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Abstract

A proper total coloring of a graph G is an assignment of colors to the vertices and edges of G (together called the elements
of G) such that neighbored elements—two adjacent vertices or two adjacent edges or a vertex and an incident edge—are
colored differently. The total chromatic number χ′′(G) of G is defined as the minimum number of colors in a proper total
coloring of G. In this paper, we study the stability of the total chromatic number of a graph with respect to two operations,
namely removing edges and subdividing edges, which leads to the following two invariants. (i) The total chromatic edge
stability number or χ′′-edge stability number esχ′′(G) is the minimum number of edges of G whose removal results in a
graphH ⊆ G with χ′′(H) 6= χ′′(G) or with E(H) = ∅. (ii) The total chromatic subdivision number or χ′′-subdivision number
sdχ′′(G) is the minimum number of edges of G whose subdivision results in a graph H ⊆ G with χ′′(H) 6= χ′′(G) or with
E(H) = ∅. We prove general lower and upper bounds for esχ′′(G). Moreover, we determine esχ′′(G) and sdχ′′(G) for some
classes of graphs.

Keywords: total chromatic edge stability number; total chromatic subdivision number; total chromatic number; total
coloring.
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1. Introduction

We consider finite simple graphs G = (V (G), E(G)). A (graph) invariant ρ(G) is a function ρ : I → R+
0 ∪ {∞} where I is

the class of finite simple graphs and R+
0 the set of non-negative real numbers. Invariants mostly are integer-valued. An

empty graph is a graph with empty edge set.
It is an interesting topic to determine the stability of an arbitrary invariant ρ(G) of a graph G with respect to two

operations, namely removing edges and subdividing edges. The ρ-edge stability number and the ρ-subdivision number of
G are defined as follows.

The ρ-edge stability number esρ(G) of G is the minimum number of edges of G whose removal results in a graph H ⊆ G
with ρ(H) 6= ρ(G) or with E(H) = ∅ (which implies esρ(G) = |E(G)|).

The ρ-subdivision number sdρ(G) of G is the minimum number of edges of G to be subdivided such that the resulting
graph H fulfills ρ(H) 6= ρ(G). If such an edge set does not exist, then set sdρ(G) = |E(G)|.

Note that esχ′′(G) = sdχ′′(G) = 0 by definition if G is empty, so we can assume in the following that G is non-empty.
Subdividing an edge e = uv of a graph G creates a new graph Ge, in which a new vertex w is added and the edge e

is removed and replaced by two new edges uw and wv. We write GE′ for the graph obtained by subdividing all edges of
E′ ⊆ E(G). Note that each edge of E′ is subdivided exactly once.

These two parameters based on edge removal or edge subdivision, respectively, were discussed in several papers, for
example in [2,10] and more recently in [1,3,7–9] for the invariants chromatic number χ(G) and chromatic index χ′(G).

In this paper we investigate the χ′′-edge stability number esχ′′(G), also called total chromatic edge stability number,
and the χ′′-subdivision number sdχ′′(G), also called total chromatic subdivision number, with respect to the total chromatic
number χ′′(G) of G. Results on the total chromatic number are collected for example in [11] and first results on sdχ′′(G)

can be found in [8].
A (proper) total coloring of G is an assignment of colors to the vertices and edges of G (together called the elements

of G) such that neighbored elements—two adjacent vertices or two adjacent edges or a vertex and an incident edge—are
colored differently. A k-total coloring is a proper total coloring with k colors. The total chromatic number χ′′(G) of G is
defined as the minimum k in a k-total coloring of G.
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Obviously, χ′′(G) ≥ ∆(G) + 1 by definition where ∆(G) is the maximum degree of G. The Total Coloring Conjecture
states that χ′′(G) ≤ ∆(G) + 2 for every graph G (see [4], p. 282; [11], p. 4). Therefore, the truth of this conjecture would
imply that χ′′(G) attains one of two values for every graph G. Graphs G are called type 1 graphs if χ′′(G) = ∆(G) + 1 and
type 2 graphs if χ′′(G) = ∆(G) + 2, respectively. We define the invariant type(G) = χ′′(G) − ∆(G) which has a value in
{1, 2} if the Total Coloring Conjecture is true.

We prove in this paper among others general upper and lower bounds for the total chromatic edge stability number
esχ′′(G) (general bounds for the total chromatic subdivision number sdχ′′(G) can be found in [8]). We also exactly determine
esχ′′(G) for specific classes of graphs such as acyclic graphs, cycles, complete graphs, and complete bipartite graphs.
Moreover, we determine sdχ′′(G) for some graph classes, for example for even complete graphs and for complete bipartite
graphs, extending results of [8].

2. General results for the total chromatic edge stability number

Some general results for the ρ-edge stability number are proved in [7]. If we apply the results on the total chromatic
number, then we obtain the following statements. General proofs can be found in [7].

Proposition 2.1. Let H be a spanning subgraph of G obtained from G by removing k edges. Then esχ′′(G) ≤ esχ′′(H) + k.
Moreover, if χ′′(H) < χ′′(G), then esχ′′(G) ≤ k.

