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Abstract

If M is an n×n real symmetric matrix and b is a real vector of length n, then the pair (M,b) is said to be controllable if all
the eigenvalues of M are simple and M has no eigenvector orthogonal to b. Simultaneously, we say that M is controllable
for b. There is an extensive literature concerning controllability of specified matrices, and in the recent past the matrices
associated with graphs have received a great deal of attention. In this paper, we restate some known results and establish
new ones related to the controllability of similar, commuting or Gram matrices. Then we apply the obtained results to get
an analysis of controllability of some standard matrices associated with (particular) graphs.
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1. Introduction

The following differential equation is a standard model for the single-input linear control systems:

dx
dt

=Mx + bu. (1)

The scalar u = u(t) is called the control input, while M ∈ Rn × Rn and x,b ∈ Rn. The system (1) is said to be controllable
if, for a vector x∗ and time t∗, there always exists a function u(t), 0 < t < t∗, such that the solution of (1) gives x(t∗) = x∗
irrespective of x(0). Controllability plays a significant role in control problems such as stabilization of unstable systems
or optimal control. It also has applications in reachability theory or viability theory. For more details, we refer to [7].

In general, we do not assume any special structure or property of the matrix M or the vector b. However, the case
where M is a symmetric matrix has received a significant attention in the recent past (see [1,4,9,11] and references cited
therein). In this case, the system (1) is controllable if and only if the matrix

[b |Mb | · · · |Mn−1b] (2)

has full rank. It follows that the system is controllable ifM has no repeated eigenvalues and the corresponding eigenvectors
are non-orthogonal to b. For details, see any of the mentioned references.

We say that the pair (M,b) is controllable and also that M is controllable for b if the corresponding system is control-
lable. If M is some standard matrix associated with a graph, then we simplify language by saying that the graph under
consideration is controllable (for the corresponding matrix and the vector b).

In this study we restrict ourselves to symmetric matrices (although some results remain valid for some wider classes,
say for diagonalizable matrices). In particular, we consider the controllability of similar, commuting or Gram matrices. As
an application, we consider the controllability of some particular graphs.

2. Similar matrices

Throughout this and the next section, we assume that the matrices M and N are real and symmetric. In this section,
let M and N be n × n similar matrices, that is let M = P−1NP for some invertible matrix P . If x = (x1, x2, . . . , xn)

ᵀ is
an eigenvector associated with the eigenvalue λ of M , then Px is associated with the same eigenvalue of N . (Note that
Px 6= 0, since P is invertible.)
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For an n× 1 vector b = (b1, b2, . . . , bn)
ᵀ, (M,b) and (N,b) are controllable if and only if M has no repeated eigenvalues

and x · b 6= 0 and Px · b 6= 0, for all eigenvectors x of M .
In particular, if M = D−1ND, for a diagonal matrix D = diag(d1, d2, . . . , dn), then (M,b) and (N,b) are controllable if

and only if M has no repeated eigenvalues and
∑n
i=1 xibi 6= 0,

∑n
i=1 xidibi 6= 0, for all eigenvectors x of M .

Here is another case.

Proposition 2.1. If M = P−1NP , then (M,b) is controllable if and only if (N,Pb) is controllable.

Proof. If (M,b) is controllable, then [b |Mb | · · · |Mn−1b] has full rank, but then

[Pb |NPb | · · · |Nn−1Pb] = P [b |Mb | · · · |Mn−1b]

also has full rank (since P is invertible), and the result follows.

The last proposition is known from literature, see [7]. Here is a simple corollary.

Corollary 2.1. If M = D−1ND for a diagonal matrix D with ±1s on the main diagonal, then (M,b) is controllable if and
only if (N,Db) is controllable.

The previous corollary is significant in study of controllability in the category of signed graphs (i.e., graphs whose
edges are accompanied either by 1 or −1), since it gives a method to consider controllability within a switching equivalence
class. Namely, we say that signed graphs Ġ and Ḣ are switching equivalent if there is a vertex labelling such that their
adjacency matrices satisfyAḢ = D−1AĠD, for someD defined in the corollary. Consequently, controllability of one of them
determines controllability of the other.

We proceed with the controllability of M in general case.

Proposition 2.2. The pair (M,b) is controllable if and only if M has no repeated eigenvalues and b = Xs, where the
columns of X are linearly independent normalized eigenvectors of M and s has no zero coordinate.

