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Abstract

Let G be a connected graph of order n. Let Diag(Tr) be the diagonal matrix of vertex transmissions and let D(G) be
the distance matrix of G. The distance signless Laplacian matrix of G is defined as D°(G) = Diag(Tr) + D(G) and the
eigenvalues of D(G) are called the distance signless Laplacian eigenvalues of G. Let 2(G) > 9S(G) > --- > 02(G) be
the distance signless Laplacian eigenvalues of G. The largest eigenvalue 2(G) is called the distance signless Laplacian
spectral radius. We obtain a lower bound for 92(G) in terms of the diameter and order of G. With a given interval I, denote
by mpe )l the number of distance signless Laplacian eigenvalues of G which lie in . For a given interval I, we also obtain
several bounds on mpo ¢/ in terms of various structural parameters of the graph G, including diameter and clique number.
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1. Introduction

Let G = (V(G), E(G)) be a simple connected graph with the vertex set V(G) = {v1,vs,...,v,} and edge set E(G). The order
and size of G are |V (G)| = n and |E(G)| = m, respectively. The degree of a vertex v, denoted by d¢ (v) is the number of edges
incident to the vertex v. In G, Ng(v) is the set of all vertices which are adjacent to v. Further, K, denotes the complete
graph on n vertices. In a graph G, the subset M C V(G) is called an independent set if no two vertices of M are adjacent.
A clique is a complete subgraph of a given graph G. The cardinality of the maximum clique is called the clique number of
G and is denoted by w. A vertex u € V(G) is called a pendant vertex if di(u) = 1. For other standard definitions, we refer
the reader to [6,11].

For v;,v; € V(G), the distance between v; and v;, denoted by d;; or dg(v;, v;), is the length of a shortest path between v;
and v;. The diameter d (or d(G)) of a graph G is the maximum distance between any two vertices of G. The distance matrix
of G, denoted by D(G), is defined as D(G) = (dij)v, v,ev(q)- The transmission Trg(v;) (we will write Tr(v;) if the graph G
is understood) of a vertex v; is defined as the sum of the distances from v; to all other vertices in G, that is,

Tra(v;) = Z de(vi, vj).

v; EV(G)

Let Tr(G) = diag(Tr(vy), Tr(vs), ..., Tr(v,)) be the diagonal matrix of vertex transmissions of G. For a connected graph
G, Aouchiche and Hansen [4] defined the distance Laplacian matrix of G as D*(G) = Diag(Tr) — D(G) (or simply D¥) and
the distance signless Laplacian matrix as D9(G) = Tr(G) + D(G) (or simply D<). The eigenvalues of D9 (G) are called
the distance signless Laplacian eigenvalues of G. Clearly, D2(G) is a real symmetric matrix. We denote its eigenvalues by
02(G)’s and order them as 92(G) > 92(G) > -+ > 02 ,(G) > 02(G). The largest eigenvalue 02(G) is called the distance
signless Laplacian spectral radius. Recent work on distance Laplacian matrix can be seen in [13,14]. For more work done
on distance signless Laplacian matrix of a graph G, we refer the reader to[1-3,7-9,12,15-19]. If the graph G is understood,
we may write 8? in place of 829(0) and refer the distance signless Laplacian eigenvalues as D€ — eigenvalues. Let mpe @)l
be the number of distance signless Laplacian eigenvalues of G that lie in the interval I. Also, let ng(G)(ﬁlQ(G)) be the
multiplicity of the distance signless Laplacian eigenvalue 02(G).

In this paper, we obtain a lower bound for the distance signless Laplacian spectral radius of the graph G in terms of
diameter d and order n. We show that the number of distance signless Laplacian eigenvalues in the interval [n — 2, dn] is
at least d + 1, where d is the diameter of the graph G. We also obtain a lower bound for the number of distance signless
Laplacian eigenvalues which fall in the interval (n — 2,2n — 2), in terms of the order n and the number of vertices having
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degree n—1. Moreover, we show that the number of distance signless Laplacian eigenvalues in the interval [n—2, 2n—w—2)
is at most n — w + 2, where n is the order and w is the clique number of the graph G.

2. Distribution of distance signless Laplacian eigenvalues

We require the following lemmas to prove our main results.