Corollary 2.1. If there is an edge set E′ ⊆ Ev such that χ′′(G − Ev) < χ′′(G − E′) or χ′′(G − E′) < χ′′(G), where Ev is the
set of edges incident to v, then esχ′′(G) ≤ d(v) ≤ ∆(G).

Theorem 12 of [7] states that the edge stability number for specific invariants can be computed by the edge stability
numbers of its components. Applying this theorem to the total chromatic edge stability number gives the following result.

Proposition 2.2. Let G = H1 ∪ · · · ∪Hk be the disjoint union of the subgraphs H1, . . . ,Hk whose indices and the integer s,
1 ≤ s ≤ k, are defined such that χ′′(G) = χ′′(Hi) if and only if 1 ≤ i ≤ s. Then esχ′′(G) =

∑s
i=1 esχ′′(Hi).

Therefore, we can assume in the following without loss of generality that G is connected.
The following results from [7] give lower bounds based on not necessarily distinct subgraphs of a graph.

Theorem 2.1. Let G be a non-empty graph with χ′′(G) = k. If G contains s non-empty subgraphs G1, . . . , Gs with χ′′(G1) =

· · · = χ′′(Gs) = k such that a ≥ 0 is the number of edges that occur in at least two of these subgraphs and q ≥ 1 is the
maximum number of these subgraphs with a common edge, then both esχ′′(G) ≥ 1

q

∑s
i=1 esχ′′(Gi) ≥ s/q and esχ′′(G) ≥∑s

i=1 esχ′′(Gi)− a(q − 1) hold.

Corollary 2.2. LetG be a non-empty graph with χ′′(G) = k. IfG contains s non-empty subgraphsG1, . . . , Gs with χ′′(G1) =

· · · = χ′′(Gs) = k and pairwise disjoint edge sets, then esχ′′(G) ≥
∑s
i=1 esχ′′(Gi) ≥ s.

Corollary 2.3. If H ⊆ G and χ′′(H) = χ′′(G), then esχ′′(H) ≤ esχ′′(G).

Note that esχ′′(H) ≤ esχ′′(G) does not hold in general.
The ρ-edge stability number esρ(G) for ρ(G) = ∆(G) where ∆(G) is the maximum degree of G was determined in [7].

It is proved that es∆(G) = |V∆| − α′(G[V∆]) if G is non-empty, where V∆ is the set of vertices of G of degree ∆(G), G[V∆] is
the subgraph of G induced by V∆, and α′(G) is the edge independence number or matching number of G.

Lemma 2.1. If G is a type 1 graph, then esχ′′(G) ≥ es∆(G).

Proof. If G is non-empty, then there is a set E′ of edges of G such that |E′| = esχ′′(G) and

∆(G− E′) + 1 ≤ χ′′(G− E′) < χ′′(G) = ∆(G) + 1.

It follows that ∆(G− E′) < ∆(G) which implies that esχ′′(G) = |E′| ≥ es∆(G).

Let α′′(G) be the total independence number of G, that is, the maximum number of pairwise not adjacent or incident
elements in G. Let t′′(G) be the minimum number of elements in a color class of G where the minimum is taken over all
total colorings of G with χ′′(G) colors. Let s be the minimum number of vertices of maximum degree in a color class with
t′′(G) elements if G is of type 1 and s = 0 if G is of type 2.

Proposition 2.3. esχ′′(G) ≤ t′′(G) + s ≤ b(|V (G)|+ |E(G)|)/χ′′(G)c+ s ≤ α′′(G) + s.
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Proof. Let G be non-empty and consider a total coloring of G with χ′′(G) colors such that C is a color class with t′′(G)

elements and moreover s vertices of maximum degree if G is of type 1.
IfC does not contain any vertex, then removing all edges ofC reduces the total chromatic number, thus esχ′′(G) ≤ t′′(G).
If C contains vertices, then these will be recolored in an arbitrary order. Let v ∈ C. If there is a missing color in the

closed neighborhood N(v) ∪ {v} of v, say color β, then removing the at most one edge of color β incident to v allows us to
recolor vertex v by color β. This is for example the case if χ′′(G) > ∆(G) + 1 or if d(v) < ∆(G). If otherwise there is no
missing color in the closed neighborhood of v, then this implies that χ′′(G) = ∆(G) + 1, d(v) = ∆(G), and the neighbors of
v are colored pairwise differently. Select a color β different from the color of v and remove the edge of color β incident to v
as well as the edge connecting v with the neighbor of color β. After removing these two edges, vertex v can be recolored by
color β. Repeat this recoloring for all other vertices of C (which are independent). Removing the edges of C again reduces
the total chromatic number, which implies that esχ′′(G) ≤ t′′(G) + s.

By the pigeonhole principle, any total coloring of G with χ′′(G) colors has a color class with at most
⌊
|V (G)|+|E(G)|

χ′′(G)

⌋
elements, which implies t′′(G) ≤ b(|V (G)|+ |E(G)|)/χ′′(G)c. On the other hand, the lower bound

χ′′(G) ≥ (|V (G)|+ |E(G)|)/α′′(G)

implies the last inequality of the statement of the theorem.

