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Abstract

Let G be a finite simple graph with the vertex set V, edge set £ and minimum degree at least 1. For any non-zero real
number «, the general ordinary irregularity irr, . and general total irregularity irr . for the graph G are defined as irr, o =
Ywver [deg(w)® —deg(v)®| and irre.a = 3°¢, oy [deg(u)® — deg(v)®|, respectively. We denote the graph parameter irr: o —
irTo,a DY iT70, and call it general ordinary co-irregularity. In this paper, some mathematical aspects of the parameters
iTT0,05 17Tt o and irr, o are explored for o = 1,2. Graphs with the first eight smallest irr, 2-values are also characterized
from the class of all n-vertex trees.
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1. Introduction

This paper is concerned with only finite and simple graphs. The vertex set and edge set of a graph G is denoted by V(G)
and F(QG), respectively. We use the notation degg(v) and Ng(v) to denote the degree of a vertex v € V(@) and the set of
all vertices adjacent to v, respectively. The symbol A(G) is used for the maximum degree of G. The number of vertices of
degree i are denoted by n;(G). The number of those edges in a graph G whose end vertices have degrees i and j is denoted
by m; ;j(G). We will drop the letter “G” from the aforementioned notations when there is no chance of confusion.

The set of all degrees of the vertices in a graph is called degree set. A graph whose degree set consists of only one element
is referred as a regular graph. By a nonregular graph, we mean a graph which is not regular. An irregularity measure
IM of a graph G is a non-negative graph parameter satisfying the property: IM(G) = 0 if and only if every component
of GG is regular. The main purpose of an irregularity measure is actually to check how much a graph is nonregular with
respect to the considered irregularity measure. In the paper [3], Albertson introduced the following irregularity measure
and named it as “irregularity”:

irr(G) = Z |deg(u) — deg(v)].
weE
The irregularity measure irr is also called Albertson index [19]. The concept of irr has been modified in several directions.
More precisely, Abdo, Brandt and Dimitrov [1] devise the following extended version of the irregularity measure irr in
order to overcome its certain shortcomings and they named it as the “total irregularity”:

rry(G) = Z |deg(u) — deg(v)|.

{u,0}CV

The following extensions of the irregularity measure irr was considered by Gutman [8]:

irrana(G) = Y _ (deg(u) — deg(v))® and irr(G) = Y (deg(u) — deg(v))?.

uwweE {u,w}CV

The measure irr 452 is known as the sigma index [2, 11, 16]. Recently, Yousaf et al. [19] studied the following modified
version of irr and called it as the “modified Albertson index”:

A(G) =) |deg(u)® — deg(v)?|.

uwveE
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Recent results about the irregularity measure irr and its variants can be found in the papers [5,7,9,13-15,17,18]. In the
present study, we are concerned with the following natural generalizations of the irregularity measures irr and irr;:

irro,e = Z |deg(u)® — deg(v)®]
wweE

and
irre o = Z |deg(u)® — deg(v)®],
{u,v}CV

where « is a non-zero real number and the graph G has minimum degree at least 1. We propose to call the measures irr, ,
and irr, ., as the “general ordinary irregularity” and “general total irregularity”. It is clear that irr,; = irr, irr, 2 = A* and
irre1 = irr;. We denote the graph parameter irr; , — irr, o by irr, o, and call it as the “general ordinary co-irregularity”.
It should be mentioned here that irr, 1(G) = irr(G), where G is the complement of a graph G, which is a graph with the
vertex set V(G) = V(G) and two vertices in G are adjacent if and only if they are not adjacent in G. The main purpose of the
present paper is to derive some relations between the parameters irr, o, irr: o and irr, , for a = 1,2. We also characterize
the graphs with the first eight smallest irr, ; values from the class of all n-vertex trees.

2. Main results

Firstly, we establish some relations between the general ordinary irregularity irr, ,, general total irregularity irr; , and
general ordinary co-irregularity for o = 1, 2.

Theorem 2.1. If G is the complement of an n-vertex graph G, then

irry 2(G) + irry 2(G) = 2(n — )irr(GQ).

