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Abstract
The suspension of the path P4 consists of a P4 and an additional vertex adjacent to each of the four vertices, and is denoted by
P̂4. The largest number of triangles in a P̂4-free n-vertex graph is denoted by ex(n,K3, P̂4). Mubayi and Mukherjee showed
in the preprint [arXiv:2004.11930, (2020)] that ex(n,K3, P̂4) = n2/8 + O(n). For sufficiently large n, it is shown here that
ex(n,K3, P̂4) = bn2/8c.
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1. Introduction

One of the main topics in extremal graph theory was initiated by Turán [8] and deals with the quantity ex(n, F ), which is
the largest number of edges in n-vertex F -free graphs.

Generalized Turán problems deal with the quantity ex(n,H, F ), which is the largest number of copies of a subgraph H
in n-vertex F -free graphs. The systematic study of generalized Turán problems was initiated by Alon and Shikhelman [1].

The suspension F̂ of a graph F is obtained by adding an additional vertex v to F and for each vertex u ∈ V (F ), adding
the edge uv. Mubayi and Mukherjee [6] studied ex(n,K3, F̂ ) for various different bipartite graphs F . In particular, they
investigated ex(n,K3, P̂4), where P4 denotes the path on four vertices.

Proposition 1.1 (see [6]). We have bn2/8c −O(1) ≤ ex(n,K3, P̂4) < n2/8 + 3n.

We determine ex(n,K3, P̂4) exactly if n is sufficiently large.

Theorem 1.1. If n is sufficently large, then ex(n,K3, P̂4) = bn2/8c.

We present the proof in Section 2. The proof uses (a special case of) a theorem of Győri [5] on Berge triangles and
progressive induction. However, we can incorporate the proof of Győri’s result into our proof and use a simple version of
progressive induction, this way making our proof self-contained. We introduce Berge hypergraphs, state Győri’s result,
show the connection to our problem, and describe progressive induction in Section 3.

2. Proof of Theorem 1.1

Let us describe the lower bound first. We take an almost balanced complete bipartite graph on n vertices and add a full
matching to one of the parts. Then the neighborhood of every vertex is either a star or or a matching, thus this graph if
P̂4-free. If n = 4k, we take K2k,2k and add k independent edges to one of the parts. If n = 4k+ 1, we take K2k,2k+1 and add
k independent edges to the smaller part. If n = 4k + 2, we take K2k,2k+2 and add k independent edges to the smaller part.
If n = 4k + 3, we take K2k+1,2k+2 and add k + 1 independent edges to the larger part.

Let us continue with the proof of the upper bound. We will show that if n ≥ 525 and f(n) := ex(n,K3, P̂4)− bn2/8c > 0,
then either f(n) < f(n− 1) or f(n) < f(n− 4). Let

K = max{f(n) : n < 525} ≤
(
525

3

)
,

then for n ≥ 525 we have f(n) < K (note that by Proposition 1.1 we have K ≤ 1575). Similarly for n ≥ 529 we have
f(n) < K − 1 and in general for n ≥ 525 + 4k we have f(n) < K − k. Therefore, for n ≥ 525 + 4K the statement holds.
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Let G be a P̂4-free n-vertex graph with ex(n,K3, P̂4) triangles. Assume first that G is K4-free. Observe that every
triangle in G contains at least two edges that are not contained in any other triangle. Indeed, assume that a, b, c forms a
triangle and ab and bc are contained in other triangles a, b, x and b, c, y. If x = y, then there is a K4 with vertices a, b, c, x,
and if x 6= y, then each vertex of the path xacy is adjacent to b.

Let us pick for each triangle in G two edges that are not contained in any other triangle (if there are three such edges,
we pick two arbitrarily). The resulting graph G′ clearly has twice as many edges as the number of triangles in G. Observe
that G′ is triangle-free, since G′ is a subgraph of G, and for every triangle of G, one of its edges was not picked. Therefore,
by Mantel’s theorem G′ has at most bn2/4c edges, hence G has at most bn2/8c triangles.