In the next section it will be shown that for complete graphs Kn of odd order, which are of type 1, esχ′′(K3) = 3 >

α′′(K3) = 2 holds, that is, the upper bound α′′(G) + s is tight for K3, and esχ′′(Kn) = α′′(Kn) = (n + 1)/2 if n ≥ 5 is odd.
The question arises for which type 1 graphs G the upper bound for esχ′′(G) can be improved to α′′(G).

Theorem 2.2. If G is a type 2 graph and the Total Coloring Conjecture is true, then esχ′′(G) = min{es∆(G), estype(G)}.

Proof. Since G is of type 2, the graph G is not empty and the invariants ∆(G), type(G) = 2, and χ′′(G) = ∆(G) + 2 can be
reduced by edge removal.

By removing es∆(G) edges E′ such that ∆(G− E′) < ∆(G) we obtain

χ′′(G− E′) ≤ ∆(G− E′) + 2 < ∆(G) + 2 = χ′′(G)

which implies |E′| ≥ esχ′′(G). By removing estype(G) edges E′′ such that type(G− E′′) = 1 we obtain

χ′′(G− E′′) = ∆(G− E′′) + 1 ≤ ∆(G) + 1 < ∆(G) + 2 = χ′′(G)

which implies |E′′| ≥ esχ′′(G). It follows that min{es∆(G), estype(G)} ≥ esχ′′(G).
Consider now a setE′′′ of edges such that χ′′(G−E′′′) < χ′′(G) = ∆(G)+2. ThenG−E′′′ is of type 1 or ∆(G−E′′′) < ∆(G),

since otherwise χ′′(G− E′′′) = ∆(G− E′′′) + 2 = ∆(G) + 2, a contradiction. Therefore, |E′′′| ≥ estype(G) or |E′′′| ≥ es∆(G)

which implies esχ′′(G) ≥ min{es∆(G), estype(G)}.

Yap ([11], p. 6) stated that if χ′′(G) = t and if for any t-total coloring of G every color class contains at least two edges of
G, then χ′′(G− e) = t for every edge e of G, that is, esχ′′(G) ≥ 2. This implies that a graph G with esχ′′(G) = 1 must have
a t-total coloring with a color class with at most one edge.

3. Total chromatic edge stability number for specific graph classes

In this section we determine the total chromatic edge stability number of some well-known graph classes.

Proposition 3.1. For a path Pn it holds that esχ′′(Pn) = n− 1.

Proof. If n ≥ 2 then χ′′(Pn) = 3 and moreover χ′′(Pn − E′) = 3 for any set of edges E′ $ E(Pn), since Pn − E′ contains a
subgraph P2 with total chromatic number 3. Therefore, esχ′′(Pn) = |E(Pn)| = n− 1.

Proposition 3.2. For a cycle Cn it holds that esχ′′(Cn) = n if 3 |n and esχ′′(Cn) = 1 if 3 -n.

Proof. It holds that χ′′(Cn) = 3 if 3 |n and χ′′(Cn) = 4 if 3 -n. If 3 |n, then χ′′(Cn − E′) = χ′′(Cn) = 3 if E′ $ E(Cn) which
implies that esχ′′(Cn) = |E(Cn)| = n. On the other hand, if 3 -n, then Cn − e ∼= Pn with χ′′(Cn − e) = 3 < 4 = χ′′(Cn) for
any edge e of the cycle, which implies that esχ′′(Cn) = 1.

Proposition 3.3. For an acyclic graph G it holds that esχ′′(G) = |E(G)| if ∆(G) ≤ 2 and esχ′′(G) = es∆(G) if ∆(G) ≥ 3.

3



A. Kemnitz and M. Marangio / Discrete Math. Lett. 10 (2022) 1–8 4

Proof. For an acyclic graph G it holds that χ′′(G) = ∆(G) + 2 = 3 if ∆(G) = 1 and χ′′(G) = ∆(G) + 1 if ∆(G) 6= 1 (proof by
induction).

By Propositions 2.2 and 3.1, esχ′′(G) = |E(G)| if ∆(G) ≤ 2, so assume in the following that ∆(G) ≥ 3. Since G is a type
1 graph, esχ′′(G) ≥ es∆(G) by Lemma 2.1. On the other hand, let E′ be a set of edges of G such that |E′| = es∆(G) and
∆(G− E′) < ∆(G). By the minimality of E′, ∆(G− E′) = ∆(G)− 1 ≥ 2 which implies that χ′′(G− E′) = ∆(G− E′) + 1 <

∆(G) + 1 = χ′′(G) since G−E′ is acyclic. Therefore, esχ′′(G) ≤ |E′| = es∆(G) by the minimality of the total chromatic edge
stability number.

This result implies that the lower bound of Lemma 2.1 is tight if G is an acyclic graph with ∆(G) ≥ 3. On the other
hand, the difference between esχ′′(G) and es∆(G) may be arbitrarily large, e.g., for cycles of orders divisible by 3 or for
unions of paths of order at least 3. For example, if G ∼= k P3, then esχ′′(G) = |E(G)| = 2k and es∆(G) = k.

We now consider complete graphs Kn.

Proposition 3.4. esχ′′(Kn) =


3 if n = 3,
(n+ 1)/2 if n ≥ 5 is odd,
b(n+ 2)/4c if n is even.

