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Abstract

For an edge coloring c of a connected graph G of order 3 or more with positive integers, the chromatic mean of a vertex v
of G is the sum of the colors of the edges incident with v divided by the degree of v. If the chromatic mean of every vertex
of G is a positive integer, then c is a mean coloring of G. If adjacent vertices have distinct chromatic means, then c is a
proper mean coloring of G. The maximum vertex color in a proper mean coloring c of G is the proper mean index of c and
the proper mean index of G is the minimum proper mean index among all proper mean colorings of G. It is conjectured that
the proper mean index of every tree of order 3 or more is either 3 or 4. In this note, we verify this conjecture for all trees
having exactly one vertex of degree 3 or more, that is, trees that are obtained by subdividing the edges of a star of order 4
or more and characterize those subdivided stars having proper mean index 3 (equivalently 4).
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1. Introduction

For every connected graph G of order 3 or more, there are edge colorings c with positive integers that induce an integer
vertex coloring cm defined for each vertex v of G by

cm(v) =

∑
e∈Ev

c(e)

deg v
, where Ev is the set of edges incident with v.

Edge colorings with this property are called mean colorings. The induced vertex color cm(v) of a vertex v of G is called
the chromatic mean of v. Consequently, only edge colorings c are considered for which cm(v) is a positive integer for every
vertex v of G. If distinct vertices have distinct chromatic means, then the edge coloring c is called a rainbow mean coloring
of G. This concept was introduced and studied in [1], where it was shown that every connected graph of order 3 or more
has a rainbow mean coloring. The maximum vertex color in a rainbow mean coloring c is the rainbow mean index rm(c)

of c and the minimum rainbow mean index among all rainbow mean colorings of G is the rainbow mean index rm(G) of G.
A mean coloring of a connected graph G of order 3 or more is a proper mean coloring of G if every two adjacent vertices
of G have distinct chromatic means. The maximum vertex color in a proper mean coloring c is the proper mean index µ(c)
of c and the minimum proper mean index among all proper mean colorings of G is the proper mean index µ(G) of G. This
concept was introduced and studied in [2].

Since every connected graph of order 3 or more has a rainbow mean coloring, each such graph has a proper mean
coloring as well. Furthermore, the proper mean index of a graph G is at least its chromatic number χ(G). Therefore,
χ(G) ≤ µ(G) ≤ rm(G) for every connected graph G of order at least 3. The proper mean index was determined for all
graphs belonging to some well-known classes of graphs in [2], including complete graphs, cycles, stars, double stars, and
paths. For all connected graphs that have been studied, the proper mean index of a graph has not exceeded its chromatic
number by more than 2. This led to the following conjecture stated in [2].

Conjecture 1.1. For every connected graph G of order 3 or more,

χ(G) ≤ µ(G) ≤ χ(G) + 2.

In the case of trees, Conjecture 1.1 is stated as follows.

Conjecture 1.2. For every tree T of order 3 or more, µ(T ) = 3 or µ(T ) = 4.
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In [2], Conjecture 1.2 was verified for several classes of trees. In particular, those paths or stars having proper mean
index 3 (equivalently 4) were characterized.

Theorem 1.1. For each integer n ≥ 3, µ(Pn) =

{
3 if n is odd
4 if n is even.

Theorem 1.2. For each integer k ≥ 2, µ(K1,k) =

{
3 if k is even
4 if k is odd.

In this note, we first show that Conjecture 1.2 holds for all trees having exactly one vertex of degree 3 or more, that
is, trees that are obtained by subdividing the edges of a star of order 4 or more and then present a characterization of
those subdivided stars having proper mean index 3 (equivalently 4). We refer to the book [3] for graph theory notation and
terminology not described in this paper.

2. Subdivided stars

A subdivided star is a tree obtained from a star by subdividing the edges of the star in any manner. First, we show that
Conjecture 1.2 is true for subdivided stars of order 5 or more. In order to present this fact, we present two preliminary
results, the first of which appeared in [2]. For a positive integer n, it is useful to let [n] = {1, 2, . . . , n}. We also write N for
the set of all positive integers.

Proposition 2.1. If G is a connected graph of order at least 3, then µ(G) ≥ 3. Furthermore, if c is a proper mean coloring
of G with µ(c) = 3, then {cm(v) : v ∈ V (G)} = [3].

Lemma 2.1. If Pn is a path of order n ≥ 3, then there is a proper mean coloring c of Pn with µ(c) ≤ 4 and the chromatic
mean of at least one end-vertex of Pn is 3.

