Distance signless Laplacian eigenvalues, diameter, and clique number

Saleem Khan, Shariefuddin Pirzada*
Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India

(Received: 18 January 2022. Received in revised form: 7 April 2022. Accepted: 13 April 2022. Published online: 19 April 2022.)
(C) 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a connected graph of order n. Let $\mathcal{D i a g}(T r)$ be the diagonal matrix of vertex transmissions and let $\mathcal{D}(G)$ be the distance matrix of G. The distance signless Laplacian matrix of G is defined as $\mathcal{D}^{\mathcal{Q}}(G)=\operatorname{Diag}(T r)+\mathcal{D}(G)$ and the eigenvalues of $\mathcal{D}^{\mathcal{Q}}(G)$ are called the distance signless Laplacian eigenvalues of G. Let $\partial_{1}^{\mathcal{Q}}(G) \geq \partial_{2}^{\mathcal{Q}}(G) \geq \cdots \geq \partial_{n}^{\mathcal{Q}}(G)$ be the distance signless Laplacian eigenvalues of G. The largest eigenvalue $\partial_{1}^{\mathcal{Q}}(G)$ is called the distance signless Laplacian spectral radius. We obtain a lower bound for $\partial_{1}^{\mathcal{Q}}(G)$ in terms of the diameter and order of G. With a given interval I, denote by $m_{\mathcal{D} \mathcal{Z}(G)} I$ the number of distance signless Laplacian eigenvalues of G which lie in I. For a given interval I, we also obtain several bounds on $m_{\mathcal{D} \mathcal{Q}(G)} I$ in terms of various structural parameters of the graph G, including diameter and clique number.

Keywords: distance matrix; distance signless Laplacian matrix; spectral radius; diameter; clique number.
2020 Mathematics Subject Classification: 05C50, 05C12, 15A18.

1. Introduction

Let $G=(V(G), E(G))$ be a simple connected graph with the vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The order and size of G are $|V(G)|=n$ and $|E(G)|=m$, respectively. The degree of a vertex v, denoted by $d_{G}(v)$ is the number of edges incident to the vertex v. In $G, N_{G}(v)$ is the set of all vertices which are adjacent to v. Further, K_{n} denotes the complete graph on n vertices. In a graph G, the subset $M \subseteq V(G)$ is called an independent set if no two vertices of M are adjacent. A clique is a complete subgraph of a given graph G. The cardinality of the maximum clique is called the clique number of G and is denoted by ω. A vertex $u \in V(G)$ is called a pendant vertex if $d_{G}(u)=1$. For other standard definitions, we refer the reader to $[6,11]$.

For $v_{i}, v_{j} \in V(G)$, the distance between v_{i} and v_{j}, denoted by $d_{i j}$ or $d_{G}\left(v_{i}, v_{j}\right)$, is the length of a shortest path between v_{i} and v_{j}. The diameter d (or $d(G)$) of a graph G is the maximum distance between any two vertices of G. The distance matrix of G, denoted by $\mathcal{D}(G)$, is defined as $\mathcal{D}(G)=\left(d_{i j}\right)_{v_{i}, v_{j} \in V(G)}$. The transmission $\operatorname{Tr}_{G}\left(v_{i}\right)$ (we will write $\operatorname{Tr}\left(v_{i}\right)$ if the graph G is understood) of a vertex v_{i} is defined as the sum of the distances from v_{i} to all other vertices in G, that is,

$$
\operatorname{Tr}_{G}\left(v_{i}\right)=\sum_{v_{j} \in V(G)} d_{G}\left(v_{i}, v_{j}\right)
$$

