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Abstract

For the given graphs G and H, and for a positive integer k, the Gallai-Ramsey number is denoted by grk(G : H) and is
defined as the minimum integer n such that every coloring of the complete graph Kn using at most k colors contains either
a rainbow copy of G or a monochromatic copy of H. The k-color Ramsey number for G, denoted by Rk(G), is the minimum
integer n such that every coloring of Kn using at most k colors contains a monochromatic copy of G in some color. Let Sn be
the star graph on n edges and let Pn be the path graph on n vertices. Denote by S+

n the graph obtained from Sn by adding
an edge between any two pendant vertices. Let Tn+2 be the tree on n+2 vertices obtained from Sn by subdividing one of its
edges. In this paper, we consider grk(S3 : H), where H ∈ {Sn, S

+
n , Pn, Tn+2}, and obtain its relation with R2(H) and R3(H).

We also obtain 3-color Ramsey numbers for Sn, S+
n , and Tn+2.
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1. Introduction

In this paper, edge-colorings of finite simple graphs are considered. Throughout this paper, by coloring we mean edge-
coloring. For an integer k ≥ 1, let C : E(G)→ {1, 2, ..., k} be a k-coloring of a graph G. Thus, C partitions the edge set of G,
E(G), into k sets C1, C2, · · · , Ck, where Ci consists of those edges of G that are colored with color i. Note that C need not be
a proper coloring. The color i is represented at a vertex v if some edge incident with v has color i. A coloring of a graph is
called monochromatic if all edges are colored the same, and a coloring is called rainbow if all edges are colored differently.
Given a graph G, the k-color Ramsey number for G, denoted by Rk(G), is the minimum integer n such that every coloring
of the complete graph Kn using at most k colors contains a monochromatic copy of G in some color. For the given graphs G

and H, and for a positive integer k, the Gallai-Ramsey number, denoted by grk(G : H), is defined as the minimum integer
n such that every coloring of Kn using at most k colors contains either a rainbow copy of G or a monochromatic copy of H.
For any graph H, the inequality grk(G : H) ≤ Rk(H) holds.

In 1967, Gallai [4] investigated the structures of rainbow triangle-free (i.e., there is no rainbow K3) colorings of complete
graphs and proved the following result. In honor of Gallai’s work, a coloring of a complete graph G is said to be Gallai
coloring if G is rainbow triangle-free.

Theorem 1.1. [4] In any Gallai colored complete graph G, V (G) can be partitioned into non-empty sets H1, H2, · · · , Hl,
with l ≥ 2, such that there are at most two colors between the parts, and there is only one color on the edges between every
pair of parts.

In recent years, many results on Gallai-Ramsey numbers concerning the case when G is a triangle have been reported
[2, 3, 8]. However, Gallai-Ramsey numbers for other choices of G have been much less studied. In [6], the authors proved
the following theorem for G = P4 and posed a conjecture when G = P5.

Theorem 1.2. [6] For any graph H with no isolated vertices, grk(P4 : H) = R2(H) except when H = P3 and k ≥ 3, in which
case grk(P4 : P3) = 5.

Conjecture 1.1. [6] For any graph H with no isolated vertices, grk(P5 : H) = R3(H).

Gyárfás et al. [5] proved the next result concerning 3-color Ramsey numbers of paths, which was conjectured by Faudree
and Schelp in [1].
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Theorem 1.3. [5] For sufficiently large n, R3(Pn) =

2n− 1 if n is odd,

2n− 2 if n is even.

In this paper, we consider grk(G : H) for rainbow S3 and monochromatic stars, paths and some extensions of stars.
Few results are known for the case when G = S3 and finding this number for a path is a fundamental work. Let Sn be the
star on n+ 1 vertices and n edges. Denote by S+

n the graph obtained from Sn by adding an edge between any two pendant
vertices. Let Pn be the path on n vertices and Tn+2 be the tree on n + 2 vertices obtained from the star Sn with one edge
subdivided. Let V = {v1, v2, · · · , vn} be the vertex set of the complete graph Kn. For any non-empty subset V ′ of V , the
subgraph of Kn whose vertex set is V ′ and edge set is the set of those edges of Kn that have both ends in V ′ is called the
subgraph of Kn induced by V ′, denoted by Kn[V

′].

