Research Article Signed total strong Roman domination in graphs

Maryam Hajjari, Seyed Mahmoud Sheikholeslami*

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran

(Received: 19 February 2022. Received in revised form: 6 May 2022. Accepted: 7 May 2022. Published online: 12 May 2022.)

© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G = (V, E) be a finite and simple graph of order n and maximum degree Δ . A signed total strong Roman dominating function on G is a function $f : V \to \{-1, 1, 2, \dots, \lceil \Delta/2 \rceil + 1\}$ satisfying the conditions: (i) for every vertex v of G, $\sum_{u \in N(v)} f(u) \ge 1$, where N(v) is the open neighborhood of v, and (ii) every vertex v satisfying f(v) = -1 is adjacent to at least one vertex u such that $f(u) \ge 1 + \lceil |N(u) \cap V_{-1}|/2 \rceil$, where $V_{-1} = \{v \in V \mid f(v) = -1\}$. The signed total strong Roman domination number of G, $\gamma_{ssR}^t(G)$, is the minimum weight of a signed total strong Roman dominating function. In this paper, some bounds for this parameter are presented.

Keywords: signed total Roman domination; signed total strong Roman domination.

2020 Mathematics Subject Classification: 05C69.

1. Introduction

Let G = (V, E) be a graph without isolated vertices with vertex set V and edge set E. The *order* of G is n = n(G) = |V|. The *open neighborhood* of a vertex $v \in V$ is the set $N(v) = N_G(v) = \{u \in V(G) \mid uv \in E\}$. The *degree* of vertex $v \in V$ is $d(v) = d_G(v) = |N(v)|$. The *maximum* and *minimum degree* of G are denoted by $\Delta = \Delta(G)$ and $\delta = \delta(G)$, respectively. We write P_n for the *path* of order n and C_n for the *cycle* of length n.

A (total) dominating set in a graph G is a set of vertices $S \subseteq V(G)$ such that any vertex of V - S(V) is adjacent to at least one vertex of S. The (total) domination number $\gamma(G)(\gamma_t(G))$ equals the minimum cardinality of a (total) dominating set in G.

Let $f: V(G) \rightarrow \{0, 1, 2, \dots, k\}$ be a function and let $(V_0, V_1, V_2, \dots, V_k)$ be the ordered weak partition of V = V(G) induced by f, where $V_i = \{v \in V \mid f(v) = i\}$ for $i \in \{0, 1, \dots, k\}$. There is a 1-1 correspondence between the function $f: V \rightarrow \{0, 1, 2, \dots, k\}$ and the ordered weak partition $(V_0, V_1, V_2, \dots, V_k)$ of V, so we write $f = (V_0, V_1, V_2, \dots, V_k)$.

A signed total Roman dominating function (STRDF) on a graph G is a function $f: V(G) \to \{-1, 1, 2\}$ such that $f(N(v)) \ge 1$ for every $v \in V(G)$, and every vertex u satisfying f(u) = -1 is adjacent to a vertex v for which f(v) = 2. The weight of a STRDF f on G is $\omega(f) = \sum_{u \in V(G)} f(u)$. The signed total Roman domination number $\gamma_{stR}(G)$ is the minimum weight of a STRDF on G. The concept of signed total Roman domination was introduced by Volkmann [7] and has been studied by several authors (see for instance [6,8]). Some variants of signed Roman domination have been studied in [1–3,9,10]. For more details on Roman domination and its variants we refer the reader to [4,5].

A signed total strong Roman dominating function (STStRD-function) on G is a function $f: V \to \{-1, 1, 2, ..., \lceil \Delta/2 \rceil + 1\}$ satisfying the conditions: (i) for every vertex v of G, $\sum_{u \in N(v)} f(u) \ge 1$, and (ii) every vertex v satisfying f(v) = -1 is adjacent to at least one vertex u such that

$$f(u) \ge 1 + \left\lceil \frac{1}{2} \left| N(u) \cap V_{-1} \right| \right\rceil,$$

where $V_{-1} = \{v \in V \mid f(v) = -1\}$. The weight of a STStRD-function f is the value $\omega(f) = f(V(G)) = \sum_{u \in V(G)} f(u)$. The signed total strong Roman domination number $\gamma_{ssR}^t(G)$ is the minimum weight of a STStRD-function on G. In this article, we are interested in establishing some bounds for $\gamma_{ssR}^t(G)$.

The next result immediately follows from definitions.

Observation 1.1. For any connected graph G with $\Delta(G) \leq 2$, $\gamma_{ssR}^t(G) = \gamma_{stR}(G)$.

The next corollaries are direct consequences of Observation 1.1 and Examples 5 and 6 of [7].

^{*}Corresponding author (s.m.sheikholeslami@azaruniv.ac.ir).

