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Abstract

Let Ġ = (G, σ) be a signed graph, where G is its underlying graph and σ is its sign function (defined on the edge set E(G) of
G). Let A(Ġ) be the adjacency matrix of Ġ. The polynomial π(Ġ, x) = per(xI −A(Ġ)) is called the permanental polynomial
of Ġ, where I is the identity matrix and per denotes the permanent of a matrix. In this paper, we obtain the coefficients of
the permanental polynomial of a signed graph in terms of its structure. We also establish the recursion formulas for the
permanental polynomial of a signed graph. Moreover, we investigate the permanental sum PS(Ġ) of a signed graph Ġ, give
the recursion formulas for the permanental sum PS(Ġ), and show that the equation PS(Ġ) = PS(G) holds for trees and
unicyclic graphs, where PS(G) is the permanental sum of the underlying graph G of Ġ.
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1. Introduction

The permanent of an n× n real matrix A = (aij), with i, j ∈ {1, 2, . . . , n}, is defined as

per(A) =
∑
τ

Πn
i=1aiτ(i)

where the sum is taken over all permutations τ of {1, 2, . . . , n}. Let A(G) be the adjacency matrix of a graph G = (V,E)

with n vertices. The polynomial

Φ(G, x) = det(xI −A(G)) =

n∑
k=0

akx
n−k, (1)

is called the characteristic polynomial of G, where I is the n× n identity matrix. The polynomial

π(G, x) = per(xI −A(G)) =

n∑
k=0

bkx
n−k, (2)

is called the permanental polynomial ofG [7]. The characteristic polynomial and the permanental polynomial are important
among the well-studied graph polynomials. Valiant [9] has shown that computing the permanent of matrices is ]P-complete
even when restricted to (0, 1)-matrices. It is difficult to compute the permanental polynomials of graphs. Numerous
works were done on the adjacency permanental polynomials of graphs, including the relations between the adjacency
permanental and characteristic polynomials of graphs, the coefficients and roots of the adjacency permanental polynomial
of a graph [1–3,16–18]. It was shown that the coefficients of the characteristic and permanental polynomials of graphs are
related to graphs’ structures [3,4,7].

A linear graph (or a Sachs graph) is a graph in which each component is a single edge or a cycle. A linear subgraph
of a graph G is termed as a subgraph whose components are cycles or single edges. A linear subgraph with k vertices is
denoted by Uk. Then

ak =
∑
Uk⊆G

(−1)p(Uk)2c(Uk)(1 ≤ k ≤ n), (3)

and
bk = (−1)k

∑
Uk⊆G

2c(Uk)(1 ≤ k ≤ n), (4)

where the summations range over all linear subgraphs Uk of G, p(Uk) is the number of components of Uk and c(Uk) is the
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number of cycles of Uk. For a bipartite graph G, bn is equal to the square of the number m(G) of perfect matchings of G [6],
i.e.

bn = m2(G).

Let σ : E(G)→ {+,−} be a mapping defined on the edge set ofG and Ġ = (G, σ) a signed graph, whereG is its underlying
graph and σ is its sign function (or signature). Hence, signed graphs are sometimes treated as weighted graphs, whose
(edge) weights belong to {1,−1}. An edge e is positive (negative) if σ(e) = + (resp. σ(e) = −). If all edges in Ġ are positive
(negative), then Ġ is denoted by (G,+) (resp. (G,−)). A cycle of Ġ is said to be balanced (or positive) if it contains an even
number of negative edges, otherwise it is unbalanced (or, negative). A signed graph is said to be balanced if all its cycles
are balanced; otherwise, it is unbalanced.

