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Abstract

A linear system is a pair (P,L) where L is a family of subsets of a ground finite set P such that |l ∩ l′| ≤ 1, for every pair of
different sets l, l′ ∈ L. If every member of L has r elements, then the linear system (P,L) is called r-uniform linear system.
The transversal number τ(P,L) of a linear system (P,L) is the minimum cardinality of a subset P̂ ⊆ P satisfying l∩ P̂ 6= ∅,
for every l ∈ L. The 2-packing number ν2(P,L) of a linear system (P,L) is the maximum cardinality of a subset R ⊆ L
such that every triplet of different elements of R do not have a common point. Henning and Yeo [Discrete Math. 313 (2013)
959–966] state the following question: is it true that if (P,L) is an r-uniform linear system then τ(P,L) ≤ (|P |+ |L|)/(r+1)
holds for every r ≥ 2? In this note, we prove that the mentioned inequality holds for several classes of r-uniform linear
systems having a fixed 2-packing number.
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1. Introduction

A linear system is a pair (P,L) where L is a family of subsets of a ground finite set P such that |l ∩ l′| ≤ 1, for every pair
of different sets l, l′ ∈ L. The linear system (P,L) is intersecting if |l ∩ l′| = 1 for every pair of different sets l, l′ ∈ L. The
elements of P and L are called points and lines, respectively. An r-line is a line containing exactly r points. An r-uniform
linear system (P,L) is a linear system such that all lines of L are r-lines. In this context, a simple graph is a 2-uniform
linear system. Throughout this paper, we will consider linear systems of rank r ≥ 2.

Let (P,L) be a linear system and consider a point p ∈ P . The set of lines incident to p is denoted by Lp. The degree of p
is defined as deg(p) = |Lp| and the maximum degree over all points of the linear system (P,L) is denoted by ∆ = ∆(P,L).
Two points p, q ∈ P are adjacent if there is a line l ∈ L such that {p, q} ⊆ l.

A linear subsystem (P ′,L′) of a linear system (P,L) is a linear system such that for every line l′ ∈ L′ there exists a
line l ∈ L satisfying l′ = l ∩ P ′. The linear subsystem induced by a set of lines L′ ⊆ L is the linear system (P ′,L′), where
P ′ =

⋃
l∈L′ l. The linear subsystem (P ′,L′) of (P,L) is called spanning linear subsystem if P ′ = P . Given a linear system

(P,L) and a point p ∈ P , the linear system obtained from (P,L) by deleting point p is the linear subsystem (P ′,L′) induced
by L′ = {l \ {p} : l ∈ L}. On the other hand, given a linear system (P,L) and a line l ∈ L, the linear system obtained from
(P,L) by deleting the line l is the linear subsystem (P ′,L′) induced by L′ = L \ {l}. Finally, let (P ′,L′) and (P,L) be two
linear systems. The linear systems (P ′,L′) and (P,L) are isomorphic, (P ′,L′) ' (P,L), if after of deleting points of degree
1 or 0 from both, the linear systems (P ′,L′) and (P,L) are isomorphic as hypergraphs, see [5].

Let (P,L) be a linear system. A subset of points T of P is a transversal of (P,L) (also called vertex cover or hitting set)
if T ∩ l 6= ∅, for every line l ∈ L. The minimum cardinality of a transversal of a linear system (P,L), τ = τ(P,L), is called
transversal number of (P,L). On the other hand, a subset of lines R of L is called a 2-packing of (P,L) if every triplet of
different elements of R do not have a common point. The maximum cardinality of a 2-packing of (P,L), ν2 = ν2(P,L), is
called 2-packing number of (P,L). This new parameter has been studied in some papers, see for example [3–5,18–20].