Lemma 2.1. [5] Let G be a connected graph on n > 3 vertices. Then, 02(G) > 02(K,,) = 2n—2and 02(G) > 02(K,) = n—2
forall 2 <i<n.

A particular case of the well known min — max theorem is the following result.

Lemma 2.2. [20] If N is a symmetric n X n matrix with eigenvalues iy > ug > -+ > uy, then for any x € R" (z # 0), we
have
TNz

b
Ty

p1 =
x

where the equality holds if and only if x is an eigenvector of N corresponding to the largest eigenvalue ;.

Lemma 2.3. [10] Let M = (m;;) be a n x n complex matrix having l1,ls, ..., 1, as its distinct eigenvalues. Then,
{ll,lg, - ,lp} C U {Z . |Z — m“\ S Z |mm|}
i=1 i

If we apply Lemma 2.3 for the distance signless Laplacian matrix of a graph G with n vertices, we get
01 (G) < 2Trmas 1

Theorem 2.1 (Cauchy Interlacing Theorem). Let M be a real symmetric matrix of order n, and let A be a principal
submatrix of M with order s < n. Then

In the following theorem, we give the lower bound for the distance signless Laplacian spectral radius of the graph G in
terms of diameter d and order n.

Theorem 2.2. Let G be a connected graph on n vertices having diameter d. Then

2n+d(d+1)—2

oR(G) > 5

Proof. Let Pyy1 : v1vs...v441 be a diametral path in G such that d¢(v1,v44+1) = d. Consider the n-vector

T
Yy = (y17y2a"'ayd717yd7yd+1a---7yn)

defined by

ifi=1d+1
Yi =

‘
—
§

otherwise.

By Lemma 2.2, we have

T
92(G) > y' D=y Tr(vi) + Tr(vat1)

2=y T 5 + da(v1,vd41)- 2

Now, we have
Tr(vi) +Tr(vgy) >2(14+2+---+d)+2n—d—-1)=d(d+1)+2(n—d—-1)

On substituting the above inequality in Inequality (2), we get

dd+1)+2(n—-d-1 2 dd+1) -2
op(q) > WXV 02D |y Zordldr D22

O

The next result shows that the number of distance signless Laplacian eigenvalues in the interval [n — 2,dn] is at least
d + 1, where d is the diameter of the graph G.
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Theorem 2.3. Let G be a connected graph on n > 3 vertices having diameter d, then
mpe(q) [n—2,dn] >d+1.

Proof. We consider the principal submatrix, say M, corresponding to the vertices vy, vo,...,v411 Which belong to the in-
duced path P, in the distance signless Laplacian matrix of G. Clearly,

Tr(v) <142+ ---+d+dn—d—-1)

d(2n—d-1)
-
foralli = 1,2,...,d + 1. Also, the sum of the off diagonal elements of any row of M is less than or equal to d(d + 1)/2.
Using Lemma 2.3, we conclude that the maximum eigenvalue of M is at most dn. Using Lemma 2.1 and Theorem 2.1, we
see there are at least d + 1 distance signless Laplacian eigenvalues of G which are greater than or equal to n — 2 and less
than or equal to dn, that is

mpe(g) [n—2,dn] > d+1.

O
An immediate consequence of Theorem 2.3 is the following result.
Corollary 2.1. Let G be a connected graph on n > 3 vertices having diameter d. If dn < 2T 4., then
mpe (@) (dn, 2Trmaz] <n—d—1.
Proof. Since dn < 2T7,4:, by Lemma 2.1 and Inequality (1), we have
mpe(q) [n—2,dn] + mpe(q) (dn, 2T " ae] = n.
Thus, using Theorem 2.3, we get
mpe (@) (dn, 2T 7 maz] <nm—d— 1.
O

For proving the next result, we need the following lemma which can be found in [5].

Lemma 2.4. Let G be a connected graph with n vertices. If K = {v1,vs,...,v,} is a clique of G such that Ng(v;) — K =
Ng(vj) — K forall i, j € {1,2,...,p}, then 0 = Tr(v;) = Tr(v;) forall i,j € {1,2,...,p} and 0 — 1 is an eigenvalue of D2(G)
with multiplicity at least p — 1.

Now, we obtain a lower bound for the number of distance signless Laplacian eigenvalues which fall in the interval
(n —2,2n — 2), in terms of the order » and the number of vertices having degree n — 1.