Let Ġ be a signed graph on n vertices. The adjacency matrix of Ġ is A(Ġ) = (aσij) with aσij = σ(vivj)aij , where (aij) is
the adjacency matrix of the underlying graph G = (V,E) with V = {v1, v2, . . . , vn}. Then

Φ(Ġ, x) = det(xI −A(Ġ)) =

n∑
k=0

ckx
n−k, (5)

is the characteristic polynomial [5] of Ġ, c0 = 1 and

ck =
∑
Uk⊆Ġ

(−1)p(Uk)+s(Uk)2c(Uk) =
∑
Uk⊆Ġ

(−1)p(Uk)+c
−(Uk)2c(Uk)(1 ≤ k ≤ n), (6)

for any k(1 ≤ k ≤ n), where s(Uk) is the number of negative edges in cycles of Uk, p(Uk) is the number of components of Uk,
c(Uk) is the number of cycles of Uk and c−(Uk) is the number of negative cycles of Uk.

Similarly, we introduce the permanental polynomial of signed graph Ġ defined as

π(Ġ, x) = per(xI −A(Ġ)) =

n∑
k=0

skx
n−k (7)

and its permanental sum PS(Ġ) as

PS(Ġ) =

n∑
k=0

|sk|.

In this paper, we investigate the permanental polynomial of a signed graph and obtain its coefficients in terms of the
graph structure, and establish the recursion formulas for the permanental polynomial and the permanental sum PS(Ġ)

of signed graph Ġ, and show that PS(Ġ) = PS(G) for trees and unicyclic graphs, where PS(G) is the permanental sum of
its underlying graph G introduced in [12].

2. The coefficients of the permanental polynomial of a signed graph

In this section, we give a graphical interpretation of the coefficients of the permanental polynomial of a signed graph using
its linear subgraphs.

Let A be an m× n matrix. If S ⊆ {1, . . . ,m} and T ⊆ {1, . . . , n}, then A[S|T ] denotes the submatrix of A determined by
the rows corresponding to S and the columns corresponding to T .

Lemma 2.1 (see [8]). If A is an n×n matrix and per(xI−A) =
∑n
k=0 bkx

n−k, then b0 = 1 and bk = (−1)k
∑
|T |=k per(A[T |T ])

for 1 ≤ k ≤ n.

Theorem 2.1. Let Ġ be a signed graph with n vertices and π(Ġ, x) =
∑n
k=1 skx

n−k be its permanental polynomial. Then
s0 = 1 and

sk =
∑
Uk⊆Ġ

(−1)k+c
−(Uk)2c(Uk) (8)

for 1 ≤ k ≤ n, where c−(Uk) is the number of negative cycles of Uk and c(Uk) is the number of cycles of Uk.

Proof. Let Ȧ = A(Ġ) be the adjacency matrix of Ġ. Clearly, s0 = 1. By Lemma 2.1, we have sk = (−1)k
∑
|T |=k per(Ȧ[T |T ])

for 1 ≤ k ≤ n. We first prove that
sn = (−1)nper(Ȧ) =

∑
Un⊆Ġ

(−1)n+c
−(Un)2c(Un).

Let π = π1π2...πn be a permutation of {1, 2, . . . , n}. Then per(Ȧ) =
∑
π Πn

i=1ai,πi
, where the sum is taken over all

permutations π of {1, 2, . . . , n}. The term vanishes if ai,πi = 0, i.e., {vi, vπi} is not an edge of Ġ for some i ∈ {1, 2, . . . , n}.
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Thus, if the term corresponding to a permutation π is non-zero, then π can be expressed uniquely as the composition
of disjoint cycles or some K2. Each K2 corresponds to the factors ai,jaj,i, which in turn signifies a single edge vivj in
Ġ. Each cycle (pqr . . . t) of length greater than two corresponds to the factors apqaqr . . . atp, and signifies a simple circuit
vp, vq, . . . , vt in Ġ. Consequently, each non-vanishing term in the permanent expansion gives rise to a linear subgraph Un

of G with V (S) = V (G). The number of such π’s – arising from a given Un is 2c(Un), since there are two ways of choosing
the corresponding cycle in π for each circuit in Un. Thus, each Un contributes (−1)c

−(Un)2c(Un) to the permanent of Ȧ, and
we have that

sn = (−1)nper(Ȧ) =
∑
Un⊆Ġ

(−1)n+c
−(Un)2c(Un).

