copy of P_{n}. Let $\mathcal{C}=$ $\left\{C_{1}, C_{2}, \cdots, C_{k}\right\}$ be a k-coloring of K_{m}. Suppose that K_{m} does not contain a rainbow copy of S_{3}. Then at most two colors are represented at each vertex of K_{m}. Here it will be proved that K_{m} contains a monochromatic copy of P_{n}. Observe that $R_{3}\left(P_{n-1}\right) \leq R_{3}\left(P_{n}\right)$. Then from the induction hypothesis we get $g r_{k}\left(S_{3}: P_{n-1}\right) \leq R_{3}\left(P_{n}\right)=m$. Since K_{m} does not contain a rainbow copy of S_{3}, it must contain a monochromatic copy of P_{n-1}. Without loss of generality, let $v_{1} v_{2} \cdots v_{n-1}$ be a monochromatic copy of P_{n-1} in color 1 . Let $G_{1}=K_{m}\left[\left\{v_{2}, v_{3}, \cdots, v_{n-2}\right\}\right]$ and $G_{2}=K_{m}\left[\left\{v_{n}, v_{n+1}, \cdots, v_{m}\right\}\right]$. If there is an edge $v_{1} w$ or $v_{n-1} w$ for some $w \in G_{2}$ in color 1 , then K_{m} contains a monochromatic copy of P_{n}. If not, for all $w \in G_{2}$ the edges $v_{1} w \notin C_{1}$ and $v_{n-1} w \notin C_{1}$. Since $v_{1} v_{2} \in C_{1}$, all the edges $v_{1} w, w \in G_{2}$ must belong to C_{i} for some fixed $i, i \geq 2$ (otherwise a rainbow copy of S_{3} is obtained at v_{1}). Same argument holds for $v_{n-1} w, w \in G_{2}$. Consider the following cases.

Case 1. For all $w \in G_{2}, v_{1} w \in C_{2}$ and $v_{n-1} w \in C_{3}$.
The colors, color 2 and color 3 are represented at each vertex of G_{2}, color 1 and color 2 at v_{1}, color 1 and color 3 at v_{n-1} (see Figure 1). The edges $v_{n} u, u \in G_{1}$ must be in C_{2} or C_{3} and hence two colors are represented at each vertex of G_{1}. Thus, two colors are represented at each vertex of K_{m} using color 1, color 2 or color 3 . So, in this case $k \geq 4$ is not possible (If $k \geq 4$, then K_{m} contains a rainbow copy of S_{3}). When $k=3$ the existence of a monochromatic copy of P_{n} in K_{m} is assured by the definition of $R_{3}\left(P_{n}\right)$, since $m=R_{3}\left(P_{n}\right)$ is the smallest integer such that every coloring of K_{m} with at most 3 colors will contain a monochromatic copy of P_{n}.

Figure 1: Case 1 of the proof of Theorem 2.10.

Case 2. For all $w \in G_{2}$, both $v_{1} w$ and $v_{n-1} w$ are in C_{2}.
Subcase 2.1. For some $i \geq 3, K_{m}$ has an edge in C_{i} with one end in G_{1} and the other in G_{2}.
Without loss of generality suppose that K_{m} has an edge in C_{3} with one end in G_{1} and the other in G_{2}. Let $v_{r} v_{s}$ belong to C_{3} where $v_{r} \in G_{1}, v_{s} \in G_{2}$. Then color 1 and color 3 are represented at v_{r}, color 2 and color 3 are represented at v_{s} (see Figure 2). So, each edge $v_{s} u, u \in G_{1}$ must be in C_{2} or C_{3} (otherwise a rainbow copy of S_{3} is obtained at v_{s}) and the edges $v_{r} w, w \in G_{2}$ must be in C_{1} or C_{3} (otherwise a rainbow copy of S_{3} is obtained at v_{r}). Then two colors are represented at each vertex of K_{m}. So, as in case $1, k \geq 4$ is not possible and when $k=3$, by definition of $R_{3}\left(P_{n}\right)$ there exist a monochromatic copy of P_{n} in K_{m}.

Figure 2: Subcase 2.1 of the proof of Theorem 2.10.

Subcase 2.2. For any $i, i \geq 3, K_{m}$ has no edge in C_{i} with one end in G_{1} and the other in G_{2}.
Since at least four colors are used to color the edges of K_{m}, C_{3} is non empty. From the supposition of this subcase, the edges having color 3 must belong to G_{1} or G_{2} (or both). Then two cases are to be considered.