Let $\operatorname{Tr}(G)=\operatorname{diag}\left(\operatorname{Tr}\left(v_{1}\right), \operatorname{Tr}\left(v_{2}\right), \ldots, \operatorname{Tr}\left(v_{n}\right)\right)$ be the diagonal matrix of vertex transmissions of G. For a connected graph G, Aouchiche and Hansen [4] defined the distance Laplacian matrix of G as $D^{L}(G)=\operatorname{Diag}(T r)-D(G)$ (or simply D^{L}) and the distance signless Laplacian matrix as $\mathcal{D}^{\mathcal{Q}}(G)=\operatorname{Tr}(G)+\mathcal{D}(G)$ (or simply $\mathcal{D}^{\mathcal{Q}}$). The eigenvalues of $\mathcal{D}^{\mathcal{Q}}(G)$ are called the distance signless Laplacian eigenvalues of G. Clearly, $\mathcal{D}^{\mathcal{Q}}(G)$ is a real symmetric matrix. We denote its eigenvalues by $\partial_{i}^{\mathcal{Q}}(G)$'s and order them as $\partial_{1}^{\mathcal{Q}}(G) \geq \partial_{2}^{\mathcal{Q}}(G) \geq \cdots \geq \partial_{n-1}^{\mathcal{Q}}(G) \geq \partial_{n}^{\mathcal{Q}}(G)$. The largest eigenvalue $\partial_{1}^{\mathcal{Q}}(G)$ is called the distance signless Laplacian spectral radius. Recent work on distance Laplacian matrix can be seen in [13,14]. For more work done on distance signless Laplacian matrix of a graph G, we refer the reader to [1-3,7-9,12,15-19]. If the graph G is understood, we may write $\partial_{i}^{\mathcal{Q}}$ in place of $\partial_{i}^{\mathcal{Q}}(G)$ and refer the distance signless Laplacian eigenvalues as $\mathcal{D}^{\mathcal{Q}}$ - eigenvalues. Let $m_{\mathcal{D} \mathcal{Q}(G)} I$ be the number of distance signless Laplacian eigenvalues of G that lie in the interval I. Also, let $m_{\mathcal{D}^{\mathcal{Q}}(G)}\left(\partial_{i}^{\mathcal{Q}}(G)\right)$ be the multiplicity of the distance signless Laplacian eigenvalue $\partial_{i}^{\mathcal{Q}}(G)$.

In this paper, we obtain a lower bound for the distance signless Laplacian spectral radius of the graph G in terms of diameter d and order n. We show that the number of distance signless Laplacian eigenvalues in the interval $[n-2, d n]$ is at least $d+1$, where d is the diameter of the graph G. We also obtain a lower bound for the number of distance signless Laplacian eigenvalues which fall in the interval ($n-2,2 n-2$), in terms of the order n and the number of vertices having

[^0]degree $n-1$. Moreover, we show that the number of distance signless Laplacian eigenvalues in the interval $[n-2,2 n-\omega-2)$ is at most $n-\omega+2$, where n is the order and ω is the clique number of the graph G.

2. Distribution of distance signless Laplacian eigenvalues

We require the following lemmas to prove our main results.
Lemma 2.1. [5] Let G be a connected graph on $n \geq 3$ vertices. Then, $\partial_{1}^{\mathcal{Q}}(G) \geq \partial_{1}^{\mathcal{Q}}\left(K_{n}\right)=2 n-2$ and $\partial_{i}^{\mathcal{Q}}(G) \geq \partial_{i}^{\mathcal{Q}}\left(K_{n}\right)=n-2$ for all $2 \leq i \leq n$.

A particular case of the well known min - max theorem is the following result.
Lemma 2.2. [20] If N is a symmetric $n \times n$ matrix with eigenvalues $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$, then for any $x \in R^{n}(x \neq 0)$, we have

$$
\mu_{1} \geq \frac{x^{T} N x}{x^{T} x}
$$

where the equality holds if and only if x is an eigenvector of N corresponding to the largest eigenvalue μ_{1}.
Lemma 2.3. [10] Let $M=\left(m_{i j}\right)$ be a $n \times n$ complex matrix having $l_{1}, l_{2}, \ldots, l_{p}$ as its distinct eigenvalues. Then,

$$
\left\{l_{1}, l_{2}, \ldots, l_{p}\right\} \subset \bigcup_{i=1}^{n}\left\{z:\left|z-m_{i i}\right| \leq \sum_{j \neq i}\left|m_{i j}\right|\right\}
$$

If we apply Lemma 2.3 for the distance signless Laplacian matrix of a graph G with n vertices, we get

$$
\begin{equation*}
\partial_{1}^{L}(G) \leq 2 T r_{\max } \tag{1}
\end{equation*}
$$

Theorem 2.1 (Cauchy Interlacing Theorem). Let M be a real symmetric matrix of order n, and let A be a principal submatrix of M with order $s \leq n$. Then

$$
\lambda_{i}(M) \geq \lambda_{i}(A) \geq \lambda_{i+n-s}(M) \quad(1 \leq i \leq s)
$$

In the following theorem, we give the lower bound for the distance signless Laplacian spectral radius of the graph G in terms of diameter d and order n.

