
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 3 (2020) 37–43

On upper dimension of graphs and their bases sets

S. Pirzada1,∗, M. Aijaz1, S. P. Redmond2

1Department of Mathematics, University of Kashmir, Srinagar, India
2Department of Mathematics and Statistics, Eastern Kentucky University, USA

(Received: 25 February 2020. Received in revised form: 27 March 2020. Accepted: 11 April 2020. Published online: 14 April 2020.)

c© 2020 the authors. This is an open access article under the CC BY (International 4.0) license (https://creativecommons.org/licenses/by/4.0/).

Abstract

The metric representation of a vertex v with respect to an ordered subset W = {w1, w2, · · · , wn} ⊆ V (G) is an ordered
k−tuple defined by r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wn)), where d(u, v) denotes the distance between the vertices u and
v. A subset W ⊆ V (G) is a resolving set if all vertices of G have distinct representations with respect to W . A resolving
set of the largest order whose no proper subset resolves all vertices of G is called the upper basis of G and the cardinality
of the upper basis is called the upper dimension of G. A vertex v having at least one pendent edge incident on it is called a
star vertex and the number of pendent edges incident on a vertex v is called the star degree of v. We determine the upper
dimension of certain families of graphs and characterize the cases in which upper dimension equals the metric dimension.
For instance, it is shown that metric dimension equals upper dimension for the graphs defined by the Cartesian product of
Kn and K2 and for trees having no star vertices of star degree 1. Further, it is also shown that the upper dimension of a
graph equals its metric dimension if the vertex set of G can be partitioned into distance similar equivalence classes.
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1. Introduction

A graph G consists of a vertex set V (G) and an edge set E(G), where an edge is an unordered pair of distinct vertices of G.
The concept of finding the metric dimension of a graph first appeared in 1970’s introduced by Slater [15] and independently
by Harary and Melter [7]. Since then metric dimension appeared in various applications of graph theory, as diverse as,
robot navigation [8], pharmaceutical chemistry [2], combinatorial optimization [14] and sonar and coast guard Loran [15],
to name a few. A basic problem in chemistry is to give unique mathematical representations for a set of chemical com-
pounds. The structure of a chemical compound can be represented by a labeled graph whose vertex labels represent the
atoms and edge labels specify bond types, respectively [3]. Thus, a graph- theoretic interpretation of this problem is to
provide representations for the vertices of a graph in such a way that distinct vertices have distinct representations. This
is the subject of the papers [3,6–8,14,15].

Navigation can be studied in a graph-structured framework in which the navigation agent moves from vertex to ver-
tex of a “graph space”. The robot can locate itself by the presence of distinctly labeled vertices in the graph space. For
a robot navigating in Euclidean space, visual detection of a distinctive vertices provides information about the direction
to the vertex, and allows the robot to determine its position by triangulation. Evidently, if the robot knows its distances
to a sufficiently large number of vertices, its position on the graph is uniquely determined. This suggests the problem
of finding the smallest subset of vertices of a given graph and where they should be located, so that the distances to the
vertices uniquely determines the position of robot which actually amounts to a classical problem about metric spaces. A
minimum set of vertices which uniquely determines the robot’s position is called a “metric basis”, and the order of metric
basis is called the “metric dimension” of a graph.

In a connected graph G, the distance d(u, v) between two vertices u, v ∈ G is the length of a shortest path between them.
Let W = {w1, w2, . . . , wk} be an ordered set of vertices of G and let v be a vertex of G. The representation r(v|W ) of v with
respect to W is the k−tuple (d(v, w1), d(v, w2), . . . , d(v, wk)). W is called a resolving set if every vertex of G is uniquely iden-
tified by a k−tuple with respect to W , that is, if all vertices of G have distinct representations with respect to W . A set W
is called a minimal resolving set if no proper subset of W is a resolving set. A minimal resolving set of smallest cardinality
is called metric basis of G and the one with the largest cardinality is called the upper basis of G. The cardinality of metric
basis is called the metric dimension and cardinality of upper basis is called the upper dimension which are denoted by
dim(G) and dim+(G), respectively. Clearly, every set of n− 1 vertices forms a resolving set and a connected graph with at
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least one edge has dimension at least 1, therefore we have 1 ≤ dim(G) ≤ dim+(G) ≤ n − 1. The resolving number res(G)