Similarly, we can deduce
sk =

∑
Uk⊆Ġ

(−1)k+c
−(Uk)2c(Uk)

for 1 ≤ k ≤ n− 1.

Theorem 2.2. For a graph G on n vertices, there is a signed graph Ġ of G with |sk| = |bk| if and only if the number of
negative cycles in any linear subgraph with k vertices has the same parity.

Proof. First, bk = 0 if and only if no linear subgraph Uk with k vertices exists in G, which is the case if and only if no linear
subgraph Uk with k vertices exists in Ġ. Thus, it is trivial for the case bk = 0. Next, we consider the case bk > 0.

If the number of negative cycles in any linear subgraph Uk with k vertices has the same parity, then (−1)c
−(Uk) = 1

(resp. −1) for all Uk. So, we have

|sk| = |
∑
Uk⊆Ġ

(−1)k+c
−(Uk)2c(Uk)| =

∑
Uk⊆Ġ

2c(Uk) =
∑
Uk⊆G

2c(Uk)

and
|bk| = |(−1)k

∑
Uk⊆G

2c(Uk)| =
∑
Uk⊆G

2c(Uk).

So we have |sk| = |bk|.
On the other hand, if |sk| = |bk|, then all the linear subgraphs Uk satisfy∑

Uk⊆G

2c(Uk) =
∑
Uk⊆Ġ

2c(Uk) =
∑
Uk⊆Ġ

(−1)c
−(Uk)2c(Uk)

or ∑
Uk⊆G

2c(Uk) =
∑
Uk⊆Ġ

2c(Uk) = −
∑
Uk⊆Ġ

(−1)c
−(Uk)2c(Uk).

This means that the number of negative cycles in any linear subgraph Uk with k vertices has the same parity.

By the definition of balanced signed graph and Theorem 2.2, we can get the following results.

Corollary 2.1. Let a graph G on n vertices and its signed graph Ġ is a balanced signed graph. Then sk = bk, 1 ≤ k ≤ n.

Corollary 2.2. Let Ṫ be any signed graph of a tree T . Then per(xI −A(Ṫ )) = per(xI −A(T )).

Let G be a bipartite graph with n vertices. We know bn = m2(G) in [6]. From Theorem 2.2, we can obtain

Corollary 2.3. For a bipartite graph G on n vertices, there is a signed graph Ġ of G with |sn| = m2(G) if and only if the
number of negative cycles in any linear subgraph with n vertices has same parity.

Corollary 2.4. There is a signed graph Ġ of the bipartite perfect matching n order graph G with sn = m2(G) if and only if
the number of negative cycles in any the linear subgraph with n vertices is even.

Proof. Let n = 2p. Since G has a perfect matching, pK2 is a linear subgraph Un of Ġ and the number of negative cycles of
pK2 is zero. By Corollary 2.3, the result holds.

We know that the perfect matching of a tree is unique if it exists.

Corollary 2.5. Any signed tree Ṫ of the perfect matching n order tree T with sn = per(A(Ṫ )) = per(A(T )) = 1.
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3. Recursion formulas for the permanental polynomial of a signed graph

The relationships between the permanental polynomial of a signed graph and the ones of its subgraphs are discussed in
this section. Let G be a graph with a vertex subset S ⊆ V (G). Denote by G − S the graph obtained by deleting all the
vertices in S from G together with all edges incident with S. In particular, if S = {v} with v ∈ V (G), we write G − {v}
simply by G− v.