Theorem 2.2. Let G be a connected graph on n vertices having diameter d. Then

$$
\partial_{1}^{\mathcal{Q}}(G) \geq \frac{2 n+d(d+1)-2}{2}
$$

Proof. Let $P_{d+1}: v_{1} v_{2} \ldots v_{d+1}$ be a diametral path in G such that $d_{G}\left(v_{1}, v_{d+1}\right)=d$. Consider the n-vector

$$
y=\left(y_{1}, y_{2}, \ldots, y_{d-1}, y_{d}, y_{d+1}, \ldots, y_{n}\right)^{T}
$$

defined by

$$
y_{i}= \begin{cases}\frac{1}{\sqrt{2}} & \text { if } i=1, d+1 \\ 0 & \text { otherwise }\end{cases}
$$

By Lemma 2.2, we have

$$
\begin{equation*}
\partial_{1}^{\mathcal{Q}}(G) \geq \frac{y^{T} \mathcal{D}^{\mathcal{Q}} y}{y^{T} y}=\frac{\operatorname{Tr}\left(v_{1}\right)+\operatorname{Tr}\left(v_{d+1}\right)}{2}+d_{G}\left(v_{1}, v_{d+1}\right) \tag{2}
\end{equation*}
$$

Now, we have

$$
\operatorname{Tr}\left(v_{1}\right)+\operatorname{Tr}\left(v_{d+1}\right) \geq 2(1+2+\cdots+d)+2(n-d-1)=d(d+1)+2(n-d-1)
$$

On substituting the above inequality in Inequality (2), we get

$$
\partial_{1}^{\mathcal{Q}}(G) \geq \frac{d(d+1)+2(n-d-1)}{2}+d=\frac{2 n+d(d+1)-2}{2} .
$$

The next result shows that the number of distance signless Laplacian eigenvalues in the interval $[n-2, d n]$ is at least $d+1$, where d is the diameter of the graph G.

Theorem 2.3. Let G be a connected graph on $n \geq 3$ vertices having diameter d, then

$$
m_{\mathcal{D e}_{(G)}}[n-2, d n] \geq d+1
$$

Proof. We consider the principal submatrix, say M, corresponding to the vertices $v_{1}, v_{2}, \ldots, v_{d+1}$ which belong to the induced path P_{d+1} in the distance signless Laplacian matrix of G. Clearly,

$$
\begin{aligned}
\operatorname{Tr}\left(v_{i}\right) & \leq 1+2+\cdots+d+d(n-d-1) \\
& =\frac{d(2 n-d-1)}{2}
\end{aligned}
$$

for all $i=1,2, \ldots, d+1$. Also, the sum of the off diagonal elements of any row of M is less than or equal to $d(d+1) / 2$. Using Lemma 2.3, we conclude that the maximum eigenvalue of M is at most $d n$. Using Lemma 2.1 and Theorem 2.1, we see there are at least $d+1$ distance signless Laplacian eigenvalues of G which are greater than or equal to $n-2$ and less than or equal to $d n$, that is

$$
m_{\mathcal{D Q}^{\mathcal{E}}(G)}[n-2, d n] \geq d+1
$$

An immediate consequence of Theorem 2.3 is the following result.
Corollary 2.1. Let G be a connected graph on $n \geq 3$ vertices having diameter d. If $d n<2 T r_{\text {max }}$, then

$$
m_{\mathcal{D} \mathcal{Q}}^{(G)},\left(d n, 2 T r_{\max }\right] \leq n-d-1
$$

Proof. Since $d n<2 T r_{\text {max }}$, by Lemma 2.1 and Inequality (1), we have

$$
m_{\mathcal{D e}_{(G)}}[n-2, d n]+m_{\mathcal{D e}_{(G)}}\left(d n, 2 T r_{\max }\right]=n
$$

Thus, using Theorem 2.3, we get

$$
m_{\mathcal{D}^{\mathcal{Q}}(G)}\left(d n, 2 T r_{\max }\right] \leq n-d-1
$$

For proving the next result, we need the following lemma which can be found in [5].
Lemma 2.4. Let G be a connected graph with n vertices. If $K=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a clique of G such that $N_{G}\left(v_{i}\right)-K=$ $N_{G}\left(v_{j}\right)-K$ for all $i, j \in\{1,2, \ldots, p\}$, then $\partial=\operatorname{Tr}\left(v_{i}\right)=\operatorname{Tr}\left(v_{j}\right)$ for all $i, j \in\{1,2, \ldots, p\}$ and $\partial-1$ is an eigenvalue of $\mathcal{D}^{\mathcal{Q}}(G)$ with multiplicity at least $p-1$.

Now, we obtain a lower bound for the number of distance signless Laplacian eigenvalues which fall in the interval ($n-2,2 n-2$), in terms of the order n and the number of vertices having degree $n-1$.