Theorem 2.4. Let G be a connected graph on n vertices. If mq = [{u € V(G) : dg(u) = n — 1}|, where 1 < mg < n, then
mpe e (n —2,2n —2) <n —my.

Equality holds when my = n, that is, G = K,,.

Proof. We consider the following two cases.

Case 1. Let my = n, that is, G = K,,. By Lemma 2.1, we see that the equality holds.

Case 2. Let 1 < my < n — 1. Since G contains m, vertices of degree n — 1, therefore, G contains a clique, say S, of size m,.
Let S = {v1,v9,...,vm,}. Clearly,
n—1=Tr(v) =Tr(v2) =+ =Tr(vm,).

By Lemma 2.4, we observe that n — 2 is a distance signless Laplacian eigenvalue of G with multiplicity at least my — 1.
Also, we know that the distance signless Laplacian matrix corresponding to any connected graph H is symmetric, positive
and irreducible. Therefore, by the Perron-Frobenius Theorem, d2(H — uv) > 02(H) whenever uv € E(H) and H — uv is
connected. As mg < n — 1, therefore, G % K,,. Thus, from the above information 92(G) > 02(K,,) = 2n — 2. Hence,

mpeg)(n—2,2n—2) <n—(mg—1) —1=n—mg.
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The following lemma is used in proving Theorem 2.5.

Lemma 2.5. [5]Let G be a graph with nvertices. If K = {vy,vs,...,v,} is an independent set of G such that N (v;) = N¢(v;)
for all i,j € {1,2,...,p}, then & = Tr(v;) = Tr(v;) for all i,j € {1,2,...,p} and d — 2 is an eigenvalue of D2(G) with
multiplicity at least p — 1.

The next result shows that the number of distance signless Laplacian eigenvalues in the interval [n — 2,2n — 4) is at
most n — p+ 1, where n > 3 is the order of G and p is the number of pendant vertices adjacent to common neighbour.

Theorem 2.5. Let G be a connected graph of order n > 3. If S = {v1,vs,...,v,} C V(Q), where |S| =p < n —1, is the set of
pendant vertices such that every vertex in S has the same neighbourhood in V(G) \ S, then

mpe(e[n —2,2n—4) <n—p+1.

Proof. Clearly all the vertices in S form an independent set. Since all the vertices in S are adjacent to same vertex,
therefore, all the vertices of S have the same transmission . Now, for any v; (i = 1,2,...,p) of S, we have

T=Tr(v;)>2(p—1)+1+2(n—p—1)=2n-3.

From Lemma 2.5, there are at least p — 1 distance signless Laplacian eigenvalues of G which are equal to T — 1. From
above we have T'— 1 > 2n—3 —1 = 2n — 4. Thus, there are at least p — 1 distance signless Laplacian eigenvalues of G which
are greater than or equal to 2n — 4. Using Lemma 2.1, we get mpog)[n —2,2n —4) <n —p+ 1. O

Next, we show that the number of distance signless Laplacian eigenvalues in the interval [n — 2,2n w — 2) is at most
n —w + 2, where n is the order and w is the clique number of the graph G.

Theorem 2.6. Let G be a connected graph of order n having clique number w < n— 1. If only one vertex of the corresponding
maximum clique is adjacent to the vertices outside of the clique, then

mpen —2,2n —w—2) <n—w+2.

Proof. Let S = {vy,vq,...,uv,} be the set of vertices of the maximum clique such that v,, is the only vertex having neighbours
outside of S. Clearly, the set of vertices N = {vy,vs,...,v,_1} also form a clique such that every vertex of N is adjacent
to v, only outside of N. It is easy to see that all the vertices belonging to N have the same transmission. For any v; € N,
1=1,2,...,w—1, we have

T=Tr(v;)>w—-142(n—w)=2n—-w—1. 3)

Using Lemma 2.4, we observe that 7'—1 is a distance signless Laplacian eigenvalue of G of multiplicity at least w —2. From
Inequality (3), wehave T'—1 > 2n—1—w—1 = 2n—w—2. So there are at least w — 2 distance signless Laplacian eigenvalues
of G which are greater than or equal to 2n — w — 2. From Inequality (1), we get mpe () [2n — w — 2,277 mas] > w — 2. Thus,
by the above observation and Lemma 2.1, we have mpe[n — 2,2n —w — 2) < n — w + 2, which completes the proof. O
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