Corollary 1.1. For $n \ge 3$,

$$\gamma_{ssR}^t(P_n) = \begin{cases} \frac{n}{2} & \text{if} \quad n \equiv 0 \pmod{4}, \\ \left\lceil \frac{n+3}{2} \right\rceil & \text{if} \quad n \equiv 1, 2, 3 \pmod{4}. \end{cases}$$

Corollary 1.2. For $n \ge 3$,

$$\gamma_{ssR}^t(C_n) = \begin{cases} \frac{n}{2} & \text{if} \quad n \equiv 0 \pmod{4}, \\\\ \frac{n+3}{2} & \text{if} \quad n \equiv 1, 3 \pmod{4} \\\\ \frac{n+6}{2} & \text{if} \quad n \equiv 2 \pmod{4}. \end{cases}$$

2. Main results

In this section, we present some bounds on the signed total strong Roman domination number in graphs.

Theorem 2.1. Let G be a connected graph of order n. Then the following statements hold.

- 1. $\gamma_{ssR}^t(G) \leq n$.
- 2. If $\delta(G) \geq 3$, then $\gamma_{ssR}^t(G) \leq n-1$.
- **3.** $\gamma_{ssR}^t(G) \ge 2\gamma_t(G) n 1.$

Proof. 1. Clearly, assigning the weight 1 to every vertex of G produces an STStRD-function of G of weight n which implies that $\gamma_{ssR}^t(G) \leq n$.

2. Let x and y be two adjacent vertices. Define the function $f: V(G) \to \{-1, 1, \dots, \lceil \Delta/2 \rceil + 1\}$ by f(x) = -1, f(y) = 2 and f(z) = 1 for $z \in V(G) - \{x, y\}$. Since $\delta(G) \ge 3$, we observed that f is an STStRD-function on G of weight n - 1 and thus $\gamma_{ssR}^t(G) \le n - 1$.

3. Let f be a $\gamma_{ssR}^t(G)$ -function. If $V_i = \emptyset$, for each $2 \le i \le \lceil \Delta/2 \rceil + 1$, then $V = V_1$, and we have $\gamma_{ssR}^t(G) = \omega(f) = n$. Hence we may assume that $|V_i| \ge 1$ for some $2 \le i \le \lceil \Delta/2 \rceil + 1$. Since

$$|V_{-1}| = n - \sum_{i=1}^{|\Delta/2|+1} |V_i|$$

and $\bigcup_{i=1}^{\lceil \Delta/2\rceil+1} V_i$ is a total dominating set for G, we have

$$\begin{split} \gamma_{ssR}^t(G) &= \sum_{i=1}^{\lceil \Delta/2 \rceil + 1} i |V_i| - |V_{-1}| \\ &= \sum_{i=1}^{\lceil \Delta/2 \rceil + 1} (i+1) |V_i| - n \\ &> 2 \left(\sum_{i=1}^{\lceil \Delta/2 \rceil + 1} |V_i| \right) - n \\ &> 2\gamma_t(G) - n. \end{split}$$

Thus, $\gamma_{ssR}^t(G) \ge 2\gamma_t(G) - n - 1.$

Theorem 2.2. If G is a graph of order $n \ge 3$ with maximum degree Δ and minimum degree $\delta \ge 1$, then

$$\gamma_{ssR}^t(G) \ge \max\{1 + \Delta - n, \delta + 4 - n\}.$$

Proof. Let g be a $\gamma_{ssR}^t(G)$ -function. If $V_{-1} = \emptyset$, then $V = V_1$ and so $\gamma_{ssR}^t(G) = n \ge \max\{1 + \Delta - n, \delta + 4 - n\}$. Hence, we assume that $V_{-1} \neq \emptyset$. First we show that $\gamma_{ssR}^t(G) \ge 4 + \delta - n$. Let $u \in V_{-1}$. Then there exists a vertex $w \in N(u)$ with $g(w) \ge 2$, and it follows that

$$\begin{split} \gamma^t_{ssR}(G) &= g(w) + g(N(w)) + \sum_{x \in V(G) - N[w]} g(x) \\ &\geq 2 + 1 + \sum_{x \in V(G) - N[w]} g(x) \\ &\geq 3 - (n - d(w) - 1) \\ &\geq 4 + \delta - n. \end{split}$$

To prove $\gamma_{ssR}^t(G) \ge \Delta + 1 - n$, let v be a vertex of maximum degree and let X = V(G) - N[v]. By definition we have

$$\begin{split} \gamma^t_{ssR}(G) &= \sum_{x \in V(G)} g(x) \\ &= g(v) + \sum_{x \in N(v)} g(x) + \sum_{x \in X} g(x) \\ &\geq -1 + 1 + \sum_{x \in X} g(x) \\ &\geq -1 + 1 + (\Delta + 1 - n) \\ &= \Delta + 1 - n, \end{split}$$

as desired.

By Corollary 1.2, we have $\gamma_{ssR}^t(C_4) = 2 = 4 + \delta(C_4) - n(C_4)$.