Proof. The matrix M is diagonalizable and we have D = X−1MX, where D is the diagonal matrix with the eigenvalues
of M on the main diagonal and X is defined in the theorem.

Considering the controllability of D, since its eigenvectors are the vectors e1,e2, . . . ,en of the canonical basis, we con-
clude that (D, s) is controllable if and only if s is non-orthogonal to any ei, equivalently s is not spanned by any proper
subset of {e1,e2, . . . ,en}, equivalently s has no zero coordinate. Now, the result follows by Proposition 2.1.

In other words, if M has no repeated eigenvalues, then all controllable pairs (M,b) are easily determined by a full set
of linearly independent eigenvectors of M . Here is a consequence.

Corollary 2.2. With notation of Proposition 2.2, let xi = (x1i, x2i, . . . , xni)
ᵀ, 1 ≤ i ≤ n, be the columns of X, i.e., the

normalized eigenvectors of M . If M has no repeated eigenvalues and b = (
∑n
j=1 xj1,

∑n
j=1 xj2, . . . ,

∑n
j=1 xjn)

ᵀ, then (M,b)
is controllable.

Proof. The result follows by taking s to be the all-1 vector of Rn.

We remark that if M is the adjacency matrix of a graph G, then the matrix (2) is known as the walk matrix of G. The
walk matrix with b as described in the previous corollary is called a closed pseudo walk matrix. Due to Farrugia [6], the
rank of this matrix is equal to the number of distinct eigenvalues of G.

Using Proposition 2.2, we compute all vectors b which preserve the controllability of paths Pn and the Laplacian con-
trollability of threshold graphs Tn. We denote by AG and LG the adjacency matrix and the Laplacian matrix of a graph G,
respectively.

Proposition 2.3. For b = (b1, b2, . . . , bn)
ᵀ, (APn ,b) is controllable if and only if

bi =

n∑
j=1

sj
nj

sin
ijπ

n+ 1
,

where s = (s1, s2, . . . , sn)
ᵀ is an arbitrary vector with no zero coordinates and

ni =
1

2

√√√√2n+ 1−
sin (2n+1)iπ

n+1

sin iπ
n+1

.
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Proof. It is well known that the eigenvalues of Pn are 2 cos iπ
n+1 , for 1 ≤ i ≤ n. Thus, all of them are simple. It follows by

direct computation that a full system of linearly independent eiegnvectors of Pn is given by

xi =
(
sin

iπ

n+ 1
, sin

2iπ

n+ 1
, . . . , sin

niπ

n+ 1

)ᵀ
, for 1 ≤ i ≤ n.

This result can also be derived from [2, Theorem 3.7]. To obtain the normalized eigenvectors, we compute
n∑
k=1

sin2
kiπ

n+ 1
=

n∑
k=1

1− cos 2kiπ
n+1

2
=

1

2

(
n−

n∑
k=1

cos
2kiπ

n+ 1

)
=
1

2

(
n+

1

2
−

sin((n+ 1
2 )

2iπ
n+1 )

2 sin iπ
n+1

)
=

1

4

(
2n+ 1−

sin (2n+1)iπ
n+1

sin iπ
n+1

)
,

where the sum of cosines is computed by the Lagrange’s trigonometrical identity. Therefore, the norm of xi is equal to ni.
The result follows by Proposition 2.2, along with an observation that the eigenvectors of Pn can be arranged into the
matrix X (of the same proposition) in an arbitrary way (by using an appropriate rearrange of the coordinates of s).

Recall that a threshold graph is defined as a graph which does not contain any of 2K2, P4 or C4 (i.e., the union of two
edges, the path with 4 vertices and the cycle with 4 vertices) as an induced subgraph. Every threshold graph Tn can be
generated by so-called binary generating sequence (a1, a2, . . . , an) in the following way:

1. For i = 1, T1 = T (a1) = K1;

2. For i ≥ 2, with Ti−1 = T (a1, a2, . . . , ai−1), Ti is formed by adding an isolated vertex to Ti−1 if ai = 0 or by adding a
vertex adjacent to all the vertices of Ti−1 if ai = 1.

Without loss of generality, we may assume that a1 = 0. Here is the result.