2. Main results

In this section, 3-color Ramsey numbers for Sn, S
+
n , and Tn+2 are obtained. Also, in this section, it is shown that for all

k ≥ 3, the inequality R2(H) ≤ grk(S3 : H) ≤ R3(H) holds when H ∈ {Sn, S
+
n , Pn, Tn+2}. It is clear that gr2(S3 : H) = R2(H).

Theorem 2.1. R3(Sn) = 3n− 1.

Proof. To prove R3(Sn) ≥ 3n − 1, it is enough to show that there exist a 3-coloring of K3n−2 that does not contain a
monochromatic copy of Sn. Let us take G1 = K3n−2[{v1, v2, · · · , vn−1}], G2 = K3n−2[{vn, vn+1, · · · , v2n−2}] and G3 =

K3n−2[{v2n−1, v2n, · · · , v3n−3}]. Color the edges of Gi with color i where i = 1, 2, 3. The edge e = uv is colored with color 1 if
u ∈ G2, v ∈ G3, with color 2 if u ∈ G1, v ∈ G3 and with color 3 if u ∈ G1, v ∈ G2. Now, the edge e = uv3n−2 is assigned color
1 if u ∈ G1, color 2 if u ∈ G2 and color 3 if u ∈ G3. Under this coloring each vertex in K3n−2 is represented by color i where
i = 1, 2, 3, at most n− 1 times. Thus, K3n−2 does not contain a monochromatic copy of Sn. Hence, R3(Sn) ≥ 3n− 1.

Now, consider any 3-coloring of K3n−1 and let v be any vertex in K3n−1. Since deg(v) = 3n− 2, at least n edges incident
with v must be of same color giving a monochromatic copy of Sn. Thus, R3(Sn) ≤ 3n− 1 and hence R3(Sn) = 3n− 1.

Theorem 2.2. R3(Tn+2) = 3n.

Proof. The lower bound can be proved by showing that there exist a 3-coloring of K3n−1 that does not contain a monochro-
matic copy of Tn+2. Let G1 = K3n−1[{v1, v2, · · · , vn−1}], G2 = K3n−1[{vn, vn+1, · · · , v2n−2}] and G3 = K3n−1[{v2n−1, v2n,
· · · , v3n−3}]. Color the edges of Gi and the edges wiv3n−2, wiv3n−1, wi ∈ V (Gi) with color i where i = 1, 2, 3. The edge e = uv

is colored with color 1 if u ∈ G2, v ∈ G3, with color 2 if u ∈ G1, v ∈ G3 and with color 3 if u ∈ G1, v ∈ G2. Assign color 1 for
the edge v3n−2v3n−1. Under this coloring K3n−1 does not contain a monochromatic copy of Tn+2. So, R3(Tn+2) ≥ 3n.

To prove the upper bound consider a 3-coloring C = {C1, C2, C3} of K3n. Since deg(v3n) = 3n−1, at least n edges incident
with v3n must be of same color. Let {v3nv1, v3nv2, · · · , v3nvn} ⊆ C1. If there is an edge vivj ∈ C1, 1 ≤ i ≤ n, n+1 ≤ j ≤ 3n−1,
then K3n contains a monochromatic copy of Tn+2.

Now, suppose that each edge vivj , 1 ≤ i ≤ n, n+1 ≤ j ≤ 3n− 1 belongs to C2 or C3. Then a monochromatic copy of Tn+2

in K3n can be obtained as follows. For i = 1, 2, 3, let Ei = {vivj , n+ 1 ≤ j ≤ 3n− 1}. Then |Ei| = 2n− 1 and the edges of Ei

are colored with color 2 or color 3. So, in each Ei, n edges are of same color. Let E′i ⊂ Ei be such that |E′i| = n and all edges
of E′i are of same color. Among E′1, E

′
2, E

′
3, two of the sets must have edges in same color. Suppose C2 contains E′1 and E′2.

