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Recurrences of Stirling and Lah numbers via second kind Bell polynomials∗
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Abstract

In the paper, by virtue of several explicit formulas for special values and a recurrence of the Bell polynomials of the second
kind, the authors derive several recurrences for the Stirling numbers of the first and second kinds, for 1-associate Stirling
numbers of the second kind, for the Lah numbers, and for the binomial coefficients.
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1. Motivations

There are two sequences of mathematical notions named in honor of Eric Temple Bell in combinatorial mathematics. The
first sequence include the Bell numbers and polynomials, denoted by Bn and Bn(x) respectively. The numbers Bn are also
known as the exponential numbers, while the polynomial Bn(x) are also called the exponential polynomials as well as the
Touchard polynomials. They can be generated by

ee
t−1 =

∞∑
k=0

Bn

n!
tn and ex(e

t−1) =

∞∑
n=0

Bn(x)
tn

n!
.

These numbers and polynomials can be combinatorially interpreted, see [9, 28, 29], for example. In the paper [24], these
numbers and polynomials have been generalized to multivariate exponential polynomials, denoted by Qm,n(xm), by

exp(x1[exp(x2[exp(· · ·xm−1[exp(xm[exp(t)− 1])− 1] · · · )− 1])− 1]) =

∞∑
n=0

Qm,n(xm)
tn

n!
.

For some recent work by the first author and his coauthors on the Bell numbers and polynomials, please refer to the
papers [4,10,14,16,18–20,22,26] and closely related references therein.

Relative to multivariate exponential polynomials, a new notion, multivariate logarithmic polynomials, denoted by
Lm,n(xm), was introduced as

ln(1 + x1 ln(1 + x2 ln(1 + · · ·+ xm−1 ln(1 + xm ln(1 + t)) · · · ))) =
∞∑

n=0

Lm,n(xm)
tn

n!

and was investigated in [12,13].
The study of combinatorial identities constitutes an extremely vast field of research in which, for a long time, it was

believed that it was impossible to create a classification, see the monograph [28]. The article [2] can be considered as one
of the interesting studies in this area. On the other hand, the (multivariate) Bell numbers and polynomials not only are
important in number theory and combinatorics, but also can be applied in other fields [15,24].

The second sequence of notions named after Eric Temple Bell are mainly related to the Bell polynomials of the second
kind. These polynomials are also known as partial (exponential) Bell polynomials, incomplete (exponential) Bell polynomi-
als, and complete (exponential) Bell polynomials. The partial Bell polynomials, or say, the Bell polynomials of the second
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kind, can be defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n−k+1
`i∈{0}∪N∑n−k+1
i=1 i`i=n∑n−k+1
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(
xi

i!

)`i

,

and can be generated by
1

k!

( ∞∑
i=1

xi
ti

i!

)k

=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!
, k ≥ 0, (1)

where xj for j ≥ 1 are real or complex independent variables. See [1, Definition 11.2] and [3, p. 134, Theorem A]. One
of the most important and classical applications of Bn,k is the famous Faà di Bruno formula which states that the n-th
derivative of the composite function f(h(t)) can be computed in terms of Bn,k(x1, x2, . . . , xn−k+1) by

dn

dtn f ◦ h(t) =
n∑

k=0

f (k)(h(t)) Bn,k

(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
, (2)

where f and h are both n-time differentiable functions. See [1, Theorem 11.4] and [3, p. 139, Theorem C]. The sum

Bn(x1, x2, . . . , xn) =

n∑
k=1

Bn,k(x1, x2, . . . , xn−k+1)

is called the n-th complete (exponential) Bell polynomials which can be generated by

exp

( ∞∑
i=1

xi
ti

i!

)
=

∞∑
n=0

Bn(x1, x2, . . . , xn)
tn

n!
.

The Bell polynomials of the second kind Bn,k satisfy the recurrence relation

Bn,k(x1, x2, . . . , xn−k+1) =

n−k+1∑
`=1

(
n− 1

`− 1

)
x` Bn−`,k−1(x1, x2, . . . , xn−`−k+2), (3)

where B0,0 = 1, Bn,0 = 0 for n ≥ 1, and B0,k = 0 for k ≥ 1. See [8, Proposition 1].
In recent articles [17, 21, 23, 25, 27], explicit formulas for special values of the Bell polynomials of the second kind

have been constructed in correspondence to numeric values of the variables. Since the recurrence formula (3) has been
highlighted in the paper [9], the combined use of some formulas for special values of the Bell polynomials of the second
kind in [25] and the recurrence relation (3) allows us to construct several combinatorial identities.

We can not be sure that some of these identities can be found in the mare magnum of literature, but we just want to
highlight the method by which these identities have been found, a method which permits an extension to a wide class of
relationships.

2. An alternative formula and an open problem

In analytic combinatorics [1,3], the Stirling numbers of the second kind, denoted by S(n, k) for n ≥ k ≥ 0, can be computed
by

S(n, k) =
1

k!

k∑
`=0

(−1)k−`
(
k

`

)
`n

and can be generated by
(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
.