Proof. For an edge coloring c of a path Pn = (v1, v2, . . . , vn) of order n ≥ 3, let

Sc(Pn) = (c(v1v2), c(v2v3), . . . , c(vn−1vn))

be the color sequence of c and let

Scm(Pn) = (cm(v1), cm(v2), . . . , cm(vn))

be the color sequence of the vertex coloring cm induced by c. We consider two cases based on the parity of n.
Case 1. n is odd. We consider two subcases, according to whether n ≡ 1 (mod 4) or n ≡ 3 (mod 4).
Subcase 1.1. n ≡ 1 (mod 4). Thus, n ≥ 5 and |E(Pn)| ≡ 0 (mod 4). Let a proper mean coloring c : E(Pn) → N be given

by the color sequence

Sc(Pn) = (3, 1, 1, 3, 3, 1, 1, 3, . . . , 3, 1, 1, 3).

The vertex coloring cm induced by c is given by the sequence

Scm(Pn) = (3, 2, 1, 2, 3, 2, 1, 2, 3, . . . , 2, 1, 2, 3).

Therefore, µ(c) = 3 and cm(v1) = 3 as desired.
Subcase 1.2. n ≡ 3 (mod 4). Thus, n ≥ 3 and |E(Pn)| ≡ 2 (mod 4). Let a proper mean coloring c : E(Pn) → N be given

by the color sequence

Sc(Pn) = (3, 1, 1, 3, 3, 1, 1, 3, 3, 1 . . . , 1, 3, 3, 1).

The vertex coloring cm induced by c is given by the sequence

Scm(Pn) = (3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1 . . . , 2, 3, 2, 1).

Therefore, µ(c) = 3 and cm(v1) = 3 as desired.
Case 2. n is even. We consider two subcases, according to whether n ≡ 0 (mod 4) or n ≡ 2 (mod 4).
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Subcase 2.1. n ≡ 0 (mod 4). Thus, n ≥ 4 and |E(Pn)| ≡ 3 (mod 4). Let a proper mean coloring c : E(Pn) → N be given
by the color sequence

Sc(P4) = (3, 5, 1)

Sc(Pn) = (3, 5, 1, 1, 3, 3, 1, 1, 3, 3, 1 . . . , 1, 3, 3, 1) if n ≥ 8.

The vertex coloring cm induced by c is given by the sequence

Scm(P4) = (3, 4, 3, 1)

Scm(Pn) = (3, 4, 3, 1, 2, 3, 2, 1, . . . , 2, 3, 2, 1) if n ≥ 8.

Therefore, µ(c) = 4 and cm(v1) = 3 as desired.
Subcase 2.2. n ≡ 2 (mod 4). Thus, n ≥ 6 and |E(Pn)| ≡ 1 (mod 4). Let a proper mean coloring c : E(Pn) → N be given

by the color sequence

Sc(P6) = (3, 5, 1, 1, 3)

Sc(Pn) = (3, 5, 1, 1, 3, 3, 1, 1, 3, . . . , 3, 1, 1, 3) if n ≥ 10.

The vertex coloring cm induced by c is given by the sequence

Scm(P6) = (3, 4, 3, 1, 2, 3)

Scm(Pn) = (3, 4, 3, 1, 2, 3, 2, 1, 2, 3 . . . , 2, 1, 2, 3) if n ≥ 10.

Therefore, µ(c) = 4 and cm(v1) = 3 as desired.

Let T be a subdivision of a star K1,k of order k + 1 ≥ 4 where v is the central vertex of K1,k. Therefore, degT (v) = k.
A path P in T is a v-path if P is a v − w path for some end-vertex w of T . Then there are k paths P1, P2, . . . , Pk that are
v-paths of T . We are now prepared to verify Conjecture 1.2 for all subdivided stars of order 3 or more.

Theorem 2.1. If T is a subdivided star of order 5 or more, then µ(T ) = 3 or µ(T ) = 4.

Proof. Let T be the tree obtained from the star K1,k, k ≥ 3, by subdividing at least one edge of K1,k. Suppose, in con-
structing the tree T , that r edges of K1,k are subdivided and s edges of K1,k are not subdivided, where then r ≥ 1, s ≥ 0,
and r + s = k. We show that there is a proper mean coloring c of T with µ(c) ≤ 4.

Let v be the central vertex of K1,k, let U = {v1, v2, . . . , vr} be the set of vertices adjacent to v with degree at least 2 in T ,
and let W = {w1, w2, . . . , ws} be the set of end-vertices of T adjacent to v. We consider two cases.

