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Abstract
The product of conjugacy classes of a finite group can be written as a linear combination of conjugacy classes with integer
coefficients. For the symmetric group, some explicit expressions for these coefficients are known only in particular cases.
The aim of this paper is to give explicit expressions for the product of the conjugacy classes in the alternating group An

corresponding to cycles of length n.
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1. Introduction

Let G be a finite group, G? a set of representatives of the conjugacy classes of G and C[G] the algebra of G over the field
of complex numbers C. For x ∈ G?, denote by Cx(G) the conjugacy class of x in G. The center of the group algebra C[G],
usually denoted Z(C[G]), is linearly generated by the formal sums

Cx(G) =
∑

g∈Cx(G)

g

where x runs through the elements of G?. The structure constants czxy(G) of the center of the group algebra of G are the
non-negative integers defined by the following product

Cx(G)Cy(G) =
∑
z∈G?

czxy(G)Cz(G)

where x, y ∈ G?. By definition, czxy(G) counts the number of ways z can be obtained as a product of two elements fh where
(f, h) ∈ Cx(G)×Cy(G). However, as the product of G may be complicated, counting the structure constants directly by this
way may be a very difficult problem, see [5] and [7] for example where this method is used to compute particular structure
constants of the center of the symmetric group algebra.

If G? denotes the set of all non-isomorphic irreducible characters of G, then the representation theory of G offers the
following formula, due to Frobenius, that expresses the structure constants czxy(G) in terms of elements of G?

czxy(G) =
|CG(x)||CG(y)|

|G|
∑
χ∈G?

χ(x)χ(y)χ(z)

χ(1)
. (1)

We refer to the appendix [8] of Zagier where this formula is presented in a more general form. Evaluating irreducible
characters is also known to be a difficult problem. However the Frobenius formula is very efficient in some particular
cases where the direct computation is out of reach, see [3] and [2] for computing structure constants involving cycles of
length n in the symmetric group Sn.

The representation theory of a subgroup H of index 2 of G is strongly related to that of G, see [1] or [4]. First, each
conjugacy class of G (that contains elements in H) gives either a conjugacy class of H or splits and break up to yield two
conjugacy classes ofH of the same size. Second, H? can be completely determined by restricting the irreducible characters
ofG toH. The restriction of any element χ ∈ G? toH is either an element ofH? or splits and produce two different elements
of H? of the same degree. This suggests that the structure constants of the center of the subgroup H are closely related to
the structure constants of G. We show this relation and applied it in the case of the alternating subgroup An of Sn. This
allows us to obtain, in Theorem 3.2, explicit expressions for the product of the conjugacy classes corresponding to cycles of
length n for the alternating group An.
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2. Representation theory of subgroups of index 2

In this section we recall some results of the representation theory of subgroups of index 2. We refer the reader to one of
the following two books [1] and [4] for more details and complete proofs. Throughout this section G will be a finite group
and H a subgroup of G of index 2. Thus H is a normal subgroup of G and G = H t gH for some element g ∈ G verifying
(gH)2 = H.

Conjugacy classes
The conjugacy classes of H can be obtained from the conjugacy classes of G using one of the following two ways:

1. Suppose that x ∈ H commutes with an element t ∈ gH. In this case, if y = α−1xα for some α ∈ G then either
α ∈ H and y ∈ CH(x) or α ∈ gH and y = α−1t−1xtα = (tα)−1xtα with tα ∈ gHgH = H. Thus y ∈ CH(x) and as
CH(x) ⊂ CG(x), we deduce that CG(x) = CH(x).

2. If x does not commute with any t ∈ gH then the centralizer of x in G is the same as the centralizer of x in H and
|G|

|CG(x)| =
|H|
|CH(x)| . This implies that |CG(x)| = 2|CH(x)|. In addition,

CG(x) = CH(x) t {h−1g−1xgh;h ∈ H} = CH(x) t CH(g−1xg).

This means that CG(x) splits into two disjoint conjugacy classes in H which are CH(x) and CH(g−1xg).

Let G? denote a set of representatives, chosen to be in H if possible, of the conjugacy classes of G. If we decompose G? into
two disjoint sets L and L′ where L contains representatives which commute with some element t ∈ gH and L′ contains
representatives which do not commute with any t ∈ gH, then from the above discussion, we have

H? = H ∩ (L t L′ t L′g) and |CH(xg)| =
(1
2

)1−δxL
|CG(x)|

where

xg =

{
g−1xg if xg ∈ L′g
x if not.

and δxL =

{
1 if x ∈ L
0 if not.