Proof. 1. If n = 3, then esχ′′(K3) = esχ′′(C3) = 3 by Proposition 3.2.

2. If n ≥ 5 is odd, then Kn is of type 1, thus esχ′′(Kn) ≥ es∆(Kn) = (n+ 1)/2 by Lemma 2.1.

Theorem 6.24 of [11] states that if G is a graph of odd order n = 2k+1 with maximum degree ∆(G) = n−2 and if w is
a vertex of minimum degree in G, then G is of type 1 if and only if

∣∣E(G− w)
∣∣+α′(G− w)) ≥ k where G = (V,

(
V
2

)
\E)

is the complement of G = (V,E).

Denote the vertices of Kn by v1, . . . , vn and let G = Kn − E′ where E′ contains the k = (n − 1)/2 independent edges
v1vn−1, v2vn−2, . . . , vkvk+1 and additionally edge vn−1vn. It follows that w = vn−1 is the only vertex of minimum degree
n− 3 in G and therefore

∣∣E(G− w)
∣∣ = α′(G− w)) = |E′| − 2 = k − 1. By the above result, G is of type 1 if and only if

2(k − 1) ≥ k, that is, k ≥ 2 which is equivalent to n ≥ 5.

If n ≥ 5 is odd, then it follows that χ′′(G) = ∆(G) + 1 = n− 1 < n = χ′′(Kn), that is, esχ′′(Kn) ≤ |E′| = (n+ 1)/2.

3. Hilton [5] proved the following result on the total chromatic number of complete graphs of even order from which
edges are removed:

Let n ≥ 2 even, E′ ⊆ E(Kn), j be the maximum number of independent edges in E′. Then χ′′(Kn −E′) = n+ 1 if and
only if |E′|+ j ≤ n/2− 1.

This means that an edge set E′ ⊆ E(Kn) with |E′| = esχ′′(Kn) and χ′′(Kn − E′) < χ′′(Kn) = n + 1 must fulfill
|E′|+ j > n/2− 1. Note that the cardinality of E′ is minimal if all edges are independent, that is, j = |E′| (for |E′| ≤
α′(Kn) = n/2 edges). Therefore, we obtain as necessary condition that |E′| > (n− 2)/4, that is, |E′| ≥ b(n+ 2)/4c.

Indeed, removing n/4 independent edges if n ≡ 0 (mod 4) and (n+ 2)/4 independent edges if n ≡ 2 (mod 4), that is,
b(n+ 2)/4c independent edges, gives a graph Kn−E′ for which |E′|+ j > n/2− 1 holds, which implies χ′′(Kn−E′) <
n+ 1 = χ′′(Kn) by the theorem of Hilton.

It follows that esχ′′(Kn) = b(n+ 2)/4c if n is even.

The last result of this proposition shows that also for type 2 graphs G the difference between esχ′′(G) and es∆(G) may
be arbitrarily large, since es∆(Kn) = dn/2e for n ≥ 2.

A wheel Wn, n ≥ 3, is the join of a cycle Cn and a singleton K1.

Proposition 3.5. For a wheel Wn, n ≥ 3, it holds that esχ′′(Wn) = 1.

Proof. If n = 3, then W3
∼= K4, thus esχ′′(W3) = 1 by Proposition 3.4.

If n ≥ 4, then Wn is of type 1: Denote the vertices of Wn by v1, . . . , vn for the vertices of the cycle and z for the central
vertex. Color vertex vi by color i and z by color n+ 1, edge viz by color i− 1 and vivi+1 by color i− 2, i = 1, . . . , n, where the
indices and colors are considered modulo n in the set {1, . . . , n}. Note that color n+ 1 is only used to color vertex z.

The graphWn−v1z is also of type 1: At first color the elements ofWn−v1z as above, then recolor edge v1vn and vertex z
by color n and vertex vn by color n− 2, in order to obtain a proper n-total coloring of Wn− v1z. It follows that esχ′′(Wn) = 1

if n ≥ 4.

For complete bipartite graphs Ka,b it holds that Ka,b is of type 1 if a 6= b and of type 2 if a = b. In order to determine the
total chromatic edge stability number of Ka,b we use the following lemma.
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Lemma 3.1. Let G be a bipartite graph. If all vertices of maximum degree are in one partition set, then G is of type 1.

Proof. Color the edges of the bipartite graph with colors 1, . . . ,∆(G) which is possible by the Theorem of König (see [4],
p. 257). Color the vertices of the partition set containing all vertices of maximum degree by color ∆(G) + 1. Every vertex v
of the second partition set has a degree smaller than ∆(G), thus there is a color from {1, . . . ,∆(G)}missing at its incident
edges. This color can be used to color v since the vertices of a partition set are pairwise non-adjacent.

Note that this condition is not necessary, since, for example, C6 is a regular bipartite graph of type 1.

Proposition 3.6. For a complete bipartite graph Ka,b, a ≤ b, it holds that esχ′′(K1,2) = 2, esχ′′(Ka,b) = a if a < b,
(a, b) 6= (1, 2), and esχ′′(Ka,a) = da/2e.