Subcase 2.2.1. Suppose G_{2} contains an edge that belongs to C_{3}.
Let $v_{r} v_{s}$ be the edge of G_{2} that belongs to C_{3} (see Figure 3).
Claim 1. Two colors, color 1 and color 2 are represented at every vertex of $V\left(G_{1}\right) \cup\left\{v_{1}, v_{n-1}\right\}$.
From the supposition of case $2, v_{1} v_{r} \in C_{2}$, so color 2 is represented at v_{r}. Thus, two colors, color 2 and color 3 are represented at v_{r}. Consider the edges $v_{r} u, u \in G_{1}$. Then $v_{r} u$ must have color 2 or color 3 (otherwise a rainbow copy of S_{3} is obtained at v_{r}). From the supposition of subcase $2.2, v_{r} u \notin C_{3}$ and hence $v_{r} u \in C_{2}$ for all $u \in G_{1}$. Since $u \in G_{1}$, color 1 is represented at u. Thus, two colors, color 1 and color 2 , are represented at each vertex of G_{1}. So, any edge from G_{1} to G_{2} must be in C_{1} or C_{2} (otherwise a rainbow copy of S_{3} is obtained). Also color 1 and color 2 are represented at the vertices v_{1}, v_{n-1} (from the supposition of case 2). Thus, two colors, color 1 and color 2 are represented at the vertices of $V\left(G_{1}\right) \cup\left\{v_{1}, v_{n-1}\right\}$.

Let $W=\left\{w \in G_{2}: u w \in C_{2} \forall u \in G_{1}\right\}$. Since $v_{r} u \in C_{2}$ for all $u \in G_{1}, v_{r} \in W$ and hence $W \neq \emptyset$. Consider the set $K_{m} \backslash W$.
Claim 2. Two colors, color 1 and color 2 are represented at every vertex of $K_{m} \backslash W$.
$V\left(K_{m} \backslash W\right)=V\left(G_{1}\right) \cup\left\{v_{1}, v_{n-1}\right\} \cup V\left(G_{2} \backslash W\right)$. If $G_{2} \backslash W=\emptyset$, then $V\left(K_{m} \backslash W\right)=V\left(G_{1}\right) \cup\left\{v_{1}, v_{n-1}\right\}$. Hence, from claim 1, color 1 and color 2 are represented at every vertex of $V\left(K_{m} \backslash W\right)$. Suppose $G_{2} \backslash W \neq \emptyset$. Let x be a vertex of $G_{2} \backslash W$. Since $x \in G_{2}$, color 2 is represented at x and since $x \notin W$, there exist some $u \in G_{1}$ such that $u x \notin C_{2}$. So, $u x \in C_{1}$, since any edge from G_{1} to G_{2} must be in C_{1} or C_{2}. Thus, two colors, color 1 and color 2, are represented at each vertex of $G_{2} \backslash W$. Also from claim 1, color 1 and color 2 are represented at each vertex of G_{1} and at the vertices v_{1}, v_{n-1}. Hence, color 1 and color 2 are
represented at every vertex of $K_{m} \backslash W$. Thus, claim 2 is proved.
So, every edge that is not colored using color 1 or color 2 must be in $K_{m}[W]$ (otherwise a rainbow copy of S_{3} is obtained at a vertex of $K_{m} \backslash W$).
i) Let $|W| \geq\left\lfloor\frac{n}{2}\right\rfloor$. Then $v_{1} w_{1} v_{2} w_{2} \ldots v_{\frac{n}{2}} w_{\frac{n}{2}}$ is a monochromatic copy of P_{n} in color 2 when n is even and $v_{1} w_{1} v_{2} w_{2} \ldots$ $v_{\left\lfloor\frac{n}{2}\right\rfloor} w_{\left\lfloor\frac{n}{2}\right\rfloor} v_{\left\lfloor\frac{n}{2}\right\rfloor+1}$ is a monochromatic copy of P_{n} in color 2 when n is odd, where $w_{i} \in W$ for $i \geq 1$.