Irreducible characters
Let G? denote the set of all non isomorphic irreducible representations of G. Decompose G? into two disjoint sets S and
S′ where S contains irreducible characters χ satisfying χ(gh) 6= 0 for some h ∈ H and S′ contains irreducible characters
satisfying χ(gh) = 0 for any h ∈ H. The restriction ResGH χ of any irreducible character χ ∈ S is an irreducible character of
H. Note that if χ ∈ S then the character χ′ of G defined by

χ′(x) =

{
χ(x) if x ∈ H
−χ(x) if x 6∈ H

is an irreducible character of G in S different than χ but has the same degree. In addition, it is easy to see that ResGH χ′ =
ResGH χ.

Now, if χ ∈ S′ then ResGH χ = χ1 + χ2, where χ1 and χ2 are non-isomorphic irreducible characters of H of the same
degree. This can be obtained from the general fact that ifK is a subgroup ofG and ψ1, · · · , ψr is a complete list of irreducible
characters of K then for any irreducible character χ of G we have

ResGK χ =

r∑
i=1

diψi

where the non-negative integers di satisfy
r∑
i=1

(di)
2 ≤ |G|
|H|

.

Thus the complete set H? of irreducible characters of H is

H? = {ResGH χ;χ ∈ S} t {χ1, χ2;χ ∈ S′}.

The next lemma shows a relation between the structure constants of H and those of G.
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Lemma 2.1. Let H be a subgroup of index 2 of a finite group G = H t gH. If xg, yg, zg ∈ H? then we have the following
relation between the structure constants in Z(C[G]) and Z(C[H])

cz
g

xgyg (H) =
(1
2

)2−δxL−δyL
czxy(G) +

|CH(xg)||CH(yg)|
|H|

Pzxy(S′)

where
Pz

g

xgyg (S
′) =

∑
χ∈S′

1

χ(1)

(
2χ1(x

g)χ1(y
g)χ1(zg) + 2χ2(x

g)χ2(y
g)χ2(zg)−

χ(x)χ(y)χ(z)

2

)
.

Proof. By Equation (1) of Frobenius, we have:

cz
g

xgyg (H) =
|CH(xg)||CH(yg)|

|H|
∑
χ∈H?

χ(xg)χ(yg)χ(zg)

χ(1)
.

Using the fact that H? = {ResGH χ;χ ∈ S} t {χ1, χ2;χ ∈ S′} and that both χ ∈ S and χ′ ∈ S restrict to the same irreducible
character of H, the sum over H? in the above equation can be written:

1

2

∑
χ∈S

χ(x)χ(y)χ(z)

χ(1)
+
∑
χ∈S′

χ1(x
g)χ1(y

g)χ1(zg) + χ2(x
g)χ2(y

g)χ2(zg)

χ1(1)
.

Notice that we have used the fact that χ1(1) = χ2(1). But from the decomposition G? = S t S′, we have:

∑
χ∈S

χ(x)χ(y)χ(z)

χ(1)
=
∑
χ∈G?

χ(x)χ(y)χ(z)

χ(1)
−
∑
χ∈S′

χ(x)χ(y)χ(z)

χ(1)
.

Thus,

∑
χ∈H?

χ(xg)χ(yg)χ(zg)

χ(1)
=

1

2

( ∑
χ∈G?

χ(x)χ(y)χ(z)

χ(1)

)
+
∑
χ∈S′

χ1(x
g)χ1(y

g)χ1(zg) + χ2(x
g)χ2(y

g)χ2(zg)

χ1(1)
− χ(x)χ(y)χ(z)

2χ(1)
.

The result follows using the relations |G| = 2|H|, |CH(xg)| =
(

1
2

)1−δxL
|CG(x)| and χ(1) = 2χ1(1) for any χ ∈ S′.

3. Application to the alternating group An

The alternating group An is the subgroup of index 2 of the symmetric group Sn containing even permutations. We start
by reviewing some useful results from the rich representation theory of the symmetric group Sn.

Partitions
A partition λ is a weakly decreasing list of positive integers (λ1, . . . , λl) where λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 1. The λi are called the
parts of λ; the size of λ, denoted by |λ|, is the sum of all of its parts. If |λ| = n, we say that λ is a partition of n.We will also use
the exponential notation λ = (1m1(λ), 2m2(λ), 3m3(λ), . . .), where mi(λ) is the number of parts equal to i in the partition λ. If
λ = (1m1(λ), 2m2(λ), 3m3(λ), . . . , nmn(λ)) is a partition of n then

∑n
i=1 imi(λ) = n.We will dismiss imi(λ) from λwhenmi(λ) = 0.

