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Abstract
Denote by Qn the set of partitions of a positive integer n into distinct parts. For k ∈ N, denote by Qn,k the set of partitions
of n into distinct parts whose least part is k + 1 and not equal to n. Let q(n) and q(n, k) be the number of elements in Qn

and Qn,k, respectively. In this paper, several new recurrence relations for partitions into distinct parts are derived from the
partition function q(n, k).
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1. Introduction and statements of the main results

A partition of a positive integer n is a finite sequence of positive integers λ1, λ2, . . . , λm (see [2, Chapter 14]) such that

λ1 + λ2 + · · ·+ λm = n.

The λi’s are called the parts of the partition. The number of parts is unrestricted, repetition is allowed and the order
of the parts is not taken into account. The corresponding partition function p(n) is defined as the number of unordered
partitions of n. The paper [4] gives a new recursion formula connecting the unrestricted partition function p(n) with a
restricted partition function P (n, k), which defined by

P (n, k) =

the number of partitions (λ1, λ2, . . . ) of n with k < λi < n, if 0 < k < n,

0, otherwise.

For n ≥ 4 and k ≥ 1, it was proved in [4] that
∞∑
i=0

ak,i p(n− i) = P (n, k)− P (n− 1, k),

where the coefficients ak,i are obtained from the expansion

(
xn − 2xn−1 + xn−2

) k∏
i=2

(
1− x−i

)
=

∞∑
i=0

ak,ix
n−i,

where the empty product is taken to be 1. This provided several corollaries to get the value of p(n). In the present paper,
the same idea is used to find the recurrence formula for the numbers of partitions of n into distinct parts.

Denote byQn the set of partitions of n into distinct parts. For k ∈ N, denote byQ∗n,k the set of partitions of n into distinct
parts whose least part is k + 1. Also, let Qn,k be the set of partitions of n into distinct parts whose least part is k + 1 and
not equal to n. Furthermore, let q(n), q∗(n, k), and q(n, k) be the number of elements in Qn , Q∗n,k, and Qn,k, respectively.
The numbers of partitions of n into distinct parts is a classical problem in the theory of partitions; for example, see [1].
Erdős, Nicolas, and Szalay [3] gave an asymptotic relation of q∗(n, k); namely, for all n ≥ 1 and 0 ≤ k ≤ n− 1,

q(n)

2k
≤ q∗(n, k + 1) ≤ q

(
n+

k(k + 1)

2

)
.

Moreover, at the end of the paper [3], the authors calculated the value of q∗(n, k) by using the recurrence relation

q∗(n, k) = q∗(n, k + 1) + q∗(n− k, k + 1),
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and q∗(n, k) = 1 for k ≥ n/2 − 1. Thus, finding a new recurrence formula for the numbers of partitions of n into distinct
parts with a restriction is still interesting. Following theorems are proved in the present paper.

Theorem 1.1. For any positive integers n ≥ 3, one has

q(n) = q(n, 1) + q(n− 1, 1) + 2.

Since there are ten partitions of 10 into distinct parts: 10, 9+1, 8+2, 7+3, 6+4, 7+2+1, 6+3+1, 5+4+1, 5+3+2, 4+3+2+1,
one has

q(10) = q(10, 1) + q(9, 1) + 2 = 4 + 4 + 2 = 10,

which gives an illustration of Theorem 1.1.

Theorem 1.2. For any positive integers n ≥ 3 and k ∈ N with k <
⌊
n−1
2

⌋
, one has

q(n, k) = q(n, k + 1) + q(n− k − 1, k + 1) + 1.

Note that there are four partitions of 10 into distinct parts whose least part is 2 and not equal to 10:

8 + 2, 7 + 3, 6 + 4, 5 + 3 + 2.

Thus, as an illustration of Theorem 1.2, one has

q(10, 1) = q(10, 2) + q(8, 2) + 1 = 2 + 1 + 1 = 4.

Theorem 1.3. For any positive integers n ≥ 3 and l ≤ n− 4, the following equation holds
l∑

i=0

(−1)iq(n− i) = q(n, 1) + (−1)lq(n− l − 1, 1) + (−1)l + 1.

Theorem 1.4. For any positive integers k, l ∈ N and n ≥ 3 satisfying k <
⌊
n−1
2

⌋
and l ≤ n

k+1 − 4, one has

l∑
i=0

(−1)iq(n− i(k + 1), k) = q(n, k + 1) + (−1)lq(n− (l + 1)(k + 1), k + 1) +
(−1)l + 1

2
.

Theorem 1.5. For any positive integers n ≥ 3 and d ≤ n
4 , the following equation holds

q(n) = q(n, d) +

d∑
j=1

q(n− j, j) + d+ 1.

2. Proofs of Theorems 1.1, 1.2, 1.3, 1.4, and 1.5

Proof of Theorem 1.1. Let Q(2)
n and Q(>2)

n be the set of partitions of n into distinct parts with two parts and having at least
three parts, respectively. Denote by q(2)(n) and q(>2)(n) the number of elements in Q(2)

n and Q(>2)
n , respectively. Then, one

has

Qn = Q(2)
n ∪Q(>2)

n ∪ {n}.

Thus, for n ≥ 3, it holds that

q(n) = q(2)(n) + q(>2)(n) + 1. (1)

Note that
Q(2)

n =

{
(1, n− 1), (2, n− 2), . . . ,

(⌊
n− 1

2

⌋
, n−

⌊
n− 1

2

⌋)}
.