Figure 3: Subcase 2.2.1 of the proof of Theorem 2.10.
ii) Let $|W|<\left\lfloor\frac{n}{2}\right\rfloor$. It will be proved that K_{m} contains a monochromatic copy of P_{n} in color 1 or color 2 . For that construct a 3-coloring of K_{m} from \mathcal{C} using color 1 , color 2 and color 3 . Under \mathcal{C} every edge of $E\left(K_{m}\right) \backslash E(W)$ is in color 1 or color 2 (from claim 2). Recolor the edges of $K_{m}[W]$ alone using color 3. This recoloring gives a new 3-coloring, \mathcal{C}^{\prime}, of K_{m}. Then, from the definition of $R_{3}\left(P_{n}\right), K_{m}$ contains a monochromatic copy of P_{n} under \mathcal{C}^{\prime}. All the edges of K_{m} having color 3 under \mathcal{C}^{\prime} belongs to $K_{m}[W]$ and hence if the monochromatic copy of P_{n} under \mathcal{C}^{\prime} is in color 3 , then it must be contained in $K_{m}[W]$. But $|W|<\left\lfloor\frac{n}{2}\right\rfloor$. So, the monochromatic copy of P_{n} under \mathcal{C}^{\prime} is not in $K_{m}[W]$. This implies that the monochromatic copy of P_{n} in K_{m} under \mathcal{C}^{\prime} is not in color 3 and hence it is either in color 1 or in color 2. Without loss of generality suppose that the monochromatic copy of P_{n} under \mathcal{C}^{\prime} is in color 1 and let $e_{1} e_{2} \ldots e_{n-1}$ be the edges in P_{n}. It is to be noted that every edge of K_{m} having color 1 or color 2 under \mathcal{C}^{\prime} had the same color under \mathcal{C}. Then these e_{i} 's will have color 1 in K_{m} under \mathcal{C} and hence a monochromatic copy of P_{n} in color 1 is obtained under \mathcal{C}.

Subcase 2.2.2. Suppose that G_{2} does not contain an edge that belongs to C_{3}.
From the supposition in subcase 2.2, every edge in C_{3} must be in G_{1}. Let $v_{r} v_{s}$ be an edge in G_{1} that belong to C_{3}. Then color 1 and color 3 is represented at v_{r}. So, the edges $v_{r} w, w \in G_{2}$ must be in C_{1} or C_{3} (otherwise a rainbow copy of S_{3} is obtained at v_{r}). From the supposition of subcase $2.2 v_{r} w$ cannot have color 3 . So, for all $w \in G_{2}, v_{r} w$ is in color 1 . Thus, two colors, color 1 and color 2, are represented at each vertex in G_{2} and at the vertices v_{1}, v_{n-1}. Recolor G_{1} with color 3 to obtain a 3-coloring \mathcal{C}^{\prime} of K_{m}. Then from the definition of $R_{3}\left(P_{n}\right), K_{m}$ contains a monochromatic copy of P_{n} under \mathcal{C}^{\prime}. Since $\left|G_{1}\right|<n$, this monochromatic copy of P_{n} is not in color 3 and hence it is either in color 1 or in color 2 . Then the same monochromatic copy of P_{n} in K_{m} under \mathcal{C}^{\prime} can be obtained under \mathcal{C}. Thus, in all cases $g r_{k}\left(S_{3}: P_{n}\right) \leq R_{3}\left(P_{n}\right)$.

Remark 2.1. Let us consider an example for which strict inequality holds in Theorem 2.10. We have $R_{3}\left(P_{3}\right)=5$. But, $g r_{k}\left(S_{3}: P_{3}\right)=4$. Consider a k-coloring of K_{4} that does not contain a rainbow S_{3}. Then at most two colors are represented at each vertex of K_{4}. Since the degree of each vertex of K_{4} is three, there exist at least two edges in the same color incident with each vertex of K_{4}, giving a monochromatic copy of P_{3}. So, gr $r_{k}\left(S_{3}: P_{3}\right) \leq 4$. Now, the complete graph on three vertices, C_{3} does not contain a rainbow copy of S_{3} or a monochromatic copy of P_{3} in any 3-coloring. Hence, $g r_{k}\left(S_{3}: P_{3}\right)=4$.

References

[1] R. J. Faudree, R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160.
[2] S. Fujita, C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247-1254.
[3] S. Fujita, C. Magnant, K. Ozeki, Rainbow generalizations of Ramsey theory - a dynamic survey, Theory Appl. Graphs 0 (2018) \#1.
[4] T. Gallai, Transitiv orientierbare graphen, Acta Math. Hungar. 18 (1967) 25-66.
[5] A. Gyárfás, M. Ruszinko, G. Sarkozy, E. Szemeredi, Three-color Ramsey numbers for paths, Combinatorica 27 (2007) 35-69.
[6] X. Li, P. Besse, C. Magnant, L. Wang, N. Watts, Gallai-Ramsey numbers for rainbow paths, Graphs Combin. 36 (2020) 1163-1175.
[7] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. DS1 (2021) \#DS1.16.
[8] Z. Wang, Y. Mao, C. Magnant, J. Zou, Ramsey and Gallai-Ramsey numbers for two classes of unicyclic graphs, Graphs Combin. 37 (2021) $337-354$.

[^0]: *Corresponding author (rubymathpkd@gmail.com).