of a connected graph G is the minimum k such that every k−set W of vertices of G is also a resolving set of G.
The concept of upper dimension of graphs was introduced by Chartrand et al. [3], where they defined the upper di-

mension to be the order of the largest minimal resolving set. Among the important results, they showed that dim+(G) =

res(G) = n − 1 if and only if G = Kn. They also proved that for any positive integer N , there exists a graph G with
res(G) − dim+(G) ≥ N and dim+(G) − dim(G) ≥ N . Further, they conjectured that for every pair a, b of integers with
2 ≤ a ≤ b, there exists a connected graph G with dim(G) = a and dim+(G) = b. The conjecture was later solved in affirma-
tive by Garijo et al. [6], where they also proved that no integer a ≥ 2 is realizable as the resolving number of an infinite
family of graphs. Recently, the concept of upper dimension of graphs was extended to zero divisor graphs of rings by the
authors [11]. For other notations and definitions, we refer the reader to [5,9,16].

2. Main results

2.1 Basis sets and upper dimension of simple graphs
We note the following observations.

Lemma 2.1. [Lemma 2.2 [10]] If G is a connected graph and D ⊆ V (G) is a subset of the distance similar vertices, then
every resolving set of G contains exactly |D| − 1 vertices of D.

Theorem 2.1. [Theorem 4.5 [13]] Let G be a connected graph. Then there exists a minimal resolving set of G containing
no cut vertices.

We now determine the upper dimension of some well known graphs. The upper dimension of paths is given in [3]. We
give a new proof of this result and the importance of this proof is that it produces all possible basis sets of Pn.

Lemma 2.2. For a connected graph G of order n ≥ 1, dim+(G) = 1 if and only if G ∼= P2 or P3 and for n ≥ 4, dim+(Pn) = 2,
where Pn denotes the path on n vertices.

Proof. First we consider P2 and P3. Then any end vertex forms a resolving set. Also, any subset of two vertices contains
an end vertex and so any subset of two vertices is not a minimal resolving set. Thus, dim+(P2) = dim+(P3) = 1.

Conversely, let G be a graph with n vertices and dim+(G) = 1. Let the basis set be W = {w}. Since all vertices have
different representations with respect to W , there exists a vertex, say v ∈ V (G), such that d(v, w) = n − 1. Consequently,
G is an n vertex graph with diameter equal to n− 1, and thus G is a path Pn = v1v2 . . . vivi+1 . . . vn.

Now, if n ≥ 4, we observe that any set of two vertices say {vi, vi+1} not containing the end vertex forms a resolving set,
since r(vj) = (i − j, i − j + 1), 1 ≤ j ≤ i and r(vk) = (k − i, k − i − 1), k ≤ i + 1 ≤ n. Clearly, these representations are
distinct, since otherwise (i − j, i − j + 1) = (k − i, k − i − 1) which gives k + j = 2i, k + j − 2 = 2i, a contradiction. Also,
clearly no proper subset of {vi, vi+1} forms a resolving set. Thus, dim+(Pn) ≥ 2 for all n ≥ 4.

Finally, let W = {vi, vi+k}, k ≥ 1 be a two vertex subset of Pn, n ≥ 4. Then r(va) = (i − a, i + k − a), for 1 ≤ a ≤ i;
r(vb) = (b− i, i+ k − b), for i < b ≤ i+ k and r(vc) = (c− i, c− k − i), for i+ k < c ≤ n.

Clearly, each of these representations are distinct, for if r(va) = r(vb), then a = b, a contradiction. If r(va) = r(vc), then
a + c = 2(k + i) = 2i, which gives k = 0, a contradiction. If r(vb) = r(vc), then b = c, a contradiction. Hence, we conclude
that dim+(Pn) = 2 for all n ≥ 4.