In [7, p. 303, eq. (1.2)], the r-associate Stirling numbers of the second kind, denoted by S(n, k; r), were defined by(
ex −

r∑
i=0

xi

i!

)k

=

( ∞∑
j=r+1

xj

j!

)k

= k!

∞∑
n=(r+1)k

S(n, k; r)
xn

n!
.

In [6, p. 978, eq. (2.3)], the formula

Bn,k(0, 0, 3, 4, . . . , xn−k+1) =
n!

(n− k)!
S(n− k, k; 1) (4)

was claimed.
We now give an alternative formula for Bn,k(0, 0, 3, 4, . . . , xn−k+1) in term of the Stirling numbers of the second kind

S(n, k).
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Theorem 2.1. For n ≥ k + 2 ≥ 2, the Bell polynomials of the second kind satisfy

Bn,k(0, 0, 3, 4, . . . , xn−k+1) = n!

k∑
`=0

(−1)`

`!

S(n− k − `, k − `)

(n− k − `)!
. (5)

Proof. In [5, Theorem 1], the formula

Bn,k(0, 1, . . . , 1) =

k∑
`=0

(−1)`
(
n

`

)
S(n− `, k − `) (6)

was established. See also [25, Section 1.8].
Applying x1 = x2 = 0 and xk = k for k ≥ 3 to the formula (1) yields

∞∑
n=k+2

Bn,k(0, 0, 3, 4, . . . , xn−k+1)
tn

n!
=

1

k!

[ ∞∑
i=3

ti

(i− 1)!

]k
=

1

k!
[(et − t− 1)t]k.

This means that, for n ≥ k+2 ≥ 2, by the Leibniz theorem for differentiation of a product, by the Faà di Bruno formula (2),
and by (6), we have

Bn,k(0, 0, 3, 4, . . . , xn−k+1) =
1

k!
lim
t→0

dn

dtn [(e
t − t− 1)t]k

=
1

k!
lim
t→0

n∑
`=0

(
n

`

)[
(et − t− 1)k

](`)(
tk
)(n−`)

=
1

k!
lim
t→0

n∑
`=0

(
n

`

)[
(et − t− 1)k

](`)〈k〉n−`tk−n+`

=
1

k!

(
n

n− k

)
〈k〉k lim

t→0

([
(et − t− 1)k

](n−k))
=

(
n

n− k

)
lim
t→0

n−k∑
`=0

(
uk
)(`)

Bn−k,`
(
et − 1, et, . . . , et

)
=

(
n

n− k

)
lim
t→0

n−k∑
`=0

〈k〉`uk−` Bn−k,`
(
et − 1, et, . . . , et

)
=

(
n

n− k

)
lim
t→0

n−k∑
`=0

〈k〉`(et − t− 1)k−` Bn−k,`
(
et − 1, et, . . . , et

)
=

(
n

n− k

)
〈k〉k lim

t→0
Bn−k,k

(
et − 1, et, . . . , et

)
=

(
n

n− k

)
k! Bn−k,k(0, 1, . . . , 1)

=
n!

(n− k)!

k∑
`=0

(−1)`
(
n− k

`

)
S(n− k − `, k − `),

where u = u(t) = et − t− 1. The formula (5) is thus proved. The proof of Theorem 2.1 is complete.

Remark 2.1. In [6, Section 2, eq. (2.2)], the closed formula

Bn,k(0, 2, 3, . . . , n− k + 1) =
n!

(n− k)!
S(n− k, k) (7)

was listed. Basing on the formulas (5) and (7), we pose an open problem: what is the general and explicit formula of

Bn,k(0, . . . , 0︸ ︷︷ ︸
s−1

, s, s+ 1, . . . , n− k + 1)

for n ≥ k + s− 1 ≥ s− 1 ≥ 3 in terms of the Stirling numbers of the second kind S(n, k)?

3. Recurrences of Stirling and Lah numbers

In analytic combinatorics [1,3], the Stirling numbers of the first kind, denoted by s(n, k), can be computed by

s(n, k) = (−1)n+k(n− 1)!

n−1∑
`1=1

1

`1

`1−1∑
`2=1

1

`2
· · ·

`k−3−1∑
`k−2=1

1

`k−2

`k−2−1∑
`k−1=1

1

`k−1
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for n ≥ k ≥ 1, see [11], and can be generated by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!

for n ≥ k ≥ 0. The Lah numbers L(n, k) for n ≥ k ≥ 0 can be computed by

L(n, k) =

(
n− 1

k − 1

)
n!

k!

and can also be generated [10] by (
e±1/x

)(n)
= (−1)ne±1/x

n∑
k=1

(±1)kL(n, k) 1

xn+k
.

Now we start out to derive several recurrences of the Stirling numbers of the first and second kinds s(n, k) and S(n, k),
of 1-associate Stirling numbers of the second kind S(n, k; 1), and of the Lah numbers L(n, k).