Theorem 2.4. Let G be a connected graph on n vertices. If $m_{d}=\left|\left\{u \in V(G): d_{G}(u)=n-1\right\}\right|$, where $1 \leq m_{d} \leq n$, then

$$
m_{\mathcal{D}^{\mathcal{Q}}(G)}(n-2,2 n-2) \leq n-m_{d}
$$

Equality holds when $m_{d}=n$, that is, $G \cong K_{n}$.
Proof. We consider the following two cases.
Case 1. Let $m_{d}=n$, that is, $G \cong K_{n}$. By Lemma 2.1, we see that the equality holds.
Case 2. Let $1 \leq m_{d} \leq n-1$. Since G contains m_{d} vertices of degree $n-1$, therefore, G contains a clique, say S, of size m_{d}. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{m_{d}}\right\}$. Clearly,

$$
n-1=\operatorname{Tr}\left(v_{1}\right)=\operatorname{Tr}\left(v_{2}\right)=\cdots=\operatorname{Tr}\left(v_{m_{d}}\right) .
$$

By Lemma 2.4, we observe that $n-2$ is a distance signless Laplacian eigenvalue of G with multiplicity at least $m_{d}-1$. Also, we know that the distance signless Laplacian matrix corresponding to any connected graph H is symmetric, positive and irreducible. Therefore, by the Perron-Frobenius Theorem, $\partial_{1}^{\mathcal{Q}}(H-u v)>\partial_{1}^{\mathcal{Q}}(H)$ whenever $u v \in E(H)$ and $H-u v$ is connected. As $m_{d} \leq n-1$, therefore, $G \not \equiv K_{n}$. Thus, from the above information $\partial_{1}^{\mathcal{Q}}(G)>\partial_{1}^{\mathcal{Q}}\left(K_{n}\right)=2 n-2$. Hence,

$$
m_{\mathcal{D}^{\mathcal{Q}}(G)}(n-2,2 n-2) \leq n-\left(m_{d}-1\right)-1=n-m_{d}
$$

The following lemma is used in proving Theorem 2.5.
Lemma 2.5. [5] Let G be a graph with n vertices. If $K=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is an independent set of G such that $N_{G}\left(v_{i}\right)=N_{G}\left(v_{j}\right)$ for all $i, j \in\{1,2, \ldots, p\}$, then $\partial=\operatorname{Tr}\left(v_{i}\right)=\operatorname{Tr}\left(v_{j}\right)$ for all $i, j \in\{1,2, \ldots, p\}$ and $\partial-2$ is an eigenvalue of $\mathcal{D}^{\mathcal{Q}}(G)$ with multiplicity at least $p-1$.

The next result shows that the number of distance signless Laplacian eigenvalues in the interval $[n-2,2 n-4)$ is at most $n-p+1$, where $n \geq 3$ is the order of G and p is the number of pendant vertices adjacent to common neighbour.

Theorem 2.5. Let G be a connected graph of order $n \geq 3$. If $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\} \subseteq V(G)$, where $|S|=p \leq n-1$, is the set of pendant vertices such that every vertex in S has the same neighbourhood in $V(G) \backslash S$, then

$$
m_{\mathcal{D Q}^{\mathcal{Q}}(G)}[n-2,2 n-4) \leq n-p+1 .
$$

Proof. Clearly all the vertices in S form an independent set. Since all the vertices in S are adjacent to same vertex, therefore, all the vertices of S have the same transmission. Now, for any $v_{i}(i=1,2, \ldots, p)$ of S, we have

$$
T=\operatorname{Tr}\left(v_{i}\right) \geq 2(p-1)+1+2(n-p-1)=2 n-3
$$

From Lemma 2.5, there are at least $p-1$ distance signless Laplacian eigenvalues of G which are equal to $T-1$. From above we have $T-1 \geq 2 n-3-1=2 n-4$. Thus, there are at least $p-1$ distance signless Laplacian eigenvalues of G which are greater than or equal to $2 n-4$. Using Lemma 2.1, we get $m_{\mathcal{D}^{\mathcal{Q}}(G)}[n-2,2 n-4) \leq n-p+1$.

Next, we show that the number of distance signless Laplacian eigenvalues in the interval $[n-2,2 n \omega-2)$ is at most $n-\omega+2$, where n is the order and ω is the clique number of the graph G.