Theorem 3.1. Let e = (u, v) be an edge of a signed graph Ġ and Ce(Ġ) the set of cycles in Ġ containing e. Then

π(Ġ, x) = π(Ġ− e, x) + π(Ġ− u− v, x) + 2ΣC∈Ce(Ġ)(−1)|V (C)|+r(C)π(Ġ− V (C), x), (9)

where r(C) = 1 when C is negative in Ġ , and r(C) = 0 when C is positive.

Proof. Let π(Ġ, x) =
∑n
k=0 skx

n−k. By Theorem 2.1, the coefficient sk can be expressed in terms of the linear subgraphs
of Ġ. We show that if a linear subgraph Uk contributes to sk on the left side of (9), then there is a linear subgraph that
contributes a corresponding amount to one of the terms on the right. Suppose that Uk contributes m to the coefficient sk
of xn−k on the left. We consider the following cases of Uk.

Case 1: e /∈ Uk. Let Wk = Uk, then Wk is a linear subgraph of Ġ − e and it contributes m to the coefficient of xn−k in
π(Ġ− e, x).

Case 2: e = uv is a component of Uk. Let Wk−2 = Uk − u − v, then Wk−2 is a linear subgraph of Ġ − u − v. By (8), Wk−2

contributes
(−1)k−2+c

−(Wk−2)2c(Wk−2) = (−1)k+c
−(Uk)2c(Uk) = m

to the coefficient of xn−k in π(Ġ− u− v, x).

Case 3: e = uv belongs to a cycle C of Uk. Then W e = Uk − V (C) is a linear subgraph of Ġ − V (C). In this case, W e

contributes
(−1)k−|V (C)|+c−(W e)2c(W

e) = (−1)k−|V (C)|+c−(W e)2c(Uk)−1

to the coefficient of xn−k in π(Ġ− V (C), x). If C is negative in Ġ, then

(−1)k−|V (C)|+c−(W e)2c(W
e) = (−1)k−|V (C)|+c−(Uk)−12c(Uk)−1 =

1

2
(−1)|V (C)|+1m.

If C is positive in Ġ, then

(−1)k−|V (C)|+c−(W e)2c(W
e) = (−1)k−|V (C)|+c−(Uk)2c(Uk)−1 =

1

2
(−1)|V (C)|m.

Thus, W e contributes m to the coefficient of xn−k in 2(−1)|V (C)|+r(C)π(Ġ− V (C), x), where r(C) = 1 when C is negative in
Ġ, and r(C) = 0 when C is positive.

By all the above cases, the result holds.

Similarly, we can get the following result.

Theorem 3.2. Let v be a vertex of a signed graph Ġ and Cv(Ġ) the set of cycles in Ġ containing v. Then

π(Ġ, x) = xπ(Ġ− v, x) + Σu∼vπ(Ġ− u− v, x) + 2ΣC∈Cv(Ġ)(−1)|V (C)|+r(C)π(Ġ− V (C), x), (10)

where r(C) = 1 when C is negative in Ġ, and r(C) = 0 when C is positive.

4. Permanental sum PS(Ġ) of a signed graph

Some works were done on the permanental sum of graphs [10–15]. The permanental sum PS(Ġ) of signed graphs is
discussed in this section. By definition of the permanental sum PS(Ġ) of a signed graph Ġ and Theorem 2.1, we have

PS(Ġ) =

n∑
k=0

|sk| =
n∑
k=0

|
∑
Uk⊆Ġ

(−1)k+c
−(Uk)2c(Uk)| =

n∑
k=0

|
∑
Uk⊆Ġ

(−1)c
−(Uk)2c(Uk)|,

and
PS(Ġ) = per(I +A(Ġ)).

By Theorem 2.2 and definition of the permanental sum PS(Ġ) of a signed graph Ġ, we have the next result.
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Theorem 4.1. Let Ġ be a signed graph. If the number of negative cycles in any linear subgraph Uk with k vertices has same
parity for 1 ≤ k ≤ n, then PS(Ġ) = PS(G).

In [12], Wu and Lai showed that the permanental sum of a graph satisfies the following identities.