Lemma 2.3. A connected graph G of order n has upper dimension equal to n− 1 if and only if G ∼= Kn.

Proof. Since any resolving set contains a minimal resolving set, so dim(G) ≤ dim+(G). As dim(Kn) = n− 1, it follows that
dim+(Kn) = n− 1.

Now, assume that G is a graph of order n with dim+(G) = n− 1, but G 6∼= Kn. This implies that there is some minimal
resolving set W ⊆ V (G) of order n− 1. Without loss of generality, let V (G) = {v1, v2, . . . , vn} and W = V (G)−{v1}. We will
contradict that W is a minimal resolving set by looking at the following two cases.

Case 1. Suppose d(v1, w) = 1 for all w ∈W . Since G 6∼= Kn, there exist vi, vj ∈W with d(vi, vj) > 1. Define W ∗ = W − {vi}.
To establish that W ∗ is a resolving set, we need only to show that r(v1,W

∗) 6= r(vi,W
∗), which is indeed the case, since

coordinate j of r(v1,W ∗) equals 1 but coordinate j of r(vi,W ∗) is greater than 1.

Case 2. There exists some vm ∈ W with d(v1, vm) > 1. Let there exist some vt ∈ W with d(vm, vt) = 1. Define W ∗∗ =

W − {vt}. To establish that W ∗∗ is a resolving set, we need only to show that r(v1,W ∗∗) 6= r(vt,W
∗∗), which is indeed the
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case, since coordinate m of r(vt,W ∗∗) equals 1 but coordinate m of r(v1,W ∗∗) is greater than 1.
Thus in each case, W is not a minimal resolving set. Hence, if G is a graph of order n and G 6∼= Kn, then dim+(G) <

n− 1.

Corollary 2.1. [3] For a finite graph G of order n, res(G) = n− 1 if and only if G ∼= Kn.

Lemma 2.4. The upper dimension of a cycle Cn is 2, where n ≥ 3 is a positive integer.

Proof. Let Cn = v1v2 . . . vnv1 be a cycle of order n. Let W = {v1, vi}, where v1 6= vi and v1 and vi are not opposite if n is
even. We show that W forms a resolving set for Cn. Assume there exist va, vb ∈ V (Cn) such that r(va|W ) = r(vb|W ). Then
d(va, v1) = d(vb, v1) = m1 and d(va, vi) = d(vb, vi) = m2. Without loss of generality, a < b and m1 ≤ m2. We claim that
v1− v2−· · ·− va−1− va− va+1−· · ·− vi−· · ·− vb−· · ·− vn is a path in Cn with no repeated edges (that is, a path of length n

passing through each vertex of Cn only once). Clearly, we can create the path v1−· · ·−va−· · ·−vi in Cn without repeating
any edges as a path of length m1+m2. Note that if vb lies on the path v1−v2−· · ·−va−1, then d(vb, v1) < d(va, v1). Similarly,
if vb lies on the path va − va+1 − · · · − vi, then d(vb, vi) < d(va, vi). Hence, v1 − · · · − va − · · · − vi − · · · − vb is a path in Cn not
repeating any edges. Clearly, this path can be extended to a path with no repeated edges by adding edges vb to vb+1, vb+1

to vb+2, . . . , and vn−1 to vn. By our assumptions, this path must have length n = 2m1 + 2m2, which is a contradiction if m
is odd. If n even, then n

2 = m1 +m2 = d(v1, va) + d(va, vi) = d(v1, vi). However, this is a contradiction, since v1 and vi are
not opposite. Hence, W is a resolving set. Thus, dim+(Cn) = 2, for all n ≥ 3.

Theorem 2.2. If G is a path or a cycle or a complete graph or bipartite graph (not a path), then dim+(G) ≥ cl(G)− 1, where
cl(G) denotes the clique number of G.