Thus, for n ≥ 3,

q(2)(n) =

⌊
n− 1

2

⌋
. (2)

Also, note that

Q(>2)
n =

bn−1
2 c⋃

j=1

Qn−j,j .
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Since the sets Qn−j,j are disjoint for all j = 1, . . . ,
⌊
n−1
2

⌋
, it holds that

q(>2)(n) =

bn−1
2 c∑

j=1

q(n− j, j). (3)

In view of (1)–(3), one has

q(n) =

⌊
n− 1

2

⌋
+

bn−1
2 c∑

j=1

q(n− j, j) + 1. (4)

Thus, Theorem 1.1 follows from (4) and following relation

q(n, 1) =

⌊
n− 3

2

⌋
+

bn−1
2 c∑

j=2

q(n− j, j). (5)

To prove (5), let Q(2)
n,1 be the set of partitions of n into distinct parts whose least part is 2 and having two parts. Also,

let Q(>2)
n,1 be the set of partitions of n into distinct parts whose least part is 2 and having at least three parts. Denote by

q(2)(n, 1) and q(>2)(n, 1) the number of elements in Q(2)
n,1 and Q(>2)

n,1 , respectively. Then, one has

Qn,1 = Q
(2)
n,1 ∪Q

(>2)
n,1 .

Thus, for n ≥ 3, it holds that

q(n, 1) = q(2)(n, 1) + q(>2)(n, 1). (6)

Also, note that
Q

(2)
n,1 =

{
(2, n− 2), . . . ,

(⌊
n− 1

2

⌋
, n−

⌊
n− 1

2

⌋)}
.

Thus, for n ≥ 3, one has

q(2)(n, 1) =

⌊
n− 3

2

⌋
. (7)

Note that

Q
(>2)
n,1 =

bn−1
2 c⋃

j=2

Qn−j,j .

Since the sets Qn−j,j are disjoint for all j = 2, . . . ,
⌊
n−1
2

⌋
, it holds that

q(>2)(n, 1) =

bn−1
2 c∑

j=2

q(n− j, j). (8)

Thus, (5) follows from (6)–(8).

Proof of Theorem 1.2. Let n ≥ 3 and k ∈ N with k <
⌊
n−1
2

⌋
. Theorem 1.2 can be proved by the reasoning similar to the one

used in the proof of (5) by replacing 1 with k. Particularly, let Q(2)
n,k be the set of partitions of n into distinct parts whose

least part is k+1 and having two parts. Denote byQ(>2)
n,k the set of partitions of n into distinct parts whose least part is k+1

and having at least three parts. Let q(2)(n, k) and q(>2)(n, k) be the number of elements in Q
(2)
n,k and Q

(>2)
n,k , respectively.

Then, one has

Qn,k = Q
(2)
n,k ∪Q

(>2)
n,k .

For n ≥ 3 and k <
⌊
n−1
2

⌋
, it holds that

q(n, k) = q(2)(n, k) + q(>2)(n, k). (9)

Note that
Q

(2)
n,k =

{
(k + 1, n− k − 1), . . . ,

(⌊
n− 1

2

⌋
, n−

⌊
n− 1

2

⌋)}
.
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Thus,

q(2)(n, k) =

⌊
n− 1

2

⌋
− k. (10)

Also, note that

Q
(>2)
n,k =

bn−1
2 c⋃

j=k+1

Qn−j,j .

Since the sets Qn−j,j are disjoint for all j = k + 1, . . . ,
⌊
n−1
2

⌋
, it holds that

q(>2)(n, k) =

bn−1
2 c∑

j=k+1

q(n− j, j). (11)

From (9)–(11), it follows that

q(n, k) =

⌊
n− 1

2

⌋
− k +

bn−1
2 c∑

j=k+1

q(n− j, j). (12)

Replacing k by k + 1 in (12) gives the desired result.

Proof of Theorem 1.3. Let n ≥ 4 and l ≤ n− 4. Using Theorem 1.1 iteratively in l-steps, one has

q(n) = q(n, 1) + q(n− 1, 1) + 2

q(n− 1) = q(n− 1, 1) + q(n− 2, 1) + 2

q(n− 2) = q(n− 2, 1) + q(n− 3, 1) + 2

...
q(n− l − 1) = q(n− l − 1, 1) + q(n− l − 2, 1) + 2

q(n− l) = q(n− l, 1) + q(n− l − 1, 1) + 2.

By alternatively summing these equations, one gets the conclusion of Theorem 1.3 .

Proof of Theorem 1.4. The proof is similar to the proof of Theorem 1.3.

Proof of Theorem 1.5. It can be proved by the reasoning similar to the one used in the proof of Theorem 1.1.

As an application of the obtained results, the values of the partition function q(n, k) are given in the following table for
1 ≤ n ≤ 20 and 1 ≤ k ≤ 8:

The values of the partition function q(n, k)
n q(n) q(n, 1) q(n, 2) q(n, 3) q(n, 4) q(n, 5) q(n, 6) q(n, 7) q(n, 8)
1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 2 0 0 0 0 0 0 0 0
4 2 0 0 0 0 0 0 0 0
5 3 1 0 0 0 0 0 0 0
6 4 1 0 0 0 0 0 0 0
7 5 2 1 0 0 0 0 0 0
8 6 2 1 0 0 0 0 0 0
9 8 4 2 1 0 0 0 0 0
10 10 4 2 1 0 0 0 0 0
11 12 6 3 2 1 0 0 0 0
12 15 7 4 2 1 0 0 0 0
13 18 9 5 3 2 1 0 0 0
14 22 11 6 3 2 1 0 0 0
15 27 14 8 5 3 2 1 0 0
16 32 16 9 5 3 2 1 0 0
17 38 20 11 7 4 3 2 1 0
18 46 24 14 8 5 3 2 1 0
19 54 28 16 10 6 4 3 2 1
20 64 34 19 11 7 4 3 2 1
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