Then for some r, n + 1 ≤ r ≤ 3n − 1 there exists a vertex vr such that the edges v1vr ∈ E′1 and v2vr ∈ E′2. If such a vertex
vr does not exist, then the set of n end vertices of edges in E′1 and the set of n end vertices of edges in E′2 are disjoint. This
implies that there exist 2n vertices in the set {vj , n + 1 ≤ j ≤ 3n − 1}, which is not possible. Then E′1 ∪ {vrv2} will give a
monochromatic copy of Tn+2 in K3n in color 2. Thus, R3(Tn+2) ≤ 3n. Hence, R3(Tn+2) = 3n.

Lemma 2.1. Any 2-coloring of K2k+1 contains a monochromatic copy of S+
k .

Proof. Consider a 2-coloring C = {C1, C2} of K2k+1. Suppose there is a vertex v in K2k+1 such that k + 1 edges incident
with v have same color. Let {v2k+1v1, v2k+1v2, · · · , v2k+1vk+1} ⊆ C1. If there exist some edge vivj , 1 ≤ i < j ≤ k + 1, in C1,
K2k+1 contains a monochromatic copy of S+

k in color 1. Suppose such an edge does not exist. This will imply that every
edge of the induced subgraph G′ = K2k+1[{v1, v2, · · · , vk+1}] is in C2. Thus, G′ and hence K2k+1 contains a monochromatic
copy of S+

k in color 2.
Now, suppose there is no vertex in K2k+1 incident with k + 1 edges in same color. Then every vertex is incident with

exactly k edges in C1 and k edges in C2. Let {v2k+1v1, v2k+1v2, · · · , v2k+1vk} ⊆ C1. As in the case above if there exist
some edge vivj , 1 ≤ i < j ≤ k, in C1, K2k+1 contains a monochromatic copy of S+

k in color 1. If not, then every edge of
K2k+1[{v1, v2, · · · , vk}] is colored with color 2. Since vk is incident to k edges that are colored with color 2, there exist an
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edge vkvt in C2, where k+1 ≤ t ≤ 2k. Thus, {vkvi, 1 ≤ i ≤ k− 1} ∪ {vkvt} ∪ {v1v2} is a monochromatic copy of S+
k in color

2 contained in K2k+1.

Theorem 2.3. R3(S
+
n ) = 5n+ 1.

Proof. To prove the lower bound consider K5n. Let G1 = K5n[{v1, v2, · · · , vn}], G2 = K5n[{vn+1, vn+2, · · · , v2n}], G3 =

K5n[{v2n+1, v2n+2, · · · , v3n}], G4 = K5n[{v3n+1, v3n+2, · · · , v4n}] and G5 = K5n[{v4n+1, v4n+2, · · · , v5n}]. Assign color 1 to the
edges in Gi for 1 ≤ i ≤ 5. All edges in K5n between G1 and G2, G1 and G3, G2 and G4, G3 and G5, G4 and G5 are colored with
color 2. Remaining edges in K5n are colored with color 3. This gives a 3-coloring of K5n which contains a monochromatic
copy of Sn but does not contain a monochromatic copy of S+

n . So, R3(S
+
n ) ≥ 5n+ 1.