Proof. In view of Lemma 2.2, dim+(G) = 1 = cl(G)− 1 if G = P2 or P3 and dim+(G) = 2 > cl(G)− 1 if G = Pn, n ≥ 4.
By Lemma 2.4, dim+(Cn) = 2 ≥ cl(G)− 1 if G = Cn and by Lemma 2.3, dim+(G) = n− 1 = cl(G)− 1 if G = Kn.
Now, if G is bipartite, by [Theorem 1.9 [9]], G does not contain a triangle so cl(G) = 2. Thus, dim+(G) ≥ 2 since paths

are the only graphs with upper dimension equal to 1.

In a graph G, the vertices x and y are distance similar if d(x, z) = d(y, z), for every z ∈ V (G) − {x, y}. As seen in [12],
distance similarity defines an equivalence relation on V (G).

Theorem 2.3. Let G be a finite connected graph such that every x ∈ V (G) is distance similar to some vertex y 6= x. Then
dim+(G) = dim(G).

Proof. Assume that dim+(G) > dim(G). This implies that there exist minimal resolving sets W1 and W2 such that |W1| >
|W2|. Let K1,K2, . . . ,Kn be the partition of G into distance similar classes, (that is, K1 ∪K2 ∪ · · · ∪Kn = V (G), Ki ∩Kj = ∅
if i 6= j; if x, y ∈ Ki, then x and y are distance similar, and if z ∈ Ki and w ∈ Kj with i 6= j, then z and w are not
distance similar). By the assumptions of this theorem, |Ki| ≥ 2 for each i. Since |W1| > |W2|, there exists some i such that
|W1∩Ki| > |W2∩Ki|. Thus, either |W1∩Ki| 6= |Ki|−1 or |W2∩Ki| 6= |Ki|−1. However, by Theorem 2.1, |W ∩Ki| ≥ |Ki|−1

for any minimal resolving set W . Thus |W1 ∩Ki| = |Ki|, implying Ki ⊆W1.
Let x1 ∈ Ki and let W ∗ = W1 − {x1}. We will show that W1 is not a minimal resolving set by showing that W ∗ is a

resolving set. Let a, b ∈ V (G)−W1. Then r(a|W1) 6= r(b|W1), implying there is some c ∈W1 with d(a, c) 6= d(b, c). If c 6= x1,
then c ∈ W ∗ and r(a|W ∗) 6= r(b|W ∗). If c = x1, then let v ∈ Ki with v 6= x1. Therefore, v and x1 are distance similar
and d(a, v) = d(a, x1) 6= d(b, x1) = d(b, v). Hence, r(a|W ∗) 6= r(b|W ∗). Finally, if t ∈ V (G) −W ∗ with t 6= x1, then t is not
distance similar to x1. Thus, there is some vertex z ∈ V (G)−{t, x1} such that d(t, z) 6= d(x1, z). Since W1 ∩Kj 6= ∅ for all j,
there is some z∗ ∈ W ∗ such that z = z∗ or z is distance similar to z∗. Thus, d(t, z∗) = d(t, z) 6= d(x1, z) = d(x1, z

∗). Hence,
r(t|W ∗) 6= r(x1|W ∗).

2.2 Upper dimension of Cartesian product of graphs
In this section, we determine the upper dimension of Cartesian product of some graphs and provide their basis sets.

Definition 2.1. The Cartesian product of two graphs G1 and G2, denoted by G = G1 ×G2, is the graph whose vertex set
is V = V (G1)× V (G2) and for any two vertices w1 = (u1, v1) and w2 = (u2, v2) in V with u1, u2 ∈ V (G1) and v1, v2 ∈ V (G2),
there is an edge w1, w2 ∈ E(G) if and only if

(a) either u1 = u2 and v1v2 ∈ E(G2) or (b) v1 = v2 and u1u2 ∈ E(G1),
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where E(G), E(G1), E(G2) denote the edge sets of G, G1 and G2 respectively. Figure 1 illustrates the Cartesian product
of K1,3 and K2.

Figure 1: Cartesian product of K1,3 and K2 with names of vertices in sync to the symbols used in Theorem 2.4.

The following result gives the upper dimension for the Cartesian product of a star graph with a complete graph on two
vertices.