Theorem 3.1. Let n ≥ k ≥ 1. Then

1. the Stirling numbers of the first kind s(n, k) satisfy

s(n, k) = (n− 1)!

n−k∑
`=0

(−1)`

(n− `− 1)!
s(n− `− 1, k − 1); (8)

2. the Stirling numbers of the second kind S(n, k) satisfy

S(n, k) =

n−k∑
`=0

(
n− 1

`

)
S(n− `− 1, k − 1) (9)

and
S(n, k) =

1

n+ k

n∑
`=1

(
n

`

)
(`+ 1)S(n− `, k − 1); (10)

3. the 1-associate Stirling numbers of the second kind S(n, k; 1) satisfy

S(n, k; 1) =
1

n+ k

n+1∑
`=1

`

(
n

`− 1

)
S(n− `+ 1, k − 1; 1); (11)

4. the Lah numbers L(n, k) satisfy

L(n, k) =

n−k+1∑
`=1

`!

(
n− 1

`− 1

)
L(n− `, k − 1); (12)

5. for n ≥ k ≥ 2,
n∑

`=0

(
n

`

)
`+ 1

(k − 1)`
=

(n+ k)kn−1

(k − 1)n
. (13)

Proof. In [3, p. 135], see also [25, Section 1.2], we find

Bn,k(0!, 1!, 2!, . . . , (n− k)!) = (−1)n−ks(n, k).

This means that
Bn−`−1,k−1(0!, 1!, 2!, . . . , (n− `− k)!) = (−1)n−`−ks(n− `− 1, k − 1).

Further utilizing the recurrence (3), we arrive at

(−1)n−ks(n, k) =
n−k∑
`=0

(
n− 1

`

)
(−1)n−`−ks(n− `− 1, k − 1)`!

which is equivalent to (8).
In [3, p. 135], it is given that

Bn,k(1, 1, . . . , 1) = S(n, k).

See also [25, Section 1.1]. By applying the recurrence (3), we immediately find the recurrence (9).
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In [6] and [25, Section 1.12], we find

Bn,k(0, 2, 3, . . . , n− k + 1) =
n!

(n− k)!
S(n− k, k).

This means that
Bn−`−1,k−1(0, 2, 3, . . . , n− `− k + 1) =

(n− `− 1)!

(n− `− k)!
S(n− `− k, k − 1).

Combining this with the recurrence (3), we can reveal that

n!

(n− k)!
S(n− k, k) =

n−k∑
`=1

(
n− 1

`

)
(n− `− 1)!

(n− `− k)!
S(n− `− k, k − 1)(`+ 1)

which can be further rearranged as

n!

(n− k)!
S(n− k, k) =

n−k∑
`=1

(n− 1)!(`+ 1)

`!(n− k − `)!
S(n− `− k, k − 1).

Therefore, we acquire

S(n− k, k) =

n−k∑
`=1

(
n− k

`

)
`+ 1

n
S(n− `− k, k − 1).

The recurrence (10) is thus proved.
From (4), it follows that

Bn−`,k−1(0, 0, 3, 4, . . . , n− `− k + 2) =
(n− `)!

(n− `− k + 1)!
S(n− `− k + 1, k − 1; 1).

Substituting this into the recurrence (3), we obtain

n!

(n− k)!
S(n− k, k; 1) =

n−k+1∑
`=1

(
n− 1

`− 1

)
`

(n− `)!

(n− `− k + 1)!
S(n− `− k + 1, k − 1; 1)

which can be reformulated as (11).
In [25, Section 1.3], we find

Bn,k(1!, 2!, 3!, . . . , (n− k + 1)!) = L(n, k).

This mens that
Bn−`−1,k−1(1!, 2!, 3!, . . . , (n− k − `+ 1)!) = L(n− `− 1, k − 1).

Substituting this into the recurrence (3), after simplification, we obtain the recurrence (12).
In [1, p. 451], [3, p. 135], and [25, Section 1.10], we find

Bn,k(1, 2, 3, . . . , n− k + 1) =

(
n

k

)
kn−k, n ≥ k ≥ 1.

This means that
Bn−`−1,k−1(1, 2, 3, . . . , n− `− k + 1) =

(
n− `− 1

k − 1

)
(k − 1)n−k−`.

Substituting this into the recurrence (3), we obtain(
n

k

)
kn−k =

n−k∑
`=0

(`+ 1)

(
n− 1

`

)(
n− `− 1

k − 1

)
(k − 1)n−k−`

which can be reformulated as (13). The proof of Theorem 3.1 is complete.

Remark 3.1. The recurrence (12) can be reformulated as a combinatorial identity

n−k∑
`=0

(`+ 1)

(
n− `− 2

k − 2

)
=

(
n

k

)
.
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4. Conclusion

In this paper, by virtue of several explicit formulas for special values and a recurrence of the Bell polynomials of the second
kind Bn,k, we derived several recurrences for the Stirling numbers of the first kind s(n, k), for the Stirling numbers of the
second kind S(n, k), for 1-associate Stirling numbers of the second kind S(n, k; 1), for the Lah numbers L(n, k), and for
binomial coefficients

(
n
k

)
. The techniques used in this paper can be further applied to every special values for the Bell

polynomials of the second kind Bn,k. However, sometimes the derived results are quite complicate to evaluate.
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