www.dmlett.com

Research Article

A new proof of Boole's additive combinatorics formula

Necdet Batır*, Sevda Atpınar

Department of Mathematics, Faculty of Sciences and Arts, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
(Received: 14 July 2022. Received in revised form: 30 August 2022. Accepted: 30 August 2022. Published online: 2 September 2022.)
(C) 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

The Boole's additive combinatorics formula is given by

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{m}=\left\{\begin{array}{ccc}
0 & \text { if } & m<n \\
n! & \text { if } & m=n
\end{array}\right.
$$

A new proof of this formula is presented in this paper.
Keywords: combinatorial identities; Boole's formula; factorial function.
2020 Mathematics Subject Classification: 05A10, 05A19.

1. Introduction

Binomial coefficients are related to statistical and probabilistic aspects of mathematics very intently and are considered very significant. The binomial coefficient $\binom{n}{k}$ is often described as picking k event without order out of n possibilities.The binomial coefficient $\binom{n}{k}$ is defined as

$$
\binom{n}{k}= \begin{cases}\frac{n!}{k!(n-k)!} & \text { if } \\ n \geq k \\ 0 & \text { if }\end{cases}
$$

The formula

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{m}=\left\{\begin{array}{lll}
0 & \text { if } & m<n \tag{1}\\
n! & \text { if } & m=n
\end{array}\right.
$$

is known as Boole's formula becasue it shows up in Boole's book [5]. On the other hand, the binomial studies have always been important in mathematics since Euler's era. As being one of the earliest sources, Gould debates the binomial identity (1) in [8] and named this identity as Euler's formula. Binomial coefficients still gather interest and new proofs of this identity have been studies in the recent decades; for example, Anglani and Barile [2] gave two new different proofs of the identity in 2015. Phoata [10] used Lagrange's interpolation polynomials to obtain an extension of (1) as given below

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} P(a+k b)=a_{0} b^{n} \cdot n!\quad(n \in \mathbb{N}), \tag{2}
\end{equation*}
$$

where $a, b \in \mathbb{R}, b$ is nonzero, and P is an n th-degree polynomial with a_{0} being the leading coefficient. Katsuro [9] proved this extension formula for real and complex numbers as given below

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(x k+y)^{m}= \begin{cases}0 & \text { if } \quad 0 \leq m<n \\ (-1)^{n} x^{n} n! & \text { if } \quad m=n\end{cases}
$$

where $m, n \in \mathbb{Z}^{+}$and x and y can be real and complex numbers. Note that Katsuuro presented a spacial case of Phoata's formula. Although Phoata's and Katsuuro's results seem to be new but Gould presented a more general form of these formulas in his book [7]. Gould demonstrated that for any m th-degree polynomial $f(t)=c_{0}+c_{1} t+\ldots+c_{m} t^{m}$, the identity

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f(k)= \begin{cases}0 & \text { if } \quad m<n \\ (-1)^{n} n!c_{n} & \text { if } \quad m=n\end{cases}
$$

[^0]holds. All these results are actually natural consequences of identity (1). Also, for $g(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n} x^{n}$ we have
\[

$$
\begin{aligned}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} g(k) & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \sum_{j=0}^{n} b_{j} k^{j}=\sum_{j=0}^{n} b_{j} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{j} \\
& =b_{n} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{n}+\sum_{j=0}^{n-1} b_{j} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{j} \\
& =(-1)^{n} n!b_{n}+0=(-1)^{n} n!b_{n} .
\end{aligned}
$$
\]

Alzer and Chapman [1] gave a new proof of (1). Recently, Batir [3] provided another proof of (1). Readers may consult [4,6] for different arguments. The identity (1) is closely associated with Stirling's partition numbers denoted by $S(m, n)$ which satisfies

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{m}=n!S(m, n)
$$

Our aim in this paper is to provide another new proof of (1). In our proof, we use only differentiation, integration, and the following identities involving binomial coefficients:

$$
\begin{align*}
& \binom{n+1}{k}=\frac{n+1}{k}\binom{n}{k-1}, \tag{3}\\
& \binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1} . \tag{4}
\end{align*}
$$

2. Main result

The main result of this paper is the following theorem.
Theorem 2.1. If $m, n \in \mathbb{N}$, then

$$
\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} k^{m}= \begin{cases}0 & \text { if } m<n \\ n! & \text { if } m=n\end{cases}
$$

Proof. For $x \in \mathbb{R}$, define

$$
f_{n}(x)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(x-k)^{n} .
$$

Differentiation gives

$$
f_{n}^{\prime}(x)=n \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(x-k)^{n-1} .
$$