Proof. 1. By Proposition 3.1, esχ′′(K1,2) = esχ′′(P3) = 2.

2. If a < b, then Ka,b is of type 1 by Lemma 3.1, thus esχ′′(Ka,b) ≥ es∆(Ka,b) = a by Lemma 2.1.

If a < b − 1, then removing a set E′ of a independent edges gives a bipartite graph of maximum degree b − 1 > a

which is of type 1 by Lemma 3.1. Therefore, χ′′(Ka,b − E′) = ∆(Ka,b − E′) + 1 = b < b + 1 = χ′′(Ka,b) which implies
that esχ′′(Ka,b) ≤ a, that is, esχ′′(Ka,b) = a if a < b− 1.

3. If b = a+ 1 and a ≥ 2, then denote the partition sets of Ka,a+1 by V1 = {v1, . . . , va} and V2 = {u1, . . . , ua+1}. Consider
the edge coloring c of Ka,a+1 given by c(viuj) = 1 + (i+ j − 2) mod (a+ 1), i ∈ {1, . . . , a}, j ∈ {1, . . . , a+ 1}. Note that
vertex u1 is incident to edges of color 1, . . . , a and thus can be colored by color a+ 1.

If a is even then the edge viui+1 is colored by 2i for i ∈ {1, . . . , a/2} and by 2i − a − 1 for i ∈ {a/2 + 1, . . . , a}, that is,
the a edges E′ = {viui+1 : i ∈ {1, . . . , a}} are colored by pairwise different colors {1, . . . , a}.

Removing E′ and coloring the vertices vi and ui+1 by the edge color c(viui+1), i = 1, . . . , a, completes an (a + 1)-total
coloring of Ka,a+1 − E′, which implies that esχ′′(Ka,a+1) ≤ |E′| = a, that is, esχ′′(Ka,a+1) = a.

If a ≥ 3 is odd then we need to interchange two edge colors in c. Note that the edges incident with u2 are colored by
2, . . . , a+1, that is, color 1 is missing at u2, and that the edge v(a+1)/2u2 is colored by color (a+3)/2. At vertex u(a+5)/2,
color (a + 3)/2 is missing and the edge v(a+1)/2u(a+5)/2 is colored by color 1, that is, we can interchange the colors
of these two edges incident to vertex v(a+1)/2. After this recoloring, edge v(a+1)/2u2 is colored by 1, edges viui+2 are
colored by color 2i+ 1 for i ∈ {1, . . . , (a− 1)/2}, and edges viui+1 are colored by 2i− a− 1 for i ∈ {(a+ 3)/2, . . . , a}, that
is, these a edges are again colored by pairwise different colors {1, . . . , a}, and the proof can be analogously completed
as in the case of even a.

4. Consider now Ka,a. Since esχ′′(K1,1) = esχ′′(K2) = 1 and esχ′′(K2,2) = esχ′′(C4) = 1, the assumption holds for
a ∈ {1, 2}. Let in the following a ≥ 3.

Let E′ be a set of edges such that |E′| = esχ′′(Ka,a) and χ′′(Ka,a − E′) < χ′′(Ka,a) = a + 2. Denote by V1, V2 the
partition sets of Ka,a and let X1 ⊆ V1 and X2 ⊆ V2 be the sets of vertices incident to the edges of E′. Without loss of
generality, assume |X1| ≤ |X2|.

Consider a total coloring of Ka,a − E′ with a + 1 colors. Each color class contains at most a elements (say for each
v ∈ Vi either v or an edge incident to v) and possibly some additional vertices ofX3−i if the color class does not contain
vertices of Vi \Xi, i ∈ {1, 2}. Taking all color classes into account, there may be at most |X1| vertices added in such
a way, therefore the number of elements in all a + 1 color classes is at most (a + 1)a + |X1|. On the other hand,
Ka,a −E′ has 2a vertices and a2 − |E′| edges, so it must hold that (a+ 1)a+ |X1| ≥ 2a+ a2 − |E′| which is equivalent
to |X1|+ |E′| ≥ a. Since |X1| ≤ |E′|, we obtain the lower bound esχ′′(Ka,a) = |E′| ≥ a/2.

We will now prove that esχ′′(Ka,a) ≤ da/2e. Denote the vertices of Ka,a by V1 = {v1, . . . , va} and V2 = {u1, . . . , ua} and
set X1 = {v1, . . . , vl} and X2 = {u1, . . . , ul} where l = da/2e.

We consider the following edge coloring of Ka,a:

c(viuj) = 1 + (l + j − i) mod a, i, j ∈ {1, . . . , a}.

The edges {vl+juj : j = 1, . . . , l} if a is even or {vl+juj : j = 1, . . . , l − 1} if a is odd, respectively, are colored by color
1. We recolor these edges by color a + 1 and color the vertices of V1 \ X1 = {vl+1, . . . , va} by 1 and the vertices of
V2 \X2 = {ul+1, . . . , ua} by a+ 1.
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In the following we determine a set E′ of l independent and pairwise distinctly colored edges from the subgraph Kl,l

of Ka,a induced by X1 ∪X2.