Lemma 4.1 (see [12]). (i) Let G and H be two vertex disjoint connected graphs. Then

PS(G ∪H) = PS(G)PS(H).

(ii) Let e = uv be an edge of graph G. Then

PS(G) = PS(G− e) + PS(G− v − u) + 2
∑

C∈Ce(G)

PS(G− V (C)).

(iii) Let v be a vertex of graph G. Then

PS(G) = PS(G− v) +
∑

u∈NG(v)

PS(G− v − u) + 2
∑

C∈Cv(G)

PS(G− V (C)).

Next, we will consider that the recursion formulas for the permanental sum PS(Ġ) of signed graph Ġ.

Theorem 4.2. (i) Let Ġ and Ḣ be two vertex disjoint connected balanced signed graphs. Then

PS(Ġ ∪ Ḣ) = PS(Ġ)PS(Ḣ).

(ii) Let e = uv be an edge of signed graph Ġ. Then

PS(Ġ) = PS(Ġ− e) + PS(Ġ− v − u) + 2
∑

C∈Ce(Ġ))

(−1)r(C)PS(Ġ− V (C)).

(iii) Let v be a vertex of signed graph Ġ. Then

PS(Ġ) = PS(Ġ− v) +
∑

u∈NĠ(v)

PS(Ġ− v − u) + 2
∑

C∈Cv(Ġ)

(−1)r(C)PS(Ġ− V (C)).

where r(C) = 1 when C is negative in Ġ, and r(C) = 0 when C is positive.

Proof. (i) Each linear subgraph with k vertices in Ġ ∪ Ḣ consists of a linear subgraph with t in Ġ together with a linear
subgraph with k− t vertices in Ḣ, where 0 ≤ t ≤ k. Since Ġ and Ḣ are connected balanced signed graphs, by Theorem 2.1,
we have

PS(Ġ ∪ Ḣ) =

n∑
k=0

|sk(Ġ ∪ Ḣ)| =
n∑
k=0

k∑
t=0

|st(Ġ)sk−t(Ḣ)| = PS(Ġ)PS(Ḣ).

Now, let Li denote the collection of all linear subgraphs of Ġ with i vertices.
(ii) Let e = uv ∈ E(G) be a given edge, and L′i(G, e) = {H ∈ Li : e ∈ E(H)} and L′′i (G, e) = {H ∈ Li : e /∈ E(H)}. Then,

|L′′i (G, e)| = |si(G− uv)|. For each H ∈ L′i(G, e), either e = uv itself is a component of H, or e lies in a cycle of H. It follows
that |{H ∈ L′i(G, e) : e is a component of H}| = |si−2(G− u− v)|, and

|{H ∈ L′i(G, e) : e lies in a cycle of H}| = 2

i∑
k=0

∣∣∣∣∣∣
∑

Ck∈Ce(Ġ))

(−1)r(Ck)si−k(G− V (Ck))

∣∣∣∣∣∣ .
Thus,

|si(Ġ)| = |si(Ġ− uv)|+ |si−2(Ġ− u− v)|+ 2

i∑
k=0

∣∣∣∣∣∣
∑

Ck∈Ce(Ġ))

(−1)r(Ck)si−k(Ġ− V (Ck))

∣∣∣∣∣∣ .
for all positive integers i. It follows that

PS(Ġ) =

n∑
k=0

|si(Ġ)|

=

n∑
k=0

(|si(Ġ− uv)|+ |si−2(Ġ− u− v)|+ 2

i∑
k=0

|
∑

Ck∈Ce(Ġ))

(−1)r(Ck)si−k(Ġ− V (Ck))|)
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= PS(Ġ− e) + PS(Ġ− v − u) + 2
∑

C∈Ce(Ġ))

(−1)r(C)PS(Ġ− V (C)).