Consider a 3-coloring C = {C1, C2, C3} of K5n+1. Since deg(v5n+1) = 5n and for n ≥ 3, 3(n+ 2) ≤ 5n, at least n+ 2 edges
incident with v5n+1 must have same color. Now, either n + 2 or n + 1 must be an odd number and let that odd number be
2k + 1 for some integer k. Let {v5n+1v1, v5n+1v2, · · · , v5n+1vn+2} ⊆ C1. If there is an edge vivj ∈ C1, 1 ≤ i < j ≤ n+ 2, then
K5n+1 contains a monochromatic copy of S+

n .
If there is no such edge, G1 = K5n+1[{v1, v2, · · · , v2k+1}] must be 2-colored. Also G1 is isomorphic to the complete graph

K2k+1. Then by Lemma 2.1, G1 contains a monochromatic copy of S+
k in color 2 and let {v1, v2, · · · , vk, vk+1} be the vertices

of S+
k ⊆ G1, where vk+1 is the hub vertex. If there are n− k edges in K5n+1 \ S+

k in color 2 incident with vk+1, then K5n+1

contains a monochromatic copy of S+
n .

Otherwise at most n− k − 1 edges in color 2 are incident with vk+1. So, at least 4n+ 1 edges incident with vk+1 are in
C1 or C3. Among these, 2n + 1 edges must be in Ct where t = 1 or 3. Let {vk+1v5n, vk+1v5n−1, · · · , vk+1v3n} ⊆ Ct and let
G2 = K5n+1[{v3n, v3n+1, · · · , v5n}]. If there is an edge vrvs, 3n ≤ r < s ≤ 5n in color t, then K5n+1 contains a monochromatic
copy of S+

n .
If there is no such edge, then G2 is 2-colored. Then by Lemma 2.1, there is a monochromatic copy of S+

n in G2 and hence
in K5n+1. So, R3(S

+
n ) ≤ 5n+ 1. Hence, R3(S

+
n ) = 5n+ 1.

Lemma 2.2. grk(S3 : H) ≥ R2(H), where H ∈ {Sn, Tn+2, Pn, S
+
n }.

Proof. By the definition of R2(H), there is a 2-coloring of Km where m = R2(H) − 1 which has no monochromatic copy of
H. Since only two colors are used, Km cannot have a rainbow copy of S3. So, grk(S3 : H) ≥ R2(H).

Theorem 2.4. grk(S3 : Sn) = 2n.

Proof. Consider K2n−1. Color the edges of the induced subgraphs G1 = K2n−1[{v1, v2, · · · , vn−1}] and G2 = K2n−1[{vn, vn+1,
· · · , v2n−2}] with color 1 and color 2 respectively. Use color 3 for the edges between G1 and G2. The edges between the
vertices of G1 and v2n−1 are colored with color 1 and those between G2 and v2n−1 are colored with color 2. Now, every
vertex of K2n−1 are two colored and hence there does not exist a rainbow S3 in K2n−1. Only a monochromatic Sn−1 could
be obtained with the above coloring. Hence, grk(S3 : Sn) ≥ 2n.

Let C be a k-coloring of K2n. If there is a vertex in K2n represented by at least 3 colors, a rainbow copy of S3 is obtained.
If not, C is such that every vertex of K2n is at most 2-colored. Let v be a vertex of K2n. Since degree of v is 2n− 1, n edges
incident with v must be of same color. These n edges gives a monochromatic copy of Sn in K2n. Hence, grk(S3 : Sn) ≤ 2n.
Thus, grk(S3 : Sn) = 2n.

Theorem 2.5. R2(Sn) ≤ grk(S3 : Sn) ≤ R3(Sn).

Proof. From Lemma 2.2, Theorem 2.1, and Theorem 2.4, the result follows.

Theorem 2.6. grk(S3 : Tn+2) = 2n+ 1.

Proof. Consider the complete graph K2n. Color the edges of the induced subgraph G1 = K2n[{v1, v2, · · · , vn+1}] with color
1. Now, color all the edges except the edge v1vn+1 of the induced subgraph G2 = K2n[{vn+1, vn+2, · · · , v2n, v1}] with color 2.
Use color 3 for the edges connecting the vertices of G1\{v1, vn+1} and G2\{v1, vn+1}. Only a monochromatic Sn is obtained
with the above coloring in color 1 and color 2. In color 3 a monochromatic Sn−1 is obtained. So, grk(S3 : Tn+2) ≥ 2n+ 1.