Proposition 2.4. For b = (b1, b2, . . . , bn)
ᵀ, (LTn

,b) is controllable if and only if Tn is generated by either (0, 1, 0, 1, . . . , 0, 1)

or (0, 0, 1, 0, 1, . . . , 0, 1) and

bi =

√
i− 1

i
si−1 −

n−1∑
j=i

1√
j(j + 1)

sj +
1√
n
sn,

where s0 is an arbitrary real number and si 6= 0, for 1 ≤ i ≤ n.

Proof. First, Tn has no repeated eigenvalues if and only if it is generated by one of the given sequences, as follows by the
result of Merris [8, Theorem 2.1]. This fact is explicitly proved in [1,10]. Next, the eigenvectors of such a Tn are given by

xi = (−1,−1, . . . ,−1︸ ︷︷ ︸
i

, i, 0, 0, . . . , 0)ᵀ, for 1 ≤ i ≤ n− 1,

and xn = j, the all-1 vector. This also follows by the same result of [8], since Tn is constructed by a consecutive application of
the join operation – see the two mentioned references, as well. By normalizing the eigenvectors and using Proposition 2.2,
we get the desired result.

3. Commuting matrices

We state the following.

Proposition 3.1. If an n× n matrix M has no repeated eigenvalues and

p(M) = a0I + a1M + · · ·+ an−1M
n−1, (3)

then (p(M),b) is controllable if and only if (M,b) is controllable and the Vandermonde matrix
1 p(λ1) p(λ1)

2 · · · p(λ1)
n−1

1 p(λ2) p(λ2)
2 · · · p(λ2)

n−1

...
...

... . . . ...
1 p(λn) p(λn)

2 · · · p(λn)
n−1

 ,
where λ1, λ2, . . . , λn are the eigenvalues of M , is invertible.
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Proof. Since M has no repeated eigenvalues, by the Frobenius theorem, a matrix N commutes with M if and only if
N ∈ Span{I,M, . . . ,Mn−1}. In other words,Mp(M) = p(M)M , which means thatM and p(M) share the same eigenvectors.
Therefore, the controllability of (p(M),b) implies the controllability of (M,b). To conclude the proof we need to show
that p(M) has no repeated eigenvalues if and only if the corresponding Vandermonde matrix is invertible. Since all the
possible matrices on the right-hand side of (3) commute, they can be simultaneously diagonalized, which means that the
eigenvalues of p(M) are p(λ1), p(λ2), . . . , p(λn). The statement follows since the determinant of the Vandermonde matrix
is given by

∏
i<j(p(λi)− p(λj)).

The dimension of the vector space of matrices which commute with an n × n matrix M without repeated eigenvalues
is n, since the minimal polynomial of M is precisely its characteristic polynomial. Thus, if q is a real polynomial of an
arbitrary degree, we have that q(M), which obviously commutes with M , belongs to Span{I,M, . . . ,Mn−1}.

Haemers and Omidi [5] defined a universal adjacency matrix U of a graph as a linear combination of the adjacency
matrix, the diagonal matrix of vertex degrees, the identity matrix and the all-1 matrix, along with a non-zero coefficient
for the adjacency matrix. Some standard graph matrices (as the adjacency matrix, the Laplacian matrix or the signless
Laplacian matrix) are obtained by taking particular coefficients in definition of U .

Proposition 3.2. Assume that a universal matrix U of a graph has no repeated eigenvalues.

(i) If N commutes with U , then (U +N,b) is controllable if and only if (U,b) is controllable and U +N has no repeated
eigenvalues.

(ii) If N commutes with U , then (UN,b) is controllable if and only if (U,b) is controllable and UN has no repeated
eigenvalues.

(iii) For the all-1 matrix J , J ∈ Span{I, U, . . . , Un−1} if and only if U has constant row sums. In addition, (U + J,b) is
controllable if and only if (U,b) is controllable and U has no eigenvalue equal to its row sum plus n.

Proof. (i) follows by Proposition 3.1 (since the assumption that U +N has no repeated eigenvalues is equivalent to that on
invertibility of the corresponding Vandermonde matrix). (ii) follows in the same way since UN commutes with U , and thus
belongs to the span of I, U, . . . , Un−1. Both implications of (iii) are based on the fact that J commutes with U if and only if
U has constant row sums, and the latter statement follows since the eigenvalues of U + J are λ1 + n, λ2, . . . , λn, where λ1
is the eigenvalue of U equal to the row sum (and associated with the all-1 eigenvector).