The partial order / on the set of partitions of all numbers is defined by saying that for µ = (1m1(µ), 2m2(µ), 3m3(µ), . . . , rmr(µ)),

λ . µ if and only if for all i = 1, 2, . . . , mi(λ) ≥ mi(µ).

Any partition λ = (λ1, . . . , λl) of n can be represented by a Young diagram. This is an array of n squares having l

left-justified rows with row i containing λi squares for 1 ≤ i ≤ l. For example, the following is the Young diagram of the
partition λ = (4, 2, 1) of 7

If λ = (λ1, λ2, . . . , λl) is a partition of n then we define its conjugate λ′ = (λ′1, λ
′
2, . . . , λ

′
λ1
), where

λ′i := Card{j : λj ≥ i} for any 1 ≤ i ≤ λ1.
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The conjugate of a partition is obtained by reflecting its Young diagram about its main diagonal. As an example, the
conjugate of the partition λ = (4, 2, 1) is λ′ = (3, 2, 1, 1) which is represented below

Irreducible representations of An

It is well known that partitions of n are used to index both the conjugacy classes and the irreducible representations of Sn.
We recall that the cycle-type ct(ω) of a permutation of ω ∈ Sn is the partition of n obtained from the lengths of the cycles
that appear in its decomposition into product of disjoint cycles. For example, the permutation (4, 1, 6)(3, 5)(2) of S6 has
cycle-type (3, 2, 1). If λ is a partition of n, the conjugacy class Cλ of Sn associated to λ contains all the permutations of Sn
of cycle-type λ,

Cλ := {σ ∈ Sn | ct(σ) = λ}.

The reader should remark that we omit the group Sn from our notation for conjugacy classes here. We decided to write so
for sake of simplification. In case any confusion may arise, we will use the notation Cλ(Sn).

The cardinal of Cλ is given by:
|Cλ| =

n!

zλ
, (2)

where
zλ = 1m1(λ)m1(λ)!2

m2(λ)m2(λ)! · · ·nmn(λ)mn(λ)!.

Let E(n) denote the set of partitions with even number of even parts. It would be easy to verify that a permutation
of n is even if and only if its cycle-type correspond to a partition in E(n). According to the general discussion in Section
2, if λ ∈ E(n), the conjugacy class Cλ in Sn splits into two disjoint conjugacy classes in An if and only if there is no odd
permutation commuting with a permutation of cycle-type λ. This happens if and only if all the parts of λ are odd integers
and no two parts are equal. If we denote by OD(n) the set of all such partitions of n then the conjugacy classes of An are

{Cλ;λ ∈ E(n) \ OD(n)} t {C1
λ, C

2
λ;λ ∈ OD(n)}.

The irreducible representation of Sn that corresponds to the partition λ of n is called the Specht module and usually
denoted by Sλ, see [6, Theorem 2.4.6]. The hooklength hi,j(λ) is the number of squares on the right and below the square in
the ith row and jth column in the diagram of λ. For example, h1,2(4, 2, 1) = 4 and h2,1(4, 2, 1) = 3 as can be seen respectively
from the following diagrams

• • •
• • •

•

The dimension fλ of the Specht module Sλ, which is equal to the value of the character χλ evaluated on the identity
element, is given by the following usually called hook length formula

fλ = χλ(1) =
n!∏

(i,j)∈λ hi,j(λ)
. (3)

As an example, we have

f (4,2,1) =
7!

6× 4× 2× 3× 1× 1
= 35.

Since the hooklength hi,j(µ) = hj,i(µ
′), we can easily deduce from the hook length formula that

fµ = fµ
′ for any partition µ of n.

To find all the irreducible characters ofAn, let us decompose the set E(n) of partitions of n into the following two disjoint
sets

E(n) = {λ;λ 6= λ′} t {λ;λ′ = λ}
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If λ 6= λ′, then ResSnAn S
λ = ResSnAn S

λ′ is an irreducible representation of An. In addition, if λ is a self-conjugate partition,
i.e. λ′ = λ, then ResSnAn S

λ = Sλ1 + Sλ2 where Sλ1 and Sλ2 are two irreducible representations of An of the same degree. Thus,

{ResSnAn S
λ;λ 6= λ′} t {Sλ1 , Sλ2 ;λ′ = λ}

is a complete set of non-isomorphic irreducible representations ofAn. In fact there is a bijection h from {λ;λ′ = λ} toOD(n)
which sends a self-conjugate partition λ to h(λ) = (h11(λ), h22(λ), · · · ) where hii(λ) = 2(λi − i+ 1)− 1 is the hook length of
the diagonal box with coordinates (i, i) in the Young diagram corresponding to λ.