Case 1. s is even. We define a proper mean coloring c : E(T ) → N by c(vwi) = 2 if i is even, c(vwi) = 4 if i is odd, and
color the edges of each v-path of length at least 2 using the coloring defined in Lemma 2.1, with c(vvi) = 3 for all i where
1 ≤ i ≤ r. It follows that cm(v) = 3 and cm(wi) ∈ {2, 4}, which implies that cm is a proper vertex coloring of T using colors
in the set [4] and so µ(c) ≤ 4.

Case 2. s is odd. There are two subcases, according to whether s = 1 or s ≥ 3.
Subcase 2.1. s = 1. A proper mean coloring c : E(T )→ N is defined as follows. First, let c(vw1) = 1. Consider a v-path P

of length at least 2 where vv1 ∈ E(P ). Let c(vv1) = 5. If P has even length, then let c(v1v2) = 3 and iteratively color
the remaining edges of this v-path by alternating between the color sequences (3, 1) and (1, 3). If P has odd length, then
iteratively color the remaining edges starting with e = v1v2 by alternating between the color sequences (3, 1) and (1, 3).
Color the edges of any remaining v-paths using the coloring described in Lemma 2.1 so that c(vvi) = 3 for 2 ≤ i ≤ r. Then
cm(v) = 3, cm(w1) = 1, cm(v1) = 4, and the vertices of each v-path are colored properly by the vertex coloring cm induced
by c. It follows that cm is a proper vertex coloring of T using colors in the set [4], implying that µ(c) ≤ 4.

Subcase 2.2. s ≥ 3. A proper mean coloring c : E(T ) → N is defined by c(vw2) = 1, c(vwi) = 4 if i is odd, c(vwi) = 2 if i
is even for i ≥ 4, and coloring the edges of each v-path of length at least 2 using the coloring defined in Lemma 2.1, with
c(vvi) = 3 for all i where 1 ≤ i ≤ r. It follows that cm(v) = 3 and cm(wi) ∈ {1, 2, 4}, which implies that cm is a proper vertex
coloring of T using colors in the set [4] and so µ(c) ≤ 4.

3. A characterization

In this section, we characterize those subdivided stars with central vertex v having proper mean index 3 (equivalently 4)
by examining the lengths of the v-paths. First, we present some additional definitions. A path is an even path if its length
is even; while a path is an odd path if its length is odd. An edge e is a central edge of T if e is incident to the central vertex v.
The following lemma will be useful.
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Lemma 3.1. Let T be a subdivided star whose central vertex v has degree at least 3. If c is a proper mean coloring of T with
µ(c) = 3, then c(e) ∈ [5] for every edge e of T . Furthermore, the chromatic mean cm(v) of v satisfies the following conditions.

(a) If cm(v) = 1, then c(e) = 1 for each central edge e and every v-path is even.

(b) If cm(v) = 3, then c(e) = 3 for each central edge e and every v-path is even.

(c) Let cm(v) = 2 and e the central edge on a v-path P of T .

? If c(e) ∈ {1, 3}, then P is odd.

? If c(e) = 4, then P has length 2.

? If c(e) = 5, then there is no restriction on the length of P .

Proof. First, we show that if c is a proper mean coloring of T with µ(c) = 3, then c(e) ∈ [5] for every edge e of T . Assume,
to the contrary, that c(e) ≥ 6 for some edge e of T . Let e = uv, where deg u ≥ 2. If v is an end-vertex, then cm(v) = c(e) ≥ 6,
which is impossible. Thus, we may assume that e is adjacent to the edge f = vw. Since c(f) ≥ 2, it follows that cm(v) ≥ 4,
which again is impossible. Therefore, c(e) ∈ [5] for every edge e of T .

For the statements in (a), (b), and (c), we only consider the case (c) where cm(v) = 2 and c(e) = 4 and e = vx is the
central edge of a v-path P since the arguments for other cases are straightforward. Since c(e) = 4, it follows that x cannot
be an end-vertex of T . Thus, P contains an edge f = xy adjacent to e. Necessarily, c(f) = 2 and cm(x) = 3. Suppose that
P contains an edge g = yz adjacent to f . Since cm(x) = 3, it follows that c(g) = 2. Because 2 = cm(y) 6= cm(z), there is an
edge h = zw on P adjacent to g. Thus, c(h) ≥ 4. Since µ(c) = 3, it follows that c(h) = 4 and cm(z) = 3. If w is an end-vertex,
then cm(w) = 4, which is impossible. If w is not an end-vertex, then w is adjacent to another vertex w′ and so c(ww′) ≥ 2.
However, 3 = cm(z) 6= cm(w) and c(h) = 4, it follows that cm(w) ≥ 4, which again is impossible. Therefore, the v-path P

containing e has length 2.