Theorem 2.4. For n ≥ 3, dim+(K1,n ×K2) = dim+(K1,n) + 1 = n.

Proof. Let V (K1,n) = {v, v1, v2, . . . , vn} and V (K2) = {u1, u2}. Let G = K1,n × K2, and let the two copies of K1,n in G be
denoted by G1 and G2 with V (G1) = {x, x1, x2, . . . , xn} and V (G2) = {y, y1, y2, . . . , yn}. Further, let X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn}. By properly adjusting the vertices and edges of G, the adjacencies are as follows:
x ∼ xi, y ∼ yi for all i = 1, 2, . . . , n, x ∼ y and xi ∼ yj if and only if i = j.

Let W be a subset of v(K1,n ×K2) with |W | ≥ n + 1. We will show that W is not a minimal resolving set. First, note
that if there are two distinct indices 1 ≤ r, s ≤ n with {xr, yr} ∩W = ∅ and {xs, ys} ∩W = ∅, then W is not a resolving set
as r(xr |W ) = r(xs |W ). Thus, n− 1 ≤ dim(K1,n ×K2) ≤ dim+(K1,n ×K2) The proof will proceed in two cases.

Case 1. Suppose that {xi, yi}∩W 6= ∅, for each 1 ≤ i ≤ n. For each i, choose zi ∈ {xi, yi}∩W and defineW ∗ = {z1, z2, . . . , zn}.
Then r(x |W ) is the vector whose ith coordinate is 1 or 2 according as zi ∈ X or zi ∈ Y , and r(y |W ) is the vector whose ith

coordinate is 2 or 1 according as zi ∈ X or zi ∈ Y . Also, if xk 6∈ W ∗, r(xk | W ) is the vector whose kth coordinate is 1 and
whose ith coordinate is 2 or 3 according as zi ∈ X or zi ∈ Y when i 6= k. Similarly, if yk 6∈W ∗, r(yk |W ) is the vector whose
kth coordinate is 1 and whose ith coordinate is 3 or 2 according as zi ∈ X or zi ∈ Y when i 6= k. Thus, W ∗ is a resolving set.

The fact that W ∗ is a minimal resolving set shows that dim+(K1,n ×K2) ≥ n, when considering either case.

Case 2. (Without loss of generality) Suppose that {xn, yn} ∩W = ∅ and {xi, yi} ∩W 6= ∅, for each 1 ≤ i ≤ n − 1. Again,
choose zi ∈ {xi, yi} ∩W , for i = 1, . . . , n− 1. The proof now proceeds into subcases.

Subcase 2.1. Suppose there is some j ∈ {1, . . . , n − 1} such that {xj , yj} ⊆ W . Define W ∗ = {xj , yj} ∪ {z1, z2, . . . , zn−1}.
Using an analysis similar to that used in Case 1, it is routine to verify that W ∗ is a resolving set.

Subcase 2.2. Suppose that |{xi, yi}∩W | = 1, for each i = 1, . . . , n−1. Since |W | ≥ n+1, we have W = {x, y, z1, z2, . . . , zn−1}.
If |W ∩X| ≥ 2, define W1 = {x, z1, . . . , zn−1}. If |W ∩ Y | ≥ 2, define W2 = {y, z1, . . . , zn−1}. If |W ∩X| = |W ∩ Y | = 1, then
n = 3 and (without loss of generality) W = {x, y, x1, y2} and we define W3 = {x, x1, y2}. Using an analysis similar to that
used in Case 1, it is routine to verify that Wj is a resolving set in each scenario.

Hence, in all cases, W contains a proper subset that is a resolving set. Since we found at least one resolving set consisting
of n vertices, dim+(K1,n ×K2) = n.