If l ≥ 3 is odd, then the edges of E′ = {viu2i−1 : i = 1, . . . , l} (indices considered modulo l) are independent and colored
by the colors l + 1, . . . , l + (l + 1)/2 and (l + 3)/2, . . . , l which are pairwise different and different from 1, a+ 1.

If l ≥ 2 is even, then the edges of E′ = {viu2i : i = 1, . . . , l/2} ∪ {viu2i−l−1 : i = l/2 + 1, . . . , l} are independent and
colored by the colors l+2, . . . , l+ l/2+1 and l/2+1, . . . , l, respectively, which are pairwise different and different from
1, a+ 1 if a 6= 3.

After removing the l selected edges of E′, their respective end-vertices can be colored by the color of the removed
edge. If a is odd, then vertex ul will be recolored by color a+ 1. This completes a total coloring of Ka,a −E′ with only
a+ 1 colors. It follows that esχ′′(Ka,a) ≤ |E′| = da/2e.

Observe that the above proof is constructive. The described total coloring of Ka,a − E′ will be used in Proposition 4.6.
Let us note that it is also possible to prove the case esχ′′(Ka,a) = da/2e using a theorem of Hilton [6] on complete bipartite
graphs. This result states that if E′ ⊆ E(Ka,a) and j is the maximum number of independent edges in E′, then χ′′(Ka,a −
E′) = a+ 2 if and only if |E′|+ j ≤ a− 1.

A generalized θ-graph θl1,...,lm , l1 ≤ · · · ≤ lm, is a graph with two vertices connected by m internally disjoint paths of
length l1, . . . , lm. If m = 1, then θl1 is a path of length l1 and if m = 2, then θl1,l2 is a cycle of length l1 + l2 which have been
discussed in the above propositions, so in the following we may assume m ≥ 3. Note that the two vertices of maximum
degree m are adjacent if and only if l1 = 1.

Proposition 3.7. If G is a generalized θ-graph θl1,...,lm with m ≥ 3, then esχ′′(G) = 1 if l1 = 1 and either m ≥ 4 or m = 3,
3 | l2 + l3. In all other cases, esχ′′(G) = 2.

Proof. In [8] it was shown that all generalized θ-graphs with m ≥ 3 paths are of type 1, thus esχ′′(G) ≥ es∆(G) by
Lemma 2.1, where es∆(G) = 1 if l1 = 1 and es∆(G) = 2 if l1 > 1.

1. l1 = 1: Denote by e the edge connecting the two vertices of maximum degree. If m ≥ 4, then removing e gives a
generalized θ-graph with m − 1 ≥ 3 paths which is of type 1. If m = 3 and l2 + l3 is divisible by 3, then removing
e gives a cycle Cl2+l3 which is also of type 1. Therefore, χ′′(G − e) = ∆(G − e) + 1 = m < m + 1 = χ′′(G), that is,
esχ′′(G) = 1 in these two cases.

If m = 3 and l2 + l3 is not divisible by 3, then removing a single edge gives a cycle Cl2+l3 of type 2 or a graph of
maximum degree 3, that is, the total chromatic number does not decrease, and esχ′′(G) ≥ 2 follows. On the other
hand, removing e and a second arbitrary edge gives a path Pl2+l3 which is of type 1, thus esχ′′(G) = 2 holds in this
case.

2. l1 > 1: If m ≥ 4 then removing the first and the last edge of one of the m paths of G gives the union H of a path and
of a generalized θ-graph with m − 1 ≥ 3 paths which is of type 1. If m = 3 then removing two independent edges
incident with a vertex of maximum degree each gives a pathH which is of type 1. In either case, χ′′(H) = ∆(H)+1 =

m < m+ 1 = χ′′(G) which implies that esχ′′(G) ≤ 2 and therefore esχ′′(G) = 2.

4. Total chromatic subdivision number

The total chromatic subdivison number sdχ′′(G) of a graph G is the minimum number of edges of G whose subdivision
results in a graph H with χ′′(H) 6= χ′′(G). If such an edge set does not exist, then sdχ′′(G) = |E(G)| (see Introduction).

This invariant was first studied in [8]. In that paper sdχ′′(G) was determined for several classes of graphs but the
determination for type 2 graphs remained nearly completely open. For example, it was proved that sdχ′′(G) = |E(G)| if G
is acyclic. For cycles Cn it holds that sdχ′′(Cn) = 1 if n ≡ 0 (mod 3) or n ≡ 2 (mod 3), and sdχ′′(Cn) = 2 if n ≡ 1 (mod 3).
If G is a generalized θ-graph consisting of m ≥ 3 paths, then sdχ′′(G) = |E(G)|. For complete graphs Kn it holds that
sdχ′′(K1) = 0 and sdχ′′(Kn) = 1 if n = 2 or n ≥ 3 is odd. Note that Kn is of type 1 if n is odd.

We will apply the following proposition for studying sdχ′′(G) for type 2 graphs. The result says that if the Total Coloring
Conjecture holds for a graph G, then it also holds for the resulting graph after subdividing an arbitrary number of edges
of G. We give a direct proof of this known result.