Assume now thatG contains aK4 with vertices U = {v1, v2, v3, v4}. Assume first that there is a vertex v that is contained
in at most (2n− 5)/8 triangles. Then ex(n,K3, P̂4) ≤ ex(n− 1,K3, P̂4) + (2n− 5)/8 and thus

f(n)− f(n− 1) = ex(n,K3, P̂4)− bn2/8c − ex(n− 1,K3, P̂4) + b(n− 1)2/8c < 0.

As there is no P4 in the neighborhood N(v) of v in G, the connected components of G[N(v)] are stars or triangles. This
means that there are at most |N(v)| edges inside N(v), thus v is in at most |N(v)| triangles. Therefore, we are done if there
is a vertex with degree at most (2n− 5)/8. Assume now that there are at most n− 3 triangles containing a vertex from U .
Then ex(n,K3, P̂4) ≤ ex(n− 4,K3, P̂4) + n− 3, thus f(n) < f(n− 1).

Assume from now on that every vertex has degree more than (2n−5)/8 (thus at least (n−4)/4), and for every K4, there
are more than n− 3 triangles that contain at least one of its vertices. Observe that every vertex outside U is adjacent to at
most one vertex of U by the P̂4-free property. Let Vi = N(vi) \ U for i ≤ 4 and V5 = V (G) \ (U ∪ V1 ∪ V2 ∪ V3 ∪ V4), then the
Vi’s are pairwise disjoint, thus there are at most n− 4 triangles containing one vertex from U . There are 4 triangles inside
U and no triangles containing exactly two vertices of U , thus there are n or n− 1 or n− 2 triangles containing at least one
vertex from U . In particular, at least two of the vi’s have the property that vi is in |N(vi)| triangles. This can happen only
if G[Vi] consists of vertex-disjoint triangles. Without loss of generality this holds for V1 and V2.

Observe that the above holds for every K4, i.e. there are two vertices in every K4 such that their neighborhood induces
vertex disjoint triangles. In particular, there is a such vertex v ∈ V1. Observe that only one of the triangles in N(v)

intersects V1, and every triangle from N(v) contains at most one vertex from V2. Indeed, if a, b, c form such a triangle, with
a, b ∈ V2, then there is a triangle a, b, c′ inside V2. Then vcac′ is a P4 in the neighborhood in b, a contradiction.

Recall that v has degree at least (n− 4)/4 and its neighborhood consists of at least (n− 4)/12 vertex disjoint triangles.
This means that out of the at least (n− 4)/12 triangles in N(v), one is inside V1 ∪ {v1}, and the other at least (n− 16)/12

triangles each contain an edge from V3 ∪ V4 ∪ V5. Observe that these are independent edges.
LetA be denote the set of vertices inG that are contained in someK4. Then |A| ≥ |U |+|V1|+|V2|+(n−16)/6 ≥ (8n+8)/12.

Since for i ≤ 4 we have |Vi| ≥ (n − 16)/4 but the union of these disjoint four sets have order at most n − 4, we have that
|Vi| ≤ (n+ 32)/4. Therefore, the degree of vertices in A is at most (n+ 44)/4. Let B be denote the set of vertices in G that
are not contained in any K4. A vertex of B is adjacent to at most one vertex in each triangle inside V1 and V2, and to at
most one vertex of each of the (n − 16)/12 independent edges inside V3 ∪ V4 ∪ V5 that form triangles with v. This means
that the degree of a vertex of B is at most n− 1− (n− 3)/3− (n− 6)/12 = (7n+ 6)/12. Therefore, the sum of the degrees
in G is at most

8n+ 8

12

n+ 44

4
+

4n− 8

12

7n+ 6

12
=

13n2 + 262n+ 252

36
.

Using that the number of triangles containing a vertex is at most its degree, it gives an upper bound on three times the
number of triangles in G (as we count every triangle three times this way). Therefore, the number of triangles is at most

13n2 + 262n+ 252

108
<

⌊
n2

8

⌋
if n ≥ 525, completing the proof.

3. Remarks

Given a graph F , a hypergraph H is a Berge copy of F (in short Berge-F ) if V (F ) ⊂ V (H) and there is a bijection
φ : E(F )→ E(H) such that for each edge e ∈ E(F ) we have e ⊂ φ(e). In other words, we can obtain H from F by enlarging
the edges arbitrarily. Note that there may be several non-isomorphic Berge copies of F . We denote by exr(n,Berge-F ) the
largest number of hyperedges in an r-uniform n-vertex hypergraph that does not contain any of the Berge copies of F .