We are now prepared to characterize all subdivided stars having proper mean index 3.

Theorem 3.1. Let T be a subdivision of the star K1,k of order k+1 ≥ 4 and let v be the central vertex of K1,k. Furthermore,
let q be the number of odd v-paths, r the number of v-paths of length 2, and s the number of even v-paths of length at least
4. Then µ(T ) = 3 if and only if q = 0 or there exists an integer z with 2r + 3s ≤ z ≤ 3r + 3s such that q − z is a nonnegative
even number.

Proof. First, assume that µ(T ) = 3. Consider a proper mean coloring c : E(T ) → N with µ(c) = 3. We consider three
cases, according to the chromatic mean of the central vertex v of T .

Case 1. cm(v) = 1. Then c(e) = 1 for every central edge e of T and so every v-path in T is of even length by Lemma 3.1.
Thus, q = 0.

Case 2. cm(v) = 3. Here, we claim that c(e) = 3 for every central edge e of T . Suppose that there exists a central edge
f = uv with c(f) ≥ 4. If u is an end-vertex, then cm(u) ≥ 4, which is impossible. Thus, the v-path P containing f has
length 2 or more. Let g be the edge adjacent to f on P . Since c(f) and c(g) are of the same parity and c(f) ≥ 4, it follows
that cm(u) ≥ 3, which is impossible. Hence, c(e) ≤ 3 for every central edge e of T . Since cm(v) = 3, we have c(e) = 3 for
every central edge e of T , as claimed. Consequently, every v-path in T is of even length by Lemma 3.1. Thus, q = 0.

Case 3. cm(v) = 2. First, we claim that there is no central edge e of T with c(e) = 2, for suppose that T contains such a
central edge f = vx of T . Then the vertex x cannot be an end-vertex for otherwise cm(x) = cm(v) = 2. Hence, the v-path
containing f has an edge g = xy adjacent to f . Necessarily, c(g) is even and c(g) ≥ 4. Since cm(x) ≤ 3, it follows that
c(g) = 4, which implies that cm(x) = 3. This, in turn, implies that cm(y) ≥ 3, which is impossible. Therefore, no central
edge of T is colored 2, as claimed.

Consequently, c(e) ∈ {1, 3, 4, 5} for every central edge e of T . Since cm(v) = 2 and c(e) 6= 2 for every central edge e of T ,
some central edges of T must be colored 1. It then follows by Lemma 3.1 that there are odd v-paths in T and so q 6= 0.
Hence, it remains to show that there exists an integer z with 2r + 3s ≤ z ≤ 3r + 3s such that q − z is a nonnegative even
number.

Assume, to the contrary, for every integer z with 2r+3s ≤ z ≤ 3r+3s, that either (1) q− z < 0 or (2) q− z > 0 is an odd
integer. Observe that for every central edge colored 4, there are two central edges colored 1; while for every central edge
colored 5, there are three central edges colored 1. Furthermore, by Lemma 3.1, if a central edge e is colored 4, then the
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v-path containing e has length 2; while if a central edge e is colored 5, then the v-path containing e is an even path. Next,
let Q1, Q2, . . . , Qa be all even v-paths of T and let ei be the central edge of Qi for 1 ≤ i ≤ a. Consequently, if

z =

a∑
i=1

[c(ei)− 2] =

[
a∑

i=1

c(ei)

]
− 2a,

then 2r + 3s ≤ z ≤ 3r + 3s.

(1) If q − z < 0 or q < z, then cm(v) > 2, which is a contradiction.

(2) If q− z is a positive odd integer, then the number of the central edges colored 1, 3, 5 is odd. This implies that the sum
of the colors of all central edges is odd and so cm(v) 6= 2, which is a contradiction.

To verify the converse, suppose that either q = 0 or there exists an integer z with 2r + 3s ≤ z ≤ 3r + 3s such that q − z
is a nonnegative even number. We show that there is a proper mean coloring c of T with µ(c) = 3. We consider two cases.