Proposition 4.1. If χ′′(G) ≤ ∆(G) + 2 then χ′′(GE′) ≤ ∆(GE′) + 2 for any set E′ of edges of G.
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Proof. If ∆(G) ≤ 2 then G consists of components which are paths or cycles. Subdividing edges of G gives longer paths or
cycles. Since the Total Coloring Conjecture holds for paths and for cylces, it holds for G and for GE′ .

Therefore, we may assume in the following that ∆(G) ≥ 3, which implies that ∆(GE′) = ∆(G).
Let e = uv be an arbitrary edge of G and w be the subdivision vertex in Ge. Consider a (∆(G) + 2)-total coloring of G.

Color all elements ofGe exceptw, uw, vw as inG, then color uw and vw by different colors missing at u and atw, respectively,
which is possible since at most ∆(G) colors were used at u,w. Finally, color w by a color different from the colors of the 4

incident or adjacent elements which is possible since there are ∆(G)+2 ≥ 5 available colors. Therefore, χ′′(Ge) ≤ ∆(G)+2.
Applying this result on the graphs obtained by successively subdividing a single edge of E′, sayG,Ge1 , G{e1,e2}, . . . , GE′ ,

we obtain that χ′′(GE′) ≤ ∆(G) + 2 = ∆(GE′) + 2.

Proposition 4.2. If G is of type 2, then esχ′′(G) ≤ sdχ′′(G).

Proof. If χ′′(G) does not change by edge subdivisions, then esχ′′(G) ≤ |E(G)| = sdχ′′(G). This holds for ∆(G) = 1, therefore
we may assume in the following that ∆(G) ≥ 2 which implies that ∆(GE′) = ∆(G) for any set E′ of edges.

LetE′ ⊆ E(G) be a set of edges such that |E′| = sdχ′′(G) and χ′′(GE′) 6= χ′′(G). By Proposition 4.1, ∆(G)+1 ≤ χ′′(GE′) ≤
∆(G) + 2 = χ′′(G) which implies that χ′′(GE′) = ∆(G) + 1 < χ′′(G).

Since G − E′ is a subgraph of GE′ , it holds that χ′′(G − E′) ≤ χ′′(GE′) < χ′′(G) which implies that esχ′′(G) ≤ |E′| =

sdχ′′(G).

We now consider complete graphs of even order which are of type 2: χ′′(K2k) = ∆(K2k) + 2 = 2k + 1.

Proposition 4.3. For complete graphs of even order it holds that sdχ′′(K2k) = b(k + 1)/2c, k ∈ N.

Proof. 1. By definition, sdχ′′(K2) = 1. Consider as an example the complete graphK = K4, say with vertices v1, v2, v3, v4,
and the graph KE′ obtained by subdividing the edge of E′ = {v1v2} with subdivision vertex w1. Then coloring
v1w1, v2v4, v3 by color 1, v1, v2, v3v4 by color 2, v1v3, w1v2, v4 by color 3, and v1v4, v2v3, w1 by color 4 gives a total coloring
of KE′ with ∆(KE′) + 1 = 4 colors. It follows that sdχ′′(K4) = 1. This coloring will be generalized in the proof below.

2. The lower bound b(k + 1)/2c = esχ′′(K2k) ≤ sdχ′′(K2k) for k ∈ N follows directly from Propositions 3.4 and 4.2 since
K2k is of type 2.

3. We will now prove the upper bound sdχ′′(K2k) ≤ b(k + 1)/2c for k ≥ 2.

Let K = K2k and V (K) = {v1, . . . , v2k}. Consider the edge coloring c of K with 2k colors defined by c(vivj) = ((i+ j −
2) mod 2k) + 1, 1 ≤ i < j ≤ 2k. Since K is (2k − 1)-regular, a color is missing at each vertex, namely color 2i − 1 at
vertex vi and vk+i, 1 ≤ i ≤ k. These are the odd colors 1, 3, . . . , 2k − 1, each occurring twice.

Our aim is to select a set E′ of b(k + 1)/2c independent edges which are colored pairwise differently with even colors.
With the given edge coloring we can select the edges E′ = {v2t−1v2t : 1 ≤ t ≤ b(k + 1)/2c} which are obviously
independent. Their colors are C ′ = {c(v2t−1v2t) : 1 ≤ t ≤ b(k + 1)/2c} = {4t − 2 : 1 ≤ t ≤ b(k + 1)/2c} which are all
colors congruent to 2 modulo 4 from 2 to 2k − 2 if k is even or from 2 to 2k if k is odd, respectively. Note also that
each edge from E′ connects consecutive vertices, thus their respective missing colors are consecutive odd numbers or
2k − 1 and 1 for the last edge vkvk+1 if k is odd. In any case, the two missing colors are different.

We now consider the graphKE′ in which edge v2t−1v2t of E′ is subdivided by vertex wt, 1 ≤ t ≤ b(k + 1)/2c. We extend
the edge coloring c to a total coloring c′ of KE′ as follows: Color each non-subdivided edge as in c. Color v2t−1wt and
wtv2t with the missing color of v2t−1 and of v2t, respectively, which are different, for 1 ≤ t ≤ b(k + 1)/2c. Color the
vertices v2t−1 and v2t with the even color c(v2t−1v2t) = 4t− 2 and color wt with a possible of the 2k colors which exists
for k ≥ 2 since the neighbored elements of wt only use 3 colors, 1 ≤ t ≤ b(k + 1)/2c. Color the remaining vertices
vk+1+(k mod 2), . . . , v2k with the corresponding missing colors which are odd and pairwise different by construction.