Let C = {C1, C2, · · · , Ck} be a k-coloring of K2n+1. If there is a vertex in K2n+1 represented by at least 3 colors, a
rainbow copy of S3 is obtained. If not, C is such that every vertex of K2n+1 is at most 2-colored. Since degree of v2n+1 is
2n, at least n edges incident with v2n+1 must be of same color. Without loss of generality, let the edges v2n+1vi, 1 ≤ i ≤ n

be in C1. Let W1 = {v1, v2, · · · , vn} and W2 = {vn+1, vn+2, · · · , v2n}. If there is an edge in C1 with one end in W1 and
other end in W2, a monochromatic copy of Tn+2 in color 1 exist. If not, each v1w,w ∈ W2 must be in C2. Now, if each
v2w,w ∈ W2 is in C2, {v1w : w ∈ W2} ∪ {v2v2n} gives a monochromatic copy of Tn+2 in color 2. If each v2w,w ∈ W2 is in
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C3, v3v2n must be in C2 or C3. If v3v2n ∈ C2, {v1w : w ∈ W2} ∪ {v3v2n} gives a monochromatic copy of Tn+2 in color 2.
Otherwise {v2w : w ∈ W2} ∪ {v3v2n} gives a monochromatic copy of Tn+2 in color 3. Hence, grk(S3 : Tn+2) ≤ 2n+ 1. Thus,
grk(S3 : Tn+2) = 2n+ 1.

Theorem 2.7. R2(Tn+2) ≤ grk(S3 : Tn+2) ≤ R3(Tn+2).

Proof. From Lemma 2.2, Theorem 2.2, and Theorem 2.6, the result follows.

Theorem 2.8. grk(S3 : S+
n ) = 2n+ 1, where S+

n is obtained from Sn by adding an edge between any two pendant vertices.

Proof. Consider the complete graph K2n. Color the edges of the induced subgraphs G1 = K2n[{v1, v2, · · · , vn}] and G2 =

K2n[{vn+1, vn+2, · · · , v2n}] with color 1 and color 2 respectively. Use color 3 for the edges between G1 and G2. Now, every
vertex of K2n are two colored and hence there does not exist a rainbow S3 in K2n. Only a monochromatic Sn could be
obtained with the above coloring. Hence, grk(S3 : S+

n ) ≥ 2n+ 1.
Let C = {C1, C2, · · · , Ck} be a k-coloring of K2n+1. If there is a vertex in K2n+1 represented by at least 3 colors, a rainbow

copy of S3 is obtained. If not, C is such that every vertex of K2n+1 is at most 2-colored.
Assume that there is a vertex in K2n+1 incident with n + 1 edges and all these edges have the same color. Let

{v1v2n+1, v2v2n+1, · · · , vn+1v2n+1} ⊆ C1 and let G1 = K2n+1[{v1, v2, · · · , vn+1}]. If there is an edge in C1 which belongs to G1,
we get a monochromatic copy of S+

n in color 1. If not, every edge of G1 must be in C2. Then G1 contains a monochromatic
copy of S+

n in color 2.
Now, assume that there does not exist such a vertex. Then each vertex must have n edges in one color and n edges

in another color. Let these edges be v1v2n+1, v2v2n+1, · · · , vnv2n+1 in C1 and let G2 = K2n+1[{v1, v2, · · · , vn}]. If there is
an edge in C1 which belongs to G2, a monochromatic copy of S+

n is obtained in color 1. If not, every edge of G2 is in C2.
Now, vn is incident with n − 1 edges in C2. Since vn must have n edges in color 2, there must exist an edge vrvn in C2 for
some r, n + 1 ≤ r ≤ 2n. Then v1vn, v2vn, · · · , vn−1vn, vrvn and v1v2 gives a monochromatic copy of S+

n in color 2. Hence,
grk(S3 : S+

n ) ≤ 2n+ 1. So, grk(S3 : S+
n ) = 2n+ 1.