The character table of An can be obtained from that of Sn using the following results

Theorem 3.1. 1. If λ 6= λ′ then ResSnAn χ
λ(Cµ) = χλ(Cµ) if µ ∈ P(n) \ OD(n) and ResSnAn χ

λ(Cµ) = χλ(C1
µ) = χλ(C2

µ) if
µ ∈ OD(n).

2. If λ is self-conjugate then χλ1 (Cµ) = χλ2 (Cµ) = 1
2χ

λ(Cµ) if µ ∈ P(n) \ OD(n) and if µ ∈ OD(n) we distinguish the
following two cases:

(a) if µ 6= h(λ) then χλ1 (C1
µ) = χλ2 (C

1
µ) = χλ1 (C

2
µ) = χλ2 (C

2
µ) =

1
2χ

λ(Cµ).

(b) if µ = h(λ) then χλ1 (C1
µ) = χλ2 (C

2
µ) = x and χλ1 (C2

µ) = χλ2 (C
1
µ) = y where

{x, y} =
{
1

2

(
(−1)m ±

√
(−1)mµ1 × · · · × µl(µ)

)}
and m =

1

2
(n− l(µ)).

Proof. We refer to [1, Proposition 5.3.] for a complete proof of this result.

Corollary 3.1. If n is an odd integer then the partition (n)c := (1
n−1
2 , n+1

2 ) is self conjugate and

1. χ(n)c

1 (Cµ) = χ
(n)c

2 (Cµ) =
1
2χ

(n)c(Cµ) if µ ∈ P(n) \ OD(n),

2. χ(n)c

1 (C1
µ) = χ

(n)c

2 (C1
µ) = χ

(n)c

1 (C2
µ) = χ

(n)c

2 (C2
µ) =

1
2χ

(n)c(Cµ) if µ ∈ OD(n) \ (n),

3. χ(n)c

1 (C1
(n)) = χ

(n)c

2 (C2
(n)) = x and χ(n)c

1 (C2
(n)) = χ

(n)c

2 (C1
(n)) = y where

{x, y} =
{
1

2

(
(−1)m ±

√
(−1)mn

)}
with m =

n− 1

2
.

In addition, x + y = (−1)m, xy = 1
4 (1 − (−1)mn), x2 + y2 = 1

2 (1 + (−1)mn), x2x + y2y = 1
4

(
(−1)m + (1 + 2(−1)m)n

)
,

x2y + y2x = 1
4

(
(−1)m + (1− 2(−1)m)n

)
and xyx+ yxy = 1

4 ((−1)
m − n).

Explicit formulas for the product of conjugacy classes of complete cycles in An

In [2], Goupil shows that for any partition ρ of n

cρ(n)(n)(Sn) =
(n− 1)!

(n+ 1)|Cρ|
∑
µCρ

sgn(µ)|Cµ||Cρ−µ|, (4)

where sgn(µ) is the signature of any permutation of Cµ. Using Equation (4) along with Lemma 2.1, we obtain the following
explicit expressions for the structure coefficients of products of cycles of length n in the alternating group An.

Theorem 3.2. If n is an odd integer and m = n−1
2 then for any partition ρ ∈ E(n) \ (n), we have

cρ(n)1(n)1(An) = cρ(n)2(n)2(An) =
1

4

(
cρ(n)(n)(Sn) + (−1)m

(
m!
)2
χ(1m,m+1)(ρ)

)
and

cρ(n)1(n)2(An) = cρ(n)2(n)1(An) =
1

4

(
cρ(n)(n)(Sn)− (−1)m

(
m!
)2
χ(1m,m+1)(ρ)

)
.

In addition,
c
(n)1

(n)1(n)1(An) = c
(n)2

(n)2(n)2(An) =
1

4

(
c
(n)
(n)(n)(Sn) +

(
m!
)2(

1 + 2(−1)m
))
,

c
(n)2

(n)1(n)1(An) = c
(n)1

(n)2(n)2(An) =
1

4

(
c
(n)
(n)(n)(Sn) +

(
m!
)2(

1− 2(−1)m
))

and
c
(n)1

(n)1(n)2(An) = c
(n)2

(n)2(n)1(An) =
1

4

(
c
(n)
(n)(n)(Sn)−

(
m!
)2)

.
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Proof. By Lemma 2.1, if n is odd then (n) ∈ OD(n) and if ρ 6∈ OD(n) then for i = 1, 2

cρ(n)i(n)i(An) =
1

4
cρ(n)(n)(Sn) +

(n− 1)!