We want to show that $f_{n}^{\prime}(x)=0$ for all $x \in \mathbb{R}$. Clearly, $f_{1}^{\prime}(x)=0$. We assume that $f_{n}^{\prime}(x)=0$ for all $x \in \mathbb{R}$. Then, we find by utilizing (3) and (4) that

$$
\begin{aligned}
\frac{f_{n+1}^{\prime}}{n+1} & =\sum_{k=1}^{n+1}(-1)^{k}\binom{n+1}{k}(x-k)^{n}+x^{n}=\sum_{k=1}^{n+1}(-1)^{k}\binom{n+1}{k}(x-k)(x-k)^{n-1}+x^{n} \\
& =x \sum_{k=1}^{n+1}(-1)^{k}\binom{n+1}{k}(x-k)^{n-1}-\sum_{k=1}^{n+1}(-1)^{k}\binom{n+1}{k} k(x-k)^{n-1}+x^{n}+x^{n} \\
& =x \sum_{k=1}^{n+1}(-1)^{k}\left[\binom{n}{k}+\binom{n}{k-1}\right](x-k)^{n-1}-(n+1) \sum_{k=1}^{n+1}(-1)^{k}\binom{n}{k-1}(x-k)^{n-1}+x^{n} .
\end{aligned}
$$

Making appropriate changes in dummy indices k, this can be rewritten in the following form

$$
\begin{aligned}
\frac{f_{n+1}^{\prime}}{n+1} & =x \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(x-k)^{n-1}+x \sum_{k=0}^{n}(-1)^{k-1}\binom{n}{k}(x-1-k)^{n-1}-(n+1) \sum_{k=0}^{n}(-1)^{k-1}\binom{n}{k}(x-1-k)^{n-1} \\
& =\frac{x}{n} f_{n}^{\prime}(x)-\frac{x}{n} f_{n+1}^{\prime}(x-1)+\frac{n+1}{n} f_{n}^{\prime}(x-1)=0
\end{aligned}
$$

that is $f_{n+1}^{\prime}(x)=0$ for all $x \in \mathbb{R}$. This proves that $f_{n}^{\prime}(x)=0$ for all $x \in \mathbb{R}$. Therefore, f_{n} is a constant function. Let's define $a_{n}=f_{n}(x)$. Then, we have

$$
(n+1) a_{n}=(n+1) \int_{n}^{n+1} f_{n}(x) d x=(n+1) \int_{n}^{n+1} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(x-k)^{n} d x
$$

Inverting the order of integration and summation, and then utilizing (3) and (4), we get

$$
\begin{aligned}
(n+1) a_{n} & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k+1)^{n+1}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{n+1} \\
& =\sum_{k=0}^{n}(-1)^{k}\left[\binom{n+1}{k}-\binom{n}{k-1}\right](n-k+1)^{n+1}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{n+1} \\
& =\sum_{k=0}^{n+1}(-1)^{k}\binom{n+1}{k}(n-k+1)^{n+1}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k-1}(n-k+1)^{n+1}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{n+1} \\
& =a_{n+1}+\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{n+1}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)^{n+1} \\
& =a_{n+1} .
\end{aligned}
$$

Since $a_{1}=1$, this implies that $a_{n}=n$!. Furthermore, since $f_{n}^{(k)}(x)=0$ for all $m=0,1,2, \cdots, n-1$, we have

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(x-k)^{m}=0
$$

for $m<n$.

References

[1] H. Alzer, R Chapman, On Boole's formula for factorials, Australas. J. Combin. 99 (2014) 333-336.
[2] R. Anglani, M. Barile, Two very short proofs of a combinatorial identity, Integers 5 (2005) \#A18.
[3] N. Batır, On some combinatorial identities and harmonic sums, Int. J. Number Theory 13 (2017) 1695-1709.
[4] K. Belbahri, Scale invariant operators and combinatorial expansions, Adv. Appl. Math. 45 (2010) 548-563.
[5] G. Boole, Calculus of Finite Differences, 4th Edition, Chelsea, New York, 1957.
[6] L. Gonzales, A new approach for proving or generating combinatorial identities, Int. J. Math. Educ. Sci. Tech. 41 (2010) $359-372$.
[7] H. W. Gould, Combinatorial Identities, Revised Edition, Morgantown Printing and Binding Co., Morgantown, 1972.
[8] H. W. Gould, Euler's formula for the nth differences of powers, Amer. Math. Monthly 85 (1978) 450-467.
[9] H. Katsuura, Summations involving binomial coefficients, College Math. J. 40 (2009) 275-278.
[10] C. Phoata, Boole's formula as a consequence of Lagrange's interpolating polynomial theorem, Integers 8 (2008) \#A23.

[^0]: *Corresponding author (nbatir@hotmail.com).