Theorem 2.9. R2(S
+
n ) ≤ grk(S3 : S+

n ) ≤ R3(S
+
n ).

Proof. From Lemma 2.2, Theorem 2.3, and Theorem 2.8, the result follows.

Theorem 2.10. For n ≥ 3, R2(Pn) ≤ grk(S3 : Pn) ≤ R3(Pn).

Proof. The lower bound is clear from Lemma 2.2. When at most three colors are used, from the definition of R3(Pn) it
is clear that grk(S3 : Pn) ≤ R3(Pn). Suppose at least four colors are used. The upper bound is established by applying
induction on n. R3(P3) = 5 (from [7]) and in any k-coloring of K5 without a rainbow S3, each vertex of K5 must be incident
with at most 2 colors. Since deg(v) = 4 ∀ v ∈ K5, at least two edges incident to v must be of same color, which is a
monochromatic copy of P3. Thus, grk(S3 : P3) ≤ R3(P3).

Suppose that grk(S3 : Pn−1) ≤ R3(Pn−1). The inequality grk(S3 : Pn) ≤ R3(Pn) is to be proved. Let m = R3(Pn).
It is enough to show that any k-coloring of Km contains a rainbow copy of S3 or a monochromatic copy of Pn. Let C =

{C1, C2, · · · , Ck} be a k-coloring of Km. Suppose that Km does not contain a rainbow copy of S3. Then at most two colors
are represented at each vertex of Km. Here it will be proved that Km contains a monochromatic copy of Pn. Observe
that R3(Pn−1) ≤ R3(Pn). Then from the induction hypothesis we get grk(S3 : Pn−1) ≤ R3(Pn) = m. Since Km does not
contain a rainbow copy of S3, it must contain a monochromatic copy of Pn−1. Without loss of generality, let v1v2 · · · vn−1 be
a monochromatic copy of Pn−1 in color 1. Let G1 = Km[{v2, v3, · · · , vn−2}] and G2 = Km[{vn, vn+1, · · · , vm}]. If there is an
edge v1w or vn−1w for some w ∈ G2 in color 1, then Km contains a monochromatic copy of Pn. If not, for all w ∈ G2 the edges
v1w /∈ C1 and vn−1w /∈ C1. Since v1v2 ∈ C1, all the edges v1w, w ∈ G2 must belong to Ci for some fixed i, i ≥ 2 (otherwise a
rainbow copy of S3 is obtained at v1). Same argument holds for vn−1w, w ∈ G2. Consider the following cases.

Case 1. For all w ∈ G2, v1w ∈ C2 and vn−1w ∈ C3.
The colors, color 2 and color 3 are represented at each vertex of G2, color 1 and color 2 at v1, color 1 and color 3 at vn−1

(see Figure 1). The edges vnu, u ∈ G1 must be in C2 or C3 and hence two colors are represented at each vertex of G1. Thus,
two colors are represented at each vertex of Km using color 1, color 2 or color 3. So, in this case k ≥ 4 is not possible (If
k ≥ 4, then Km contains a rainbow copy of S3). When k = 3 the existence of a monochromatic copy of Pn in Km is assured
by the definition of R3(Pn), since m = R3(Pn) is the smallest integer such that every coloring of Km with at most 3 colors
will contain a monochromatic copy of Pn.
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v1 vn−1

v2 v3 vn−3 vn−2

vm vm−1 vn+1 vn

col
or

1 color 1

color 2 col
or

3

Figure 1: Case 1 of the proof of Theorem 2.10.

Case 2. For all w ∈ G2, both v1w and vn−1w are in C2.