Theorem 2.6. Let G be a connected graph of order n having clique number $\omega \leq n-1$. If only one vertex of the corresponding maximum clique is adjacent to the vertices outside of the clique, then

$$
m_{\mathcal{D}^{\mathcal{Q}}(G)}[n-2,2 n-\omega-2) \leq n-\omega+2
$$

Proof. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{\omega}\right\}$ be the set of vertices of the maximum clique such that v_{ω} is the only vertex having neighbours outside of S. Clearly, the set of vertices $N=\left\{v_{1}, v_{2}, \ldots, v_{\omega-1}\right\}$ also form a clique such that every vertex of N is adjacent to v_{ω} only outside of N. It is easy to see that all the vertices belonging to N have the same transmission. For any $v_{i} \in N$, $i=1,2, \ldots, \omega-1$, we have

$$
\begin{equation*}
T=\operatorname{Tr}\left(v_{i}\right) \geq \omega-1+2(n-\omega)=2 n-\omega-1 \tag{3}
\end{equation*}
$$

Using Lemma 2.4, we observe that $T-1$ is a distance signless Laplacian eigenvalue of G of multiplicity at least $\omega-2$. From Inequality (3), we have $T-1 \geq 2 n-1-\omega-1=2 n-\omega-2$. So there are at least $\omega-2$ distance signless Laplacian eigenvalues of G which are greater than or equal to $2 n-\omega-2$. From Inequality (1), we get $m_{\mathcal{D e}^{\mathcal{E}}(G)}\left[2 n-\omega-2,2 T r_{\max }\right] \geq \omega-2$. Thus, by the above observation and Lemma 2.1, we have $m_{\mathcal{D}^{\mathcal{Q}}(G)}[n-2,2 n-\omega-2) \leq n-\omega+2$, which completes the proof.

References

[1] A. Alhevaz, M. Baghipur, H. A. Ganie, S. Pirzada, Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph, Linear Multilinear Algebra 69 (2021) 2423-2440.
[2] A. Alhevaz, M. Baghipur, E. Hashemi, On distance signless Laplacian spectrum and energy of graphs, Electron. J. Graph Theory Appl. 6 (2018) 326-340.
[3] A. Alhevaz, M. Baghipur, S. Pirzada, Y. Shang, Some inequalities involving the distance signless Laplacian eigenvalues of graphs, Trans. Comb. 10 (2021) 9-29.
[4] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013) 21-33.
[5] M. Aouchiche, P. Hansen, On the distance signless Laplacian of a graph, Linear Multilinear Algebra 64 (2016) 1113-1123.
[6] D. Cvetković, P. Rowlinson, S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, New York, 2010.
[7] K. C. Das, H. Lin, J. Guo, Distance signless Laplacian eigenvalues of graphs, Front. Math. China 14 (2019) 693-713.
[8] H. Jia, W. C. Shiu, Distance signless Laplacian spectrum of a graph, Front. Math. China, DOI: 10.1007/s11464-021-0986-6, In press.
[9] H. Lin, B. Zhou, The effect of graft transformations on distance signless Laplacian spectral radius, Linear Algebra Appl. 504 (2016) $433-461$.
[10] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Reprint of the 1969 edition, Dover Publications, New York, 1992.
[11] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, 2012.
[12] S. Pirzada, H. A. Ganie, A. Alhevaz, M. Baghipur, On sum of the powers of distance signless Laplacian eigenvalues of graphs, Indian J. Pure Appl. Math. 51 (2020) 1143-1163.
[13] S. Pirzada, S. Khan, On distance Laplacian spectral radius and chromatic number of graphs, Linear Algebra Appl. 625 (2021) 44-54.
[14] S. Pirzada, S. Khan, On the sum of distance Laplacian eigenvalues of graphs, Tamkang J. Math., DOI: 10.5556/j.tkjm.54.2023.4120, In press.
[15] S. Pirzada, B. A. Rather, M. Aijaz, T. A. Chishti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of Z_{n}, Linear Multilinear Algebra, DOI: 10.1080/03081087.2020.1838425, In press.
[16] B. A. Rather, S. Pirzada, T. A. Naikoo, On distance signless Laplacian spectra of power graphs of the integer modulo group n, Art Discrete Appl. Math., DOI: 10.26493/2590-9770.1393.2be, In press.
[17] R. Xing, B. Zhou, On the distance and distance signless Laplacian spectral radii of bicyclic graphs, Linear Algebra Appl. 439 (2013) $3955-3963$.
[18] J. Xue, S. Liu, J. Shu, The complements of path and cycle are determined by their distance (signless) Laplacian spectra, Appl. Math. Comput. 328 (2018) 137-143.
[19] L. You, L. Ren, G. Yu, Distance and distance signless Laplacian spread of connected graphs, Discrete Appl. Math. 223 (2017) $140-147$.
[20] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer-Verlag, New York, 1999.

[^0]: *Corresponding author (pirzadasd@kashmiruniversity.ac.in).