Araujo-Pardo et al. in [5] proved a relationship between the transversal and the 2-packing numbers

dν2/2e ≤ τ ≤
ν2(ν2 − 1)

2
. (1)

Hence, the transversal number of any linear system is upper bounded by a quadratic function of their 2-packing number.
For some linear systems the transversal number is bounded above by a linear function of their 2-packing number, see [3–5].
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Eustis and Verstraëte in [13] proved, using probabilistic methods, the existence of k-uniform linear systems (P,L) for
infinitely many k’s and n = |P | large enough, which transversal number is τ = n−o(n). This k-uniform linear systems has
2-packing number upper bounded by 2n

k .
There are works which the transversal number of an r-uniform linear system is bounded above by a function of their

number points and lines, see for example [12,14]. Henning and Yeo in [14] stated the following question: is it true that if
(P,L) is an r-uniform linear system then

τ ≤ |P |+ |L|
r + 1

, (2)

for every r ≥ 2? Chvátal and McDiarmid in [10] proved (2) when r ∈ {2, 3}. Dorfling and Henning in [12] proved (2) when
∆ ≤ 2 and there are only two families of r-uniform linear systems that achieve equality in the bound. Also, Dorfling and
Henning in [12] gave a better upper bound for the transversal number in terms of the number of points and the number
of lines, namely, they proved that if (P,L) is an r-uniform linear system with ∆ ≤ 2 and if r ≥ 3 is an odd integer, then
r(r2 − 3)τ ≤ (r − 2)(r + 1)n+ (r − 1)2m+ r − 1; similar bounds were also proved when r ≥ 2 is an even integer.

This note is organized as follows. In Section 2, we present an infinite family of r-uniform linear systems (P,L) for which
equality in (2) holds, where r ≥ 3 is an odd integer. This family of linear systems was defined in [3]. In Section 3, we prove
that if (P,L) is an intersecting r-uniform linear system with τ = r, then (2) holds. In Section 4, we prove if (P,L) is an
r-uniform linear system with ν2 ∈ {2, 3, 4}, then (2) holds. Finally, in Section 5, we prove that if (P,L) is an r-uniform
linear system with ∆ = 2, then (2) holds, and equality in (2) holds if and only if (P,L) is an (ν2 − 1)-uniform linear system
with ν2 ≥ 2 an even integer. This result was obtained first by Dorfling and Henning in [12].

2. Examples of linear systems (P,L) with τ =
|P | + |L|
r + 1

Let (Γ,+) be an additive Abelian group, with neutral element e, satisfying
∑
g∈Γ g = e and 2g 6= e, for all g ∈ Γ \ {e}. An

example of this groups is (Zn,+), with n ≥ 3 an odd integer.
Let n = 2k + 1, with k a positive integer; and let (Γ,+) be an additive Abelian group of order n as above. Alfaro et al.

in [3] defined the following linear system Cn,n+1 = (Pn,Ln), where

Pn = (Γ× Γ \ {e}) ∪ {p, q} and Ln = L ∪ Lp ∪ Lq,

with
L = {Lg : g ∈ Γ \ {e}}, and Lg = {(h, g) : h ∈ Γ},

for g ∈ Γ \ {e}, and
Lp = {lpg : g ∈ Γ}, with lpg = {(g, h) : h ∈ Γ \ {e}} ∪ {p},

for g ∈ Γ, and Lq = {lqg : g ∈ Γ}, and

lqg = {(h, fg(h)) : h ∈ Γ, fg(h) = h+ g with fg(h) 6= e} ∪ {q},

for g ∈ Γ.
The set of lines L is a set of pairwise disjoint lines with |L| = n− 1 and each line of L has n points. The set of lines Lp

and Lq are lines incidents to p and q, respectively, with |Lp| = |Lp| = n, and each line of Lp ∪ Lq has n points. This linear
system is an n-uniform linear system with n(n− 1) + 2 points and 3n− 1 lines. Moreover, this linear system has 2 points
of degree n (points p and q) and n(n− 1) points of degree 3.

Alfaro et al. in [3] proved the following:

Theorem 2.1. [3] The linear system Cn,n+1 satisfies τ(Cn,n+1) = ν2(Cn,n+1) = n+ 1.

A consequence of Theorem 2.1 is the following corollary.

Corollary 2.1. Let (P,L) be an r-uniform linear system such that (P,L) ' Cn,n+1, where r ≥ n, then τ ≤ |P |+ |L|
r + 1

. Moreover,
the equality holds if and only if (P,L) = Cn,n+1.