Subcase 2.1. For some i ≥ 3, Km has an edge in Ci with one end in G1 and the other in G2.
Without loss of generality suppose that Km has an edge in C3 with one end in G1 and the other in G2. Let vrvs belong to
C3 where vr ∈ G1, vs ∈ G2. Then color 1 and color 3 are represented at vr, color 2 and color 3 are represented at vs (see
Figure 2). So, each edge vsu, u ∈ G1 must be in C2 or C3 (otherwise a rainbow copy of S3 is obtained at vs) and the edges
vrw,w ∈ G2 must be in C1 or C3 (otherwise a rainbow copy of S3 is obtained at vr). Then two colors are represented at each
vertex of Km. So, as in case 1, k ≥ 4 is not possible and when k = 3, by definition of R3(Pn) there exist a monochromatic
copy of Pn in Km.

v1 vn−1

v2 v3 vr vn−3 vn−2

vm vm−1 vs vn+1 vn

colo
r 1 color 1

color 3color 2 col
or

2

Figure 2: Subcase 2.1 of the proof of Theorem 2.10.

Subcase 2.2. For any i, i ≥ 3, Km has no edge in Ci with one end in G1 and the other in G2.
Since at least four colors are used to color the edges of Km, C3 is non empty. From the supposition of this subcase, the
edges having color 3 must belong to G1 or G2 (or both). Then two cases are to be considered.

Subcase 2.2.1. Suppose G2 contains an edge that belongs to C3.
Let vrvs be the edge of G2 that belongs to C3 (see Figure 3).

Claim 1. Two colors, color 1 and color 2 are represented at every vertex of V (G1) ∪ {v1, vn−1}.
From the supposition of case 2, v1vr ∈ C2, so color 2 is represented at vr. Thus, two colors, color 2 and color 3 are represented
at vr. Consider the edges vru, u ∈ G1. Then vru must have color 2 or color 3 (otherwise a rainbow copy of S3 is obtained at
vr). From the supposition of subcase 2.2, vru /∈ C3 and hence vru ∈ C2 for all u ∈ G1. Since u ∈ G1, color 1 is represented
at u. Thus, two colors, color 1 and color 2, are represented at each vertex of G1. So, any edge from G1 to G2 must be in C1

or C2 (otherwise a rainbow copy of S3 is obtained). Also color 1 and color 2 are represented at the vertices v1, vn−1 (from
the supposition of case 2). Thus, two colors, color 1 and color 2 are represented at the vertices of V (G1) ∪ {v1, vn−1}.

Let W = {w ∈ G2 : uw ∈ C2 ∀ u ∈ G1}. Since vru ∈ C2 for all u ∈ G1, vr ∈W and hence W 6= ∅. Consider the set Km\W .

Claim 2. Two colors, color 1 and color 2 are represented at every vertex of Km\W .
V (Km\W ) = V (G1) ∪ {v1, vn−1} ∪ V (G2\W ). If G2\W = ∅, then V (Km\W ) = V (G1) ∪ {v1, vn−1}. Hence, from claim 1,
color 1 and color 2 are represented at every vertex of V (Km\W ). Suppose G2\W 6= ∅. Let x be a vertex of G2\W . Since
x ∈ G2, color 2 is represented at x and since x /∈W , there exist some u ∈ G1 such that ux /∈ C2. So, ux ∈ C1, since any edge
from G1 to G2 must be in C1 or C2. Thus, two colors, color 1 and color 2, are represented at each vertex of G2\W . Also from
claim 1, color 1 and color 2 are represented at each vertex of G1 and at the vertices v1, vn−1. Hence, color 1 and color 2 are
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represented at every vertex of Km\W . Thus, claim 2 is proved.