Note. For n = 1, dim+(K1,1 × K2) = 2, given by Lemma 2.4, as K1,1 × K2
∼= C4. For the case when n = 2, consider the

set W = {x, y, x1}, which is easily verified to be a resolving set, but each proper subset of W is not a resolving set. The
sets {x, y, x2}, {x, y, y1}, {x, y, y2}, {x1, x2, y1}, {x1, x2, y2}, {x1, y1, y2}, and {x2, y1, y2} are also easily verified to be resolving
sets. Further, since {xi, yi} ∩W = ∅ for at most one index i for any resolving set W , any subset of v(K1,2 ×K2) with more
than 3 elements will contain one of these subsets. Hence, dim+(K1,2 ×K2) = 3.

40



S. Pirzada, M. Aijaz and S. P. Redmond / Discrete Math. Lett. 3 (2020) 37–43 41

Corollary 2.2. For n ≥ 5, dim(K1,n ×K2) = dim+(K1,n) = n− 1.

Proof. Using the notation of Theorem 2.4, define W ={x1, x2, y3, y4, . . . , yn−1}. Then r(x |W ) = (1, 1, 2, . . . , 2), r(y |W ) =

(2, 2, 1, . . . , 1), r(y1 | W ) = (1, 3, 2, . . . , 2), r(y2 | W ) = (3, 1, 2, . . . , 2), r(xn | W ) =(2, 2, 3, . . . , 3), r(yn | W ) =(3, 3, 2, . . . , 2),
and r(xi |W ) =(1, 1, 2, . . . , 2) with 1 in coordinate i if i ≥ 3. Thus W is a resolving set. As in Theorem 2.4, there can be at
most one index j ∈ {1, 2, . . . , n} such that {xj , yj} ∩W0 = ∅ for any resolving set W0. Hence, W is a minimal resolving set.

Note. As in the previous note, dim(K1,1 × K2) = 2 as K1,1 × K2
∼= C4. For n = 2, W = {x1, y1} is easily verified to be a

smallest minimal resolving set and thus dim(K1,2 ×K2) = 2.

We show that dim(K1,3 ×K2) = 3. As seen in Theorem 2.4, n − 1 ≤ dim(K1,n ×K2), since {xi, yi} ∩W = ∅ for at most
one index i and any resolving set W . Therefore, without loss of generality, due to symmetries among the vertex adjacency
relations, the only possible resolving sets of order 2 are W1 = {x1, y2} and W2 = {x1, x2}. However, r(y | W1) = r(x2 | W1)

and r(y |W2) = r(x3 |W2). Thus, dim(K1,3 ×K2) ≥ 3. It is easy to see that W = {y, x1, x2} is a resolving set.
To show that dim(K1,4 × K2) = 4, we use an argument similar to that in the last paragraph to determine the only

candidates for resolving sets of order 3 are W1 = {x1, x2, x3} and W2 = {x1, x2, y3}. However, r(y | W1) = r(x4 | W1) and
r(y |W2) = r(x3 |W2). Thus dim(K1,4 ×K2) ≥ 4. It can be easily verified that W = {y, x1, x2, x3} is a resolving set.

Definition 2.2. We call the vertices which are adjacent with at least one pendent vertex star vertices and the subset of
all such vertices as star subset. Also, the number of pendent edges incident on v is called the star degree of v, denoted
by sdeg(v). Thus, if u is not a star vertex, then sdeg(u) = 0. Clearly, if d(v) denotes the degree of a star vertex v, then
sdeg(v) ≤ d(v) and the equality holds in star graphs. Also, a tree that is not a star graph has at least two star vertices.

Example 2.1. In Figure 2, the bold vertices u and v are the star vertices. So the set X = {u, v} is a star subset.

Figure 2: Star vertices and star subset.

Theorem 2.5. Let G be a graph of order n with vertex set V (G) with a star subset X = {x1, x2, . . . , xp} such that the star
degree of xi is ki ≥ 2, for all 1 ≤ i ≤ p. Then k − p ≤ dim+(G) ≤ n− p, where k = k1 + k2 + ...+ kp.