Proof. Let (P,L) be an r-uniform linear system such that (P,L) ' Cn,n+1. Then |P | = n(n− 1) + 2 + k|L|, where n+ k = r

with k ≥ 0, and |L| = 3n− 1. Hence

|P |+ |L|
r + 1

=
n(n− 1) + 2 + (3n− 1)(k + 1)

n+ k + 1
=

(n− 1)(n+ k + 1) + 2(n(k + 1) + 1)

n+ k + 1
= (n+ 1) +

2k(n− 1)

n+ k + 1
≥ n+ 1.
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C. Alfaro and A. Vázquez-Ávila / Discrete Math. Lett. 3 (2020) 61–66 63

Hence, by Theorem 2.1
τ ≤ |P |+ |L|

n+ 1
.

The equality holds if and only if k = 0, that is, if and only if (P,L) = Cn,n+1.

Theorem 2.2. If r ≥ 2 is an positive integer and (P,L) is an r-uniform linear system with ∆ ≥ ν2 − 1, |L| ≥ ν2 + ∆− 2 and
∆ ≥ 3, then

ν2 − 1 ≤ |P |+ |L|
r + 1

.

Proof. Since |P | ≥ ∆(r − 1) + 1, we have

|P |+ |L|
r + 1

≥ ∆(r − 1) + 1 + ν2 + ∆− 2

r + 1
=
r∆ + ν2 − 1

r + 1
≥ (ν2 − 1)(r + 1)

r + 1
= ν2 − 1.

Corollary 2.2. If r ≥ 2 is an positive integer and (P,L) is an r-uniform linear system with ∆ ≥ ν2, |L| ≥ ν2 + ∆ − 1 and
∆ ≥ 3, then

ν2 ≤
|P |+ |L|
r + 1

.

Proof. The proof of this corollary is analogous to the proof of Theorem 2.2.

3. Intersecting r-uniform linear systems

Through this paper, all linear systems (P,L) satisfy |L| > ν2, due to the fact that |L| = ν2 if and only if ∆ ≤ 2.
The proofs of Lemma 3.1 and Lemma 3.2 are analogous to the proofs of Lemma 2.4 and Lemma 2.5 of [11], respectively.

Lemma 3.1. [11] Let (P,L) be an intersecting r-uniform linear system, with r ≥ 3. If τ = r, then every line of (P,L) has at
most one point of degree two and ∆ = r.

Lemma 3.2. [11] Let (P,L) be an intersecting r-uniform linear system, with r ≥ 3. If τ = r, then 3(r− 1)| ≤ |L| ≤ r2− r+ 1

and |P | = r2 − r + 1.

The proof of Lemma 3.3 is analogous to the proof of Lemma 4.1 of [18].

Lemma 3.3. [18] Let (P,L) be an intersecting r-uniform linear system, with r ≥ 3 be an odd integer. If τ = r, then ν2 = r+1.

Corollary 3.1. Let r ≥ 3 be an odd integer. If (P,L) is an intersecting r-uniform linear system with τ = r, then

τ ≤ |P |+ |L|
r + 1

.

Proof. By Lemma 3.1 and Lemma 3.3 then ∆ = ν2 − 1. On the other hand, by Theorem 2.2 and ν2 = r + 1 which implies
τ ≤ |P |+ |L|

r + 1
.

Let us consider the case when r is an even integer. If (P,L) is an intersecting r-uniform linear system, then ν2 ≤ r+ 1.
However, if r is an even integer, then by the next lemma, it holds that ν2 ≤ r.

Lemma 3.4. [19] Let (P,L) be an r-uniform intersecting linear system where r ≥ 2 is an even integer. If ν2 = r + 1, then
τ = r+2

2 .

Corollary 3.2. Let (P,L) be an r-uniform intersecting linear system with r ≥ 2 be an even integer. If ν2 = r + 1, then
τ ≤ |P |+ |L|

r + 1
.

Proof. It is not difficult to prove ∆ = 2, see [19]. Hence, by Corollary 5.4 (see in Section 5), τ ≤ |P |+ |L|
r + 1

.

Therefore, if τ > r+2
2 , then ν2 ≤ r and r ≥ 4 being an even integer. The proof of Lemma 3.5 is analogous to the proof of

Lemma 6 of [19].

Lemma 3.5. [19] Let (P,L) be an intersecting r-uniform linear system, with r ≥ 4 be an even integer. If τ = r, then ν2 = r.