(iii) Let v ∈ V (G) be a given vertex, and L′i(G, v) = {H ∈ Li : v ∈ E(H)} and L′′i (G, v) = {H ∈ Li : v /∈ V (H)}. Then,
|L′′i (G, v)| = |si(G − v)|. For each H ∈ Li(G, v), either v is an endpoint of some single, or v lies in a cycle of H. It follows
that |{H ∈ L′i(G, v) : v is an endpoint of some single e = uv of H}| = |si−2(G− u− v)|, and

|{H ∈ L′i(G, v) : v lies in a cycle of H}| = 2

i∑
k=0

∣∣∣∣∣∣
∑

Ck∈Cv(Ġ))

(−1)r(Ck)si−k(G− V (Ck))

∣∣∣∣∣∣ .
Thus,

|si(Ġ)| = |si(Ġ− v)|+ |si−2(Ġ− u− v)|+ 2

i∑
k=0

∣∣∣∣∣∣
∑

Ck∈Cv(Ġ))

(−1)r(Ck)si−k(Ġ− V (Ck))

∣∣∣∣∣∣ .
Substituting this into the definition of PS(Ġ) yields

PS(Ġ) = PS(Ġ− v) +
∑

u∈NĠ(v)

PS(Ġ− v − u) + 2
∑

C∈Cv(Ġ)

(−1)r(C)PS(Ġ− V (C)).

From Theorem 4.2 the next two corollaries immediately follows.

Corollary 4.1. (i) Let e = uv be an edge of signed graph Ġ. If all cycles containing e are positive (or negative), then

PS(Ġ) = PS(Ġ− e) + PS(Ġ− v − u) + 2
∑

C∈Ce(Ġ))

PS(Ġ− V (C)).

(ii) Let v be a vertex of signed graph Ġ. If all cycles containing v are positive (or negative), then

PS(Ġ) = PS(Ġ− v) +
∑

u∈NĠ(v)

PS(Ġ− v − u) + 2
∑

C∈Cv(Ġ)

PS(Ġ− V (C)).

Corollary 4.2. (i) Let Ġ be a signed graph and e an edge of Ġ. Then PS(Ġ− e) < PS(Ġ).

(ii) Among all signed graphs with n vertices, the graph nK1 and the balance complete signed graph Kn have, respectively,
minimum and maximum permanental sum.

We know PS(K2) = PS(K̇2) = 2. From Theorem 4.2 the next result immediately follows.

Corollary 4.3. If G is a tree or a unicyclic graph, then PS(G) = PS(Ġ) for any signed graph Ġ of G.

Wu and Lai [12] determine the largest and smallest permanental sums among unicyclic graphs (trees). Denote by F (n)

the nth Fibonacci number.

Lemma 4.2 (see [12]). (i) Let G be a tree with n vertex, then

n ≤ PS(G) ≤ F (n+ 1),

where the left equality holds if and only if T = Sn, and the right equality holds if and only if T = Pn.

(ii) Let G be a unicyclic graph with n vertex, then

2n ≤ PS(G) ≤ 6F (n− 2) + 2F (n− 3),

where the left equality holds if and only if T = S+
n (the graph obtained by adding a new edge to the star Sn), and the right

equality holds if and only if T = D3,n−3 (the graph obtained from the disjoint union of a cycle C3 and a path Pn−3 by
identifying one end of Pn−3 with one of the vertices of C3).

By Corollary 4.3 and Lemma 4.2, we have

Corollary 4.4. (i) Let G be a tree with n vertex and Ġ a signed graph of G, then

n ≤ PS(Ġ) ≤ F (n+ 1),

where the left equality holds if and only if G = Sn, and the right equality holds if and only if G = Pn.

(ii) Let G be a unicyclic graph with n vertex and Ġ a signed graph of G, then

2n ≤ PS(Ġ) ≤ 6F (n− 2) + 2F (n− 3),

where the left equality holds if and only if G = S+
n , and the right equality holds if and only if G = D3,n−3.
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