Proof. For 1 ≤ i ≤ p, choose a vertex xi and let v1, v2, . . . , vki , ki > 1 be pendent vertices incident on xi. Then vm is
distance similar to vj for each 1 ≤ m ≤ ki and 1 ≤ j ≤ ki. Thus, by Lemma 2.1, a subset of at least ki − 1 of the vertices
{v1, v2, . . . , vki

} is contained in any minimal resolving set. Therefore, any resolving set has cardinality greater than or
equal to k1 + k2 + · · ·+ kp − p = k − p. From Theorem 2.1, there exists a minimal resolving set containing no cut vertices.
Thus, there exists a minimal resolving set containing no vertex from the set X. Therefore, it follows that dim+(G) ≤ n− p.
Hence we conclude that k − p ≤ dim+(G) ≤ n− p.

Theorem 2.6. Let T be a tree having no vertex of star degree 1. Then dim(T ) = dim+(T ) = k− p, where k is the sum of star
degrees of all star vertices and p is the number of star vertices.

Proof. Since the pendent vertices incident on a given vertex are distance similar, therefore by Lemma 2.1, for each star
vertex, we can skip at most one pendent vertex incident on it. Let x be a star vertex and {v1, . . . , vm} be the set of pendant
vertices adjacent to x, and W0 be a resolving set with {v1, . . . , vm} ⊆W0. Let W1 = W0 − {v1}. If a, b 6∈W1, then r(a|W0) 6=
r(b|W0) implies that r(a|W1) 6= r(b|W1) as the only difference between these vectors is coordinate v1, which can be identical
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to coordinates v2, . . . , vm. If T is a star graph, then it is clear W1 is a resolving set. Suppose c 6∈ W0 and T is not
a star graph. If c = x, r(c|W1) 6= r(v1|W1) as d(x, v2) = 1 and d(v1, v2) = 2. If c 6= x and d(c, v2) 6= d(v1, v2), then
r(c|W1) 6= r(v1|W1). If c 6= x and d(c, v2) = d(v1, v2) = 2, then since T is not a star graph, there is some other star vertex
y of T with x − c − · · · − y a path in T (including the possibility that c = y). Further, there is at least one pendant vertex
w adjacent to y with w ∈ W1. Since T is a tree and thus there is one and only one path between any pair of vertices, this
implies that d(v1, w) = 1 + d(x,w) ≥ 2 + d(c, w). However, this implies that d(v1, w) 6= d(c, w) and thus r(c|W1) 6= r(v1|W1).
Hence, W1 is a resolving set. Therefore, any minimal resolving set will only contain exactly m−1 of the m pendant vertices
adjacent to any vertex x with star degree m.

Let W be the set consisting of all the pendant vertices of T . We will show that W is a resolving set. The result holds
trivially if T is a star graph. So assume that T is not a star graph. Given any two distinct vertices u, v ∈ v(T )−W , there
is a star vertex x such that u − v − · · · − x is a path in T (allowing the possibility that v = x) since the induced subgraph
on v(T )−W is still a connected tree. Let w be a pendant vertex adjacent to x. Then, since there is one and only one path
from u to w in T , d(u,w) = d(u, v) + d(v, w) > d(v, w). Hence, r(u|W ) 6= r(v|W ).

Now, for each star vertex y of T , remove one pendant vertex adjacent to y from W to create a new set W ∗. Then
|W ∗| = k− p. An argument similar to that in the first paragraph of the proof will show that W ∗ is a minimal resolving set
of T . Since Theorem 2.1 implies that any resolving set of T contains a subset analogous to W ∗ (that is, containing all but
one of the pendant vertices adjacent to each star vertex), we have dim(T ) = dim+(T ) = k − p.

Example 2.2. Figure 3 (A) gives an example of a tree in which we construct its basis using Theorem 2.6. The bold vertices
form a basis and the representations are given by taking the bold vertices in order of their numbering. Also, note that Pn

is a tree, but it has star vertices of degree 1. If n ≥ 4, then dim(Pn) = 1, but dim+(Pn) = 2.

Figure 3: Graphs used in Example 2.2. The graphs given here are the examples for the bounds given above to be best
possible. The upper bound holds in the graph (A) and lower bound holds in graph (B). Notice that in graph (A), k = 9, p = 2
and upper dimension is k − 2p = 9− 4 = 5.
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