Theorem 2.3. If G is a connected graph of order $n \ge 3$, then

$$\gamma_{ssR}^t(G) \le n - \delta + \left\lceil \frac{\delta}{4} \right\rceil + 1.$$

Proof. The result is immediate for $\delta(G) \leq 2$ by Proposition 2.1-(1). Assume that $\delta(G) \geq 3$ and $\delta(G) \equiv r \pmod{2}$. Let v be a vertex with minimum degree $\delta(G)$ and let $N(v) = \{v_1, v_2, \dots, v_{\delta(G)}\}$. If r = 0, then define the function

$$f: V(G) \to \{-1, 1, 2, \dots, \lceil \Delta/2 \rceil + 1\}$$

by $f(v_1) = -1$, $f(v_2) = 2$, $f(v_i) = (-1)^i$ for $3 \le i \le \delta(G)$, $f(v) = \lceil \frac{\delta}{4} \rceil + 1$ and f(x) = 1 otherwise. If r = 1, then define the function $f: V(G) \to \{-1, 1, 2, \dots, \lceil \Delta/2 \rceil + 1\}$ by $f(v_i) = (-1)^i$ for $1 \le i \le \delta - 1$, $f(v) = \lceil (\delta - 1)/4 \rceil + 1$ and f(x) = 1otherwise. In either case, it is easy to verify that f is STStRD-function on G of weight at most $n - \delta + \lceil \delta/4 \rceil + 1$ and hence $\gamma_{ssR}^t(G) \le n - \delta + \lceil \delta/4 \rceil + 1$, as desired.

A set $S \subseteq V(G)$ is a 2-packing of the graph G if $N[u] \cap N[v] = \emptyset$ for any two distinct vertices $u, v \in S$. The maximum cardinality of a 2-packing in G is the 2-packing number, denoted by $\rho(G)$.

Theorem 2.4. If G is a graph of order n, minimum degree $\delta \ge 1$ and packing number ρ , then $\gamma_{ssR}^t(G) \ge \rho(\delta + 1) - n$.

Proof. Let $\{v_1, v_2, \ldots, v_{\rho}\}$ be a 2-packing of G and let f be a $\gamma_{ssR}^t(G)$ -function. Take $A = \bigcup_{i=1}^{\rho} N(v_i)$. Since $\{v_1, v_2, \ldots, v_{\rho}\}$ is a 2-packing, we have $|A| = \sum_{i=1}^{\rho} d(v_i) \ge \rho \delta$. Thus,

$$\begin{aligned} \gamma_{ssR}^{t}(G) &= \sum_{x \in V(G)} f(x) \\ &= \sum_{i=1}^{\rho} f(N(v_i)) + \sum_{x \in V(G) \setminus A} f(x) \\ &\geq \rho + \sum_{x \in V(G) \setminus A} f(x) \\ &\geq \rho - n + |A| \\ &\geq \rho - n + \rho\delta \\ &= \rho(\delta + 1) - n. \end{aligned}$$

References

- H. A. Ahangar, L. Asgharsharghi, S. M. Sheikholeslami, L. Volkmann, Signed mixed Roman domination number in graphs, J. Comb. Optim. 32 (2016) 299–317.
- [2] H. A. Ahangar, M. A. Henning, C. Löwenstein, Y. Zhao, V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241-255.
- [3] L. Asgharsharghi, R. Khoeilar, S. M. Sheikholeslami, Signed strong Roman domination in graphs, Tamkang J. Math. 48 (2017) 135–147.
- [4] M. Chellali, N. J. Rad, S. M. Sheikholeslami, L. Volkmann, Roman domination in graphs, In: T. W. Haynes, S. T. Hedetniemi, M. A. Henning (Eds.), *Topics in Domination in Graphs*, Springer, Berlin/Heidelberg, 2020, pp. 365–409.
 [5] M. Chellali, N. J. Rad, S. M. Sheikholeslami, L. Volkmann, Roman domination in graphs, In: T. W. Haynes, S. T. Hedetniemi, M. A. Henning (Eds.), *Topics in Domination in Graphs*, Springer, Berlin/Heidelberg, 2020, pp. 365–409.
- [5] M. Chellali, N. J. Rad, S. M. Sheikholeslami, L. Volkmann, Varieties of Roman domination, In: T. W. Haynes, S. T. Hedetniemi, M. A. Henning (Eds.), Structures of Domination in Graphs, Springer, Berlin/Heidelberg, 2021, pp. 273–307.
- [6] S. Kosari, Y. Rao, Z. Shao, J. Amjadi, R. Khoeilar, Complexity of signed total k-Roman domination problem in graphs, AIMS Mathematics 6 (2021) 952–961.
- [7] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016) 855–871.
- [8] L. Volkmann, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017) 261–272.
- [9] L. Volkmann, Signed total Italian k-domination in graphs, Commun. Comb. Optim. 6 (2021) 171–183.
- [10] L. Volkmann, Weak signed Roman k-domatic number of a graph, Commun. Comb. Optim. 7 (2022) 17-27.