Corollary 3.3. Let r ≥ 4 be an even integer. If (P,L) is an intersecting r-uniform linear system with τ = r, then τ ≤ |P |+ |L|
r + 1

.
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Proof. By Lemma 3.1 and Lemma 3.5, ∆ = ν2 = r. Hence, by Corollary 2.2, it holds that τ ≤ |P |+ |L|
r + 1

.

By Corollary 3.1 and Corollary 3.3, we have

Theorem 3.1. Let r ≥ 3 be an integer. If (P,L) is an intersecting r-uniform linear system with τ = r, then τ ≤ |P |+ |L|
r + 1

.

A finite projective plane, or merely projective plane, is an intersecting linear system satisfying the following conditions:

• any pair of points have a common line,

• any pair of lines have a common point, and

• there exist four points in general position (there are not three collinear points).

It is well known that if (P,L) is a projective plane then there exists a number q ∈ N, called order of projective plane, such
that every point (line, respectively) of (P,L) is incident to exactly q+1 lines (points, respectively), and (P,L) contains exactly
q2 + q + 1 points (lines, respectively). Also, it is well known that projective planes of order q, denoted by Πq, exist when q

is a power prime. For more information about the existence and the unicity of projective planes see, for instance, [7,8].
In relation to the transversal number of projective planes, it is well known that every line in Πq is a minimum transver-

sal, then τ(Πq) = q + 1. On the other hand, related to the 2-packing number of a projective planes, since projective planes
are dual systems, this parameter coincides with the cardinality of an oval, which is the maximum number of points in
general position (no three of them collinear), and it is equal to q + 1 when q is odd integer, and it is equal to q + 2 when q

is even integer (see for example [8]).
Consequently, for the projective planes Πq of odd order q we have τ(Πq) = ν2(Πq) = q + 1, and for the projective planes

Πq of even order q we have τ(Πq) = ν2(Πq)− 1 = q + 1, see [5].

Corollary 3.4. Let q be a prime power, and let (P,L) be an (q + 1)-uniform linear system such that (P,L) ' Πq, then

τ ≤ |P |+ |L|
q + 2

.

Proof. The proof is a simple consequence of Theorem 2.2 and Corollary 2.2, since ∆ = q + 1 and ν2 = q + 2 if q is an even
integer, and ν2 = q + 1 if q is an odd integer.

4. The r-uniform linear systems with ν2 ∈ {2, 3, 4}

Let (P,L) be an r-uniform linear system with ν2 ∈ {2, 3}. It is not difficult to prove (see [5]) that ν2 = 2 if and only if τ = 1.
Also, if ν2 = 3, then τ = 2, see [5].

Lemma 4.1. [5] Any linear system (P,L) with ν2 = 4 and ∆ ≥ 5 satisfies τ ≤ ν2 − 1.

Corollary 4.1. Any linear system (P,L) with ν2 = 4 and ∆ ≥ 5 satisfies τ ≤ |P |+ |L|
r + 1

.

Proof. The required result follows from Theorem 2.2.

Lemma 4.2. [5] Let (P,L) be a linear system with ν2 = 4 and ∆ = 3. If (P,L) ' C3,4, then τ = ν2, otherwise τ ≤ ν2 − 1.

Corollary 4.2. Let r ≥ 2 be an integer and let (P,L) be an r-uniform linear system. If ν2 = 4 and ∆ = 3, then

τ ≤ |P |+ |L|
r + 1

.

The equality holds if and only if (P,L) = C3,4.

Proof. Let (P,L) be an r-uniform linear system with ν2 = 4 and ∆ = 3 such that (P,L) 6' C3,4. By Theorem 2.2 and Lemma
4.2, we have

τ ≤ |P |+ |L|
r + 1

.

On the other hand, if (P,L) ' C3,4, then |P | = 8 + 8k and |L| = 8, where k + 3 = r and k ≥ 0. Hence

|P |+ |L|
r + 1

=
8(k + 2)

k + 4
≥ 16

4
= 4 = τ.

Therefore, τ ≤ |P |+ |L|
r + 1

, where the equality holds if and only if k = 0, that is, if and only if (P,L) = C3,4.
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Lemma 4.3. [5] If (P,L) is a linear system with ν2 = 4 and ∆ = 4, then τ ≤ ν2.

Corollary 4.3. Let r ≥ 2 be an integer and (P,L) be an r-uniform linear system. If ν2 = 4 and ∆ = 4, then τ ≤ |P |+ |L|
r + 1

.