2n

χ(n)c(ρ)(x2 + y2 − 1
2 )

f (n)c

and
cρ(n)1(n)2(An) = cρ(n)2(n)1(An) =

1

4
cρ(n)(n)(Sn) +

(n− 1)!

2n

χ(n)c(ρ)(2xy − 1
2 )

f (n)c
.

Using the identities x2 + y2 = 1
2 (1 + (−1)mn) and xy = 1

4 (1− (−1)mn) of Corollary 3.1 and the fact that

f (n)
c

=
(n− 1)!

(m!)2

by Equation (3), we obtain the first two formulas of our theorem. In the same way, one obtains

c
(n)1

(n)1(n)1(An) = c
(n)2

(n)2(n)2(An) =
1

4
cρ(n)(n)(Sn) +

(m!)2

2n

(
2x2x+ 2y2y − (−1)m

2

)
,

c
(n)2

(n)1(n)1(An) = c
(n)1

(n)2(n)2(An) =
1

4
cρ(n)(n)(Sn) +

(m!)2

2n

(
2x2y + 2y2x− (−1)m

2

)
and

c
(n)1

(n)1(n)2(An) = c
(n)2

(n)2(n)1(An) =
1

4
cρ(n)(n)(Sn) +

(m!)2

2n

(
2xyx+ 2yxy − (−1)m

2

)
.

The proof is completed using the identities x2x+ y2y = 1
4

(
(−1)m + (1 + 2(−1)m)n

)
, x2y + y2x = 1

4

(
(−1)m + (1− 2(−1)m)n

)
and xyx+ yxy = 1

4 ((−1)
m − n) of Corollary 3.1.

In the above theorem, characters that correspond to partitions (1r, n − r) appear in the given formulas. The following
explicit result to compute the value of χ(1r,n−r) on elements of cycle type µ = (1µ1 , · · · , nµn), where µ is a partition of n,
appears in [2]

χ(1r,n−r)
µ = (−1)r

∑
ρ=(1ρ1 ,··· ,rρr )`r

(−1)l(ρ)
(
µ1 − 1

ρ1

)(
µ2

ρ2

)
· · ·
(
µr
ρr

)
.

For example, none of the five partitions (14), (12, 2), (1, 3), (22) and (4) of 4 contributes to χ(14,5)
(13,32) except of (1, 3). Therefore,

χ
(14,5)
(13,32) = (−1)4

(
(−)2

(
2

1

)(
2

1

))
= 4.

Example 3.1. The symmetric group S5 has 7 conjugacy classes indexed by partitions of 5 which are:

(5), (1, 4), (12, 3), (1, 22), (13, 2), (15).

The alternating group A5 has 5 conjugacy classes indexed by the partitions: (5)1, (5)2, (12, 3), (1, 22) and (15). Here C(5)1(A5)

(respectively C(5)2(A5)) will be considered to be the the subset of C(5)(S5) containing the conjugates of (1, 2, 3, 4, 5) (respectively
(1, 2)(1, 2, 3, 4, 5)(1, 2) = (1, 3, 4, 5, 2)) in An. By Equation (4) of Goupil, we have the following explicit expression

C(5)(S5)C(5)(S5) = 24C(15)(S5) + 8C(1,22)(S5) + 12C(12,3)(S5) + 8C(5)(S5).

Using it along with our result in Theorem 3.2, we get the following explicit products in Z(C[A5]) :

C(5)1(A5)C(5)1(A5) = 12C(15)(A5) + 3C(12,3)(A5) + 5C(5)1(A5) +C(5)2(A5),

C(5)2(A5)C(5)2(A5) = 12C(15)(A5) + 3C(12,3)(A5) +C(5)1(A5) + 5C(5)2(A5),

C(5)1(A5)C(5)2(A5) = 4C(1,22)(A5) + 3C(12,3)(A5) +C(5)1(A5) +C(5)2(A5),

and
C(5)2(A5)C(5)1(A5) = 4C(1,22)(A5) + 3C(12,3)(A5) +C(5)1(A5) +C(5)2(A5).
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