So, every edge that is not colored using color 1 or color 2 must be in Km[W ] (otherwise a rainbow copy of S3 is obtained at
a vertex of Km\W ).

i) Let |W | ≥
⌊
n
2

⌋
. Then v1w1v2w2 . . . vn

2
wn

2
is a monochromatic copy of Pn in color 2 when n is even and v1w1v2w2 . . .

vbn2 cwb
n
2 cvb

n
2 c+1 is a monochromatic copy of Pn in color 2 when n is odd, where wi ∈W for i ≥ 1.

v1 vn−1

v2 v3 vn−3 vn−2

vm vm−1

vr vs

vn+1 vn
W

colo
r 1 color 1

color 3

color 2 col
or

2

color2

Figure 3: Subcase 2.2.1 of the proof of Theorem 2.10.

ii) Let |W | <
⌊
n
2

⌋
. It will be proved that Km contains a monochromatic copy of Pn in color 1 or color 2. For that construct

a 3-coloring of Km from C using color 1, color 2 and color 3. Under C every edge of E(Km)\E(W ) is in color 1 or color
2 (from claim 2). Recolor the edges of Km[W ] alone using color 3. This recoloring gives a new 3-coloring, C′, of Km.
Then, from the definition of R3(Pn), Km contains a monochromatic copy of Pn under C′. All the edges of Km having
color 3 under C′ belongs to Km[W ] and hence if the monochromatic copy of Pn under C′ is in color 3, then it must be
contained in Km[W ]. But |W | <

⌊
n
2

⌋
. So, the monochromatic copy of Pn under C′ is not in Km[W ]. This implies that

the monochromatic copy of Pn in Km under C′ is not in color 3 and hence it is either in color 1 or in color 2. Without
loss of generality suppose that the monochromatic copy of Pn under C′ is in color 1 and let e1e2 . . . en−1 be the edges
in Pn. It is to be noted that every edge of Km having color 1 or color 2 under C′ had the same color under C. Then
these ei’s will have color 1 in Km under C and hence a monochromatic copy of Pn in color 1 is obtained under C.

Subcase 2.2.2. Suppose that G2 does not contain an edge that belongs to C3.
From the supposition in subcase 2.2, every edge in C3 must be in G1. Let vrvs be an edge in G1 that belong to C3. Then
color 1 and color 3 is represented at vr. So, the edges vrw,w ∈ G2 must be in C1 or C3 (otherwise a rainbow copy of S3 is
obtained at vr). From the supposition of subcase 2.2 vrw cannot have color 3. So, for all w ∈ G2, vrw is in color 1. Thus,
two colors, color 1 and color 2, are represented at each vertex in G2 and at the vertices v1, vn−1. Recolor G1 with color 3
to obtain a 3-coloring C′ of Km. Then from the definition of R3(Pn), Km contains a monochromatic copy of Pn under C′.
Since |G1| < n, this monochromatic copy of Pn is not in color 3 and hence it is either in color 1 or in color 2. Then the same
monochromatic copy of Pn in Km under C′ can be obtained under C. Thus, in all cases grk(S3 : Pn) ≤ R3(Pn).

Remark 2.1. Let us consider an example for which strict inequality holds in Theorem 2.10. We have R3(P3) = 5. But,
grk(S3 : P3) = 4. Consider a k-coloring of K4 that does not contain a rainbow S3. Then at most two colors are represented
at each vertex of K4. Since the degree of each vertex of K4 is three, there exist at least two edges in the same color incident
with each vertex of K4, giving a monochromatic copy of P3. So, grk(S3 : P3) ≤ 4. Now, the complete graph on three vertices,
C3 does not contain a rainbow copy of S3 or a monochromatic copy of P3 in any 3-coloring. Hence, grk(S3 : P3) = 4.
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[5] A. Gyárfás, M. Ruszinko, G. Sarkozy, E. Szemeredi, Three-color Ramsey numbers for paths, Combinatorica 27 (2007) 35–69.
[6] X. Li, P. Besse, C. Magnant, L. Wang, N. Watts, Gallai-Ramsey numbers for rainbow paths, Graphs Combin. 36 (2020) 1163–1175.
[7] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. DS1 (2021) #DS1.16.
[8] Z. Wang, Y. Mao, C. Magnant, J. Zou, Ramsey and Gallai-Ramsey numbers for two classes of unicyclic graphs, Graphs Combin. 37 (2021) 337–354.

50


	Introduction
	Main results