Proof. The required result follows from Corollary 2.2 and Lemma 4.3.

Therefore, the main result of this section states as:

Theorem 4.1. Let r ≥ 2 be an integer and (P,L) be an r-uniform linear system with |L| > ν2. If ν2 = 4, then τ ≤ |P |+ |L|
r + 1

.

Proof. The required result follows from Corollary 4.1, Corollary 4.2 and Corollary 4.3.

5. The r-uniform linear systems with ∆ = 2

In this section, we present some results regarding r-uniform linear systems (P,L) with ∆ = 2 satisfying τ ≤ |P |+ |L|
r + 1

.

Proposition 5.1. If (P,L) is a linear system with ∆ = 2, then τ ≤ ν2 − 1.

Proof. Let A be a maximum subset of P such that every p ∈ A satisfies deg(p) = 2, and {p, q} 6⊆ l, for every p, q ∈ A.
Since ∆ = 2, then A 6= ∅. Let LA =

⋃
p∈A Lp and L′ = L \ LA. Hence, if L′ 6= ∅, then the set of lines of L′ is pairwise

disjoint. Therefore, the following set T = A ∪ B, where B = {pl : l ∈ L′ and pl ∈ l}, is a transversal of (P,L). Hence,
τ ≤ |T | = |A|+ |B| ≤ |L| − 1 = ν2 − 1.

Corollary 5.1. Let (P,L) be a linear system with ∆ = 2 and let L′ as above. If |L′| ≤ 1, then τ = dν2/2e. Moreover, if
|L′| = ν2 − 2, then τ = ν2 − 1.

Corollary 5.2. If (P,L) is an r-uniform linear system with ∆ = 2 and ν2 ≥ 4, then dν2/2e ≤
⌊
|P |+ |L|
r + 1

⌋
≤ ν2 − 1.

Proof. Let A as in the proof of Proposition 5.1. If |A| = k, where 1 ≤ k ≤ ν2(ν2 − 1)/2, then rν2 − k ≤ |P | ≤ rν2 − 1. Hence⌊
|P |+ |L|
r + 1

⌋
≤
⌊
ν2 −

1

r + 1

⌋
= ν2 − 1.

On the other hand, since |P | ≥ rν2 − k then⌊
|P |+ |L|
r + 1

⌋
≥
⌊
ν2 −

k

r + 1

⌋
≥
⌊
ν2 −

ν2(ν2 − 1)/2

r + 1

⌋
≥ dν2/2e,

and the statement holds.

In [12], the following result was proved.

Theorem 5.1. [12] If (P,L) is a linear system with ∆ = 2, then τ ≤ |P |+ |L|
r + 1

.

As a simple consequence, since τ ∈ N, we have τ ≤
⌊
|P |+|L|
r+1

⌋
.

Theorem 5.2. If (P,L) is an r-uniform linear system with ν2 − 1 ≤ r, then

dν2/2e ≤
|P |+ |L|
r + 1

.

Proof. Since |P | ≥ rν2 − ν2(ν2−1)
2 and |L| ≥ ∆ + ν2 − 2, then

|P |+ |L|
r + 1

≥
rν2 − ν2(ν2−1)

2 + ν2 + ∆− 2

r + 1
= ν2

[
1− ν2 − 1

2(r + 1)

]
+

∆− 2

r + 1
.

Since ν2 − 1 ≤ r then
|P |+ |L|
r + 1

≥ ν2

[
1− ν2 − 1

2ν2

]
+

∆− 2

r + 1
=
ν2 + 1

2
+

∆− 2

r + 1
≥ dν2/2e.

Hence, the theorem holds.

Corollary 5.3. Let (P,L) be an r-uniform linear system with ν2 − 1 ≤ r and τ = dν2/2e, then τ ≤ |P |+ |L|
r + 1

.

Corollary 5.4. Let (P,L) be an r-uniform intersecting linear system with ∆ = 2, then τ ≤ |P |+ |L|
r + 1

.

Corollary 5.5. Let (P,L) be an r-uniform intersecting linear system with ∆ = 2 and r ≥ 2 an even integer. Then

τ =
|P |+ |L|
r + 1

if and only if r = ν2 − 1.

65
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