One may observe that the previous proposition holds for some other graph matrices, say for the distance matrix.
By (iii), if A (= AG) is the adjacency matrix of a graph, then J ∈ Span{I, A, . . . , An−1} if and only if the corresponding

graph is regular. The possibility eliminated by the last assumption (that U has no eigenvalue equal to its row sum plus n)
may occur in the case of the Laplacian matrix of a join of two regular graphs, cf. [8].

If A commutes with the adjacency matrix A of the complementary graph, then A(J − I − A) = (J − I − A)A, which
means that AJ = JA, and so, by (iii), the corresponding graph is regular. Taking into account that the eigenvalues of A
are n− λ1 − 1,−λ2 − 1, . . . ,−λn − 1 (λ1 being the vertex degree), we arrive at the following corollary.

Corollary 3.1. The adjacency matrix A commutes with A if and only if the corresponding graph is regular. In this case,
if A has no repeated eigenvalues, then (A,b) is controllable if and only if (A,b) is controllable and λ1−n is not an eigenvalue
of A.

The assumption that λ1 − n is not an eigenvalue of A may be replaced by ‘G is not the join of two regular graphs’.

4. Gram matrices

Let S = (s1 | s2 | · · · | sm) be a matrix whose columns are vectors of Rm. Then SᵀS is the Gram matrix of the inner products
si · sj , for 1 ≤ i, j ≤ m. If x is an eigenvector associated with a non-zero eigenvalue λ of SᵀS, then from SᵀSx = λx, we get
SSᵀSx = λSx, which means that Sx is associated with the same eigenvalue of SSᵀ.

Consequently, a necessary condition for simultaneous controllability of (SᵀS,b) and (SSᵀ,b) is x ·b 6= 0 and Sx ·b 6= 0,
for all eigenvectors which are associated with non-zero eigenvalues of SᵀS. In what follows, we consider a particular
situation where S is the vertex-edge incidence matrix of a graph G and b = j. In this case, SᵀS is the adjacency matrix of
the line graph L(G), while SSᵀ is the signless Laplacian matrix QG of G.

For G connected, we know from [3] that if (L(G), j) is controllable, then G is a tree or a non-bipartite unicyclic graph.
Here we provide the following result.
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Proposition 4.1. With the introduced notation:

(i) If G is a tree, then (QG, j) is controllable if and only if (L(G), j) is controllable and its colour classes of G differ in size;

(ii) If G is a non-bipartite unicyclic graph, then (QG, j) is controllable if and only if (L(G), j) is controllable.

Proof. Since every column of S contains exactly two 1s, we have Sx · j = 2x · j, for any vector x. In particular, if x is
associated with a non-zero eigenvalue of L(G), then we have x · j 6= 0 if and only if Sx · j 6= 0. This immediately gives (ii),
since in this case zero is not an eigenvalue of QG (as the signless Laplacian matrix of a connected graph is singular if and
only if the graph is bipartite) and QG shares the spectrum with L(G).

For (i), the non-zero eigenvalues of QG form the spectrum of L(G), and so it remains to consider the eigenvector, say y,
associated with (simple eigenvalue) zero in QG. Since QGy = SSᵀy = 0, we have yᵀSSᵀy = 0, which yields ||Sᵀy|| = 0, i.e.,
Sᵀy = 0. It follows that for every edge ij of G the corresponding coordinates of y satisfy yi = −yj . Therefore, y is constant
on each colour class and differs in sign on different colour classes. Thus, y · j 6= 0 if and only if the colour classes differ in
size, and the proof is complete.

In [3] all the controllable pairs (AG, j), where the least eigenvalue of AG is not less than −2, are determined, unless G
is the line graph of a tree or the line graph of an odd unicyclic graph. By the previous proposition, the controllability in
the unsolved cases can be considered by means of the signless Laplacian matrix of G.
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[11] M.-G. Yoon, D. Cvetković, P. Rowlinson, Z. Stanić, Controllability of multy-agent dynamical systems with a broadcasting control signal, Asian J.

Control 16 (2014) 1066–1072.

13


	Introduction
	Similar matrices
	Commuting matrices
	Gram matrices