Since c′ is a proper total coloring ofKE′ with 2k colors, χ′′(KE′) = ∆(KE′)+1 = 2k and sdχ′′(K2k) ≤ |E′| = b(k + 1)/2c
follow.

The following result was proved in [8].

Proposition 4.4 ( [8]). If G is a type 1 graph with no adjacent vertices of maximum degree, then sdχ′′(G) = |E(G)|, with
the possible exception that ∆(G) = 3 and G has vertices of degree 2 which are adjacent to two vertices of maximum degree.

Proposition 4.5. For a wheel Wn it holds that sdχ′′(W3) = 1 and sdχ′′(Wn) = 2n if n ≥ 4.
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Proof. If n = 3, then W3
∼= K4, thus sdχ′′(W3) = 1 by Proposition 4.3.

If n ≥ 4, then Wn is of type 1 (see proof of Proposition 3.5) with only one vertex of maximum degree. Therefore,
sdχ′′(Wn) = |E(Wn)| = 2n by Proposition 4.4.

Consider now complete bipartite graphs.

Proposition 4.6. For a complete bipartite graphKa,b, a ≤ b, it holds that sdχ′′(Ka,b) = |E(Ka,b)| = ab if a < b, sdχ′′(K2,2) =

2, and sdχ′′(Ka,a) = da/2e if a 6= 2.

Proof. If a < b, then Ka,b is of type 1 with no adjacent vertices of maximum degree. Thus Proposition 4.4 implies that
sdχ′′(Ka,b) = |E(Ka,b)| with the possible exception of K2,3. Since K2,3

∼= θ2,2,2, it also holds for this graph that sdχ′′(K2,3) =

|E(K2,3)| by Proposition 22 of [8] where the total chromatic subdivision number of generalized θ-graphs is determined.
Consider now Ka,a which is of type 2, thus, by Propositions 3.6 and 4.2, esχ′′(Ka,a) = da/2e ≤ sdχ′′(Ka,a). It holds

that sdχ′′(K1,1) = sdχ′′(K2) = 1 and sdχ′′(K2,2) = sdχ′′(C4) = 2 (see above). For a ≥ 3 we will use the notations and the
described (a + 1)-total coloring of Ka,a − E′ of the proof of Proposition 3.6, where |E′| = l = da/2e. This is a partial total
coloring of (Ka,a)E′ where only the subdivided edges and the subdivision vertices are still uncolored.

For each edge e = viuj ∈ E′ with subdivision vertex wi different colors are missing at the end-vertices (namely a + 1

at vi and 1 at uj except if j = l and a ≥ 5 is odd, in which case (3l + 2 − l mod 2)/2 is missing) which can be used to color
the edges viwi and wiuj , respectively. Note also that wi is neighbored to four elements, that is, if a ≥ 4 then there is an
available color among the a+ 1 ≥ 5 colors of the total coloring of Ka,a − E′ which can be used to color wi. If a = 3, then wi
can be colored by color 3. This completes the (a+ 1)-total coloring of (Ka,a)E′ .

Therefore, χ′′((Ka,a)E′) = a+ 1 and sdχ′′(Ka,a) ≤ |E′| = da/2e follows.

5. Concluding remarks

The parameters esρ(G) and sdρ(G) were studied in [7,8] especially for the invariants chromatic number χ(G) and chromatic
index χ′(G). It was shown that esχ(G) = sdχ(G) for all graphs except for bipartite graphsGwith cycles, for which esχ(G) =

|E(G)| and sdχ(G) = 1 hold. This difference is caused by the fact that the chromatic number of even cycles increases after
one edge subdivision. Moreover, esχ′(G) = sdχ′(G) for all graphs G with χ′(G) = ∆(G) + 1. This means that in these cases
it does not matter whether edge removals or edge subdivisions will be carried out.

The results from this paper and from [8] imply that there is no such close coincidence for the two parameters with
respect to the total chromatic number, at least for type 1 graphs. For example, esχ′′(G) = sdχ′′(G) for empty graphs, paths,
cycles C3k+2, complete graphs of even order, and complete bipartite graphs Ka,a with a 6= 2, but esχ′′(G) 6= sdχ′′(G) for
acyclic graphs with maximum degree at least 3, the type 1 cycles C3k and the type 2 cycles C3k+1 including K2,2

∼= C4,
wheels Wn with n ≥ 4, complete graphs Kn of odd order n ≥ 3, complete bipartite graphs Ka,b with a < b except K1,2

∼= P3,
and generalized θ-graphs consisting of at least 3 paths. Moreover, these examples show that the difference between esχ′′(G)

and sdχ′′(G) can be arbitrarily large for type 1 graphs G.
We proved that in general esχ′′(G) ≤ sdχ′′(G) for type 2 graphs G. Equality holds for the type 2 graphs K2k and Ka,a of

maximum degree at least 3 which were considered above. Does this hold in general?
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