Case 1. q = 0. Then every v-path in T has even length. A proper mean coloring c of T with µ(c) = 3 and cm(v) = 1 can
be obtained by iteratively coloring the edges of every v-path by alternating between the color sequences (1, 3) and (3, 1).
Therefore, µ(T ) = 3.

Case 2. q 6= 0. Then there exists an integer z with 2r+3s ≤ z ≤ 3r+3s such that q− z is a nonnegative even number. A
proper mean coloring of T is constructed by assigning the color sequence (4, 2) to the edges of 3r+3s− z v-paths of length 2

so that the central edges of these paths are colored 4. Next, the edges of every remaining even v-path are colored starting
from v with the color sequence (5, 1) (where the central edge is colored 5) and then alternating between the color sequences
(1, 3) and (3, 1), respectively, for the remaining edges. Now, the edges of the z odd v-paths are colored starting with 1 on the
central edge and then coloring the remaining edges by alternating the color sequences (1, 3) and (3, 1). Consequently, there
are q − z uncolored paths remaining. By assumption, q − z = 2` for some integer ` ≥ 0. The edges of ` of the remaining
odd v-paths are colored starting with 1 on the central edge and alternating the color sequences (1, 3) and (3, 1) for the
remaining edges. The edges of the remaining ` odd v-paths are colored starting with 3 on the central edge and alternating
the color sequences (3, 1) and (1, 3) for the remaining edges. Consequently,

cm(v) =
4(3r + 3s− z) + 5(r + s− 3r − 3s+ z) + z + 2(q − z)

q + r + s

=
12r + 12s− 4z − 10r − 10s+ 5z + z + 2q − 2z

q + r + s

=
2q + 2r + 2s

q + r + s
= 2

and cm(w) ∈ {1, 3} for all w ∈ N(v). Furthermore, using this construction, all v-paths are properly colored such that no
vertex color exceeds 3. Thus, µ(c) = 3 and so µ(G) = 3.

By Theorem 2.1, if T is a subdivided star of order 5 or more such that µ(T ) 6= 3, then µ(T ) = 4. Consequently, Theo-
rem 3.1 is equivalent to the following result.

Theorem 3.2. Let T be a subdivision of the star K1,k of order k+1 ≥ 4 and let v be the central vertex of K1,k. Furthermore,
let q be the number of odd v-paths, r the number of v-paths of length 2, and s the number of even v-paths of length at least
4. Then µ(T ) = 4 if and only if q ≥ 1 and for each integer z with 2r + 3s ≤ z ≤ 3r + 3s either q − z < 0 or q − z is a positive
odd number.

To illustrate Theorems 3.1 and 3.2, we consider the three subdivided stars in Figure 1.

? For the subdivided star T1 in Figure 1(a), there are ten odd paths, two paths of length 2, and one even path of length 4.
Thus, q = 10, r = 2, and s = 1. So, 2r + 3s = 7 and 3r + 3s = 9. If z = 8, then q − z = 2 is a positive even integer.
Consequently, µ(T1) = 3. We now apply the proper mean coloring described in the proof of Theorem 3.1. We assign
the color 1 to q+z

2 = 9 central edges on odd paths, the color 3 to q−z
2 = 1 central edge on one odd path, the color 4 to

3r+3s−z = 1 central edge on one path of length 2, and the color 5 to z−2r−2s = 2 central edges on the remaining two
even paths. Hence, for each of the two v-paths of length 3, its edge colors are 1, 1, 3 and the central edge is colored 1;
for one v-path of length 2, its edge colors are 4, 2 and the central edge is colored 4; for the other v-path of length 2,
its edge colors are 5, 1 and the central edge is colored 5; and for the v-path of length 4, its edge colors are 5, 1, 1, 3 and
the central edge is colored 5. This produces a proper mean coloring c of T1 with µ(c) = 3.
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? For the subdivided star T2 in Figure 1(b), there are seven odd paths, one path of length 2, and two even paths of
length 4. Thus, q = 7, r = 1, and s = 2. So, 2r + 3s = 8 and 3r + 3s = 9. Thus, either z = 8 or z = 9. Thus, q − z = −1
or q − z = −2. Therefore, µ(T3) = 4 by Theorem 3.2.

? For the subdivided star T3 in Figure 1(c), there are ten odd paths, no path of length 2, and three even paths of length 4.
Thus, q = 10, r = 0, and s = 3. So, 2r + 3s = 9 and 3r + 3s = 9. Thus, z = 9 and q − z = 1 is an odd positive integer.
Therefore, µ(T3) = 4 by Theorem 3.2.

Figure 1: Three subdivided stars.
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