Berge hypergraphs were introduced by Gerbner and Palmer [3], extending the well-studied notion of Berge cycles and
paths. The connection of Berge hypergraphs to generalized Turán problems was shown in [4], by the following simple
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proposition: ex(n,Kr, F ) ≤ exr(n,Berge-F ) ≤ ex(n,Kr, F )+ ex(n, F ). We remark that the lower bound follows by observing
that the hypergraph consisting of the vertex sets of copies of Kr in an F -free graph is Berge-F -free. We will connect our
problem to Berge hypergraphs differently.

Given a graph G, let us denote by T (G) the 3-uniform hypergraph with vertex set V (G), where {a, b, c} is a hyperedge
if and only if there is a triangle with vertices a, b, c in G.

Proposition 3.1. T (G) is Berge-K3-free if and only if G is P̂4-free and K4-free.

Proof. Let us assume that there is a Berge-K3 in T (G). It consists of 3 hyperedges that correspond to a graph triangle
with vertices a, b, c. Then the 3 hyperedges are {a, b, x}, {b, c, y} and {c, a, z}. At most one of these hyperedges are {a, b, c},
thus without loss of generality x, y 6∈ {a, b, c}. The edges ab, ax, bx, bc, by, cy, ca, cz, az are all in G. If x = y, then there is a
K4 in G with vertices a, b, c, x. If x 6= y, then the vertices of the path xacy are each adjacent to b, giving a P̂4.

If G contains a K4 with vertices a, b, c, d, then there is a bijection from the edges of the triangle a, b, c to the hyperedges
{a, b, d}, {b, c, d}, {c, a, d} of T (G), giving us a Berge-K3 in T (G). If G contains a path xacy such that its vertices are each
adjacent to a fifth vertex b, then there is a bijection from the edges of the triangle a, b, c to the hyperedges {a, b, x}, {b, c, y},
{c, a, b} of T (G), giving us a Berge-K3 in T (G). �

The above proposition immediately implies that

ex(n,K3, {P̂4,K4}) ≤ ex3(n,Berge-K3).

Győri [5] showed that ex3(n,Berge-K3) = bn2/8c. We remark that the lower bound is obtained by T (G), where G is the
construction that gives the lower bound in Theorem 1.1. Using the above results, we immediately obtain that

ex(n,K3, {P̂4,K4}) = ex3(n,Berge-K3) =

⌊
n2

8

⌋
.

To strengthen it and obtain Theorem 1.1, we need to show that if a P̂4-free graph contains a K4, then it contains at most
bn2/8c triangles.

We remark that the proof of the upper bound of Proposition 1.1 in [6] also deals separately with the two cases depending
on whether a P̂4-free graph is K4-free or not. Our improvement in the first case is by the above observations, and Győri’s
proof is incorporated to our proof in Section 2. The second case is dealt by induction in [6]. However, we cannot prove our
improved bound in a similar way, as our Theorem 1.1 does not hold for every n. For example, if n = 7, then bn2/8c = 6, but
two copies of K4 sharing a vertex is a P̂4-free 7-vertex graph and contains 8 triangles. Therefore, we do not have the base
step of the induction, even though the induction step works almost the same as in [6].

Progressive induction, introduced by Simonovits [7], is used in such cases (it was first used in the generalized Turán
setting in [2]). The basic idea is to have a stronger induction step, where we also deal with the case of equality. This
means that for small values of n ex(n,K3, P̂4) can be larger than bn2/8c, but this surplus starts decreasing and eventually
vanishes. The first paragraph of the proof of the upper bound of Theorem 1.1 is a simple example of this; we do not go into
the details of the general version. Finally, we mention that it is likely that Theorem 1.1 holds for every n ≥ 8. If the upper
bound for n = 8, 9, 10, 11 is proved, either by a careful case analysis or by brute force, then ordinary induction could be used
instead of progressive induction to complete the proof of Theorem 1.1.
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