Proof. Because of the fact |degg(u) — degg (v)| = |degg(u) — degg(v)|, we have

irre o(G) + irre o(G) = Z (degg(u) + degg(v)) |[dega(u) — degg (v)|
{u,v}CV(G)
+ Z (degz(u) + degg(v))|dega (u) — dege (v)|
{u,0}CV(G)
= Y ldego(u) — dego(v)][deg(w) + dega(u)
{u,v}CV(G)

+ dege(v) + degz(v)]

=2(n—1) > |dega(u) — dega(v)| = 2(n — 1)irr(G).
{u.0}CV(G)

Bearing in mind the inequality
lirre 2(G) — irre 2(G)| < irry2(G) +irry 2(G),

we have the next corollary as a direct consequence of Theorem 2.1.
Corollary 2.1. If G is the complement of an n-vertex graph G, then

lirr2(G) — irr 2(G)| < 2(n — 1)irry(G).
Theorem 2.2. If G is the complement of an n-vertex graph G, then

irre0(G) + 1170 2(G) = 2(n — 1)irr(G).

Proof. We note that
irro2(G) +irr, 2(G) = Z |dega(u)? — dega(v)?| + Z |degz(u)? — degz(v)?|
weE(G) uvg B(G)

= Y ldego(u)® —dega(v)’| + Y |degg(u)® — degg(v)’]
uwveE(G) uwveE(G)
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= > ldega(u) — dega(v)] [dega(u) + degg ()
wweE(G)

+ dege(v) + de%(u)]
=2(n — 1)irr(QG),

as desired.

From Theorem 2.2 and the inequality
lir702(G) — ir702(G)| < irre2(G) +irr, 2(G),
the next corollary follows.
Corollary 2.2. If G is the complement of an n-vertex graph G, then
lir70,2(G) — irro2(G)| < 2(n — 1)irr(G).
By an (r, s)-bidegreed graph, we mean a graph with the degree set {r, s}. The path graph with n vertices is denoted by
P,.

Proposition 2.1. Let G be a connected n-vertex nonregular graph with n > 3. Then,

3irr(GQ) <irry2(G) < (2n — 3)irr(G), 1)
3irr(G) < irr,2(G) < (2n — 3)irr(G), (2)
3irri(G) < irry 2(G) < (2n — 3)irr(G). 3)

If G = P, then the left equality sign in either of Inequalities (1), (2), (3) holds and if G is an (n—2,n—1)-bidegreed graph
then the right equality sign in either of Inequalities (1), (2), (3) holds.

Proof. We note that if u,v € V(G) such that deg(u) # deg(v), then it holds that
3 < deg(u) +deg(v) <2n—3

with left equality if and only if one of deg(u) and deg(v) is 1 and the other is 2, while the right equality holds if and only if
one of deg(u), deg(v) is n — 1 and the other is n — 2. Hence, the result follows from the following inequality

3ldeg(u) — deg(v)] < |deg(u)* — deg(v)?| < (2n — 3)|deg(u) — deg(v)| .

O
If the graph G is triangle-free in Proposition 2.1, then the upper bound given in (1) can be improved.
Corollary 2.3. Let G be a connected nonregular triangle-free graph with n vertices such that n > 3. Then,
irro2(G) < n-irr(Q), 4
If Gisan (n — A, A)-bidegreed graph then the equality sign in (4) holds.
Proof. The result follows from the fact that deg(u) + deg(v) < n for every uv € F(G) because G is a triangle-free graph.
O

Now, we derive two lower bounds on the graph parameter irr, » for nonregular graphs. First such lower bound is actually
in terms of n; and M;, where n; is the number of those vertices of a graph G which have degree : and M is the first Zagreb
index [4, 6], which was firstly appeared in a formula reported in [12]. The first Zagreb index for a graph G is defined as

My = Mi(G) =Y deg(v)®.
veV

A vertex of degree 1 is called a pendant vertex.
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Theorem 2.3. If G is an n-vertex nonregular graph with the first Zagreb index M, and with the number of pendant vertices
ny, then
irry,2(G) > ny (M7 —n)

with equality if and only if G is a (1, A)-bidegreed graph.

Proof. If P is the set of all pendant vertices of G, then

irre 2(G) = Z |deg(u)® — deg(v)?|

{u,0}CV
= > mldeg(u)® =1+ Y |deg(u)® — deg(v)?|
ueV\P {u,v}CV\P
>ny 3 (deg(u)? — 1)
ueV\P

= ﬂl[Ml — Ny — (nfnl)] = ’fll(Ml 7TL)

Clearly, the equation irr; 2(G) = n1(M; — n) holds if and only if G is an (1, A)-bidegreed graph. O

By an (a, b, ¢)-tridegreed graph, we mean a graph with the degree set {a,b,c}. Now, we derive a lower bound on irr, o
for nonregular graphs in terms of number of vertices and number of vertices of degrees 1 and 2.

Theorem 2.4. If G is an n-vertex nonregular graph with n, and ns as the number of vertices of degrees 1 and 2, respectively,
then
irre 2(G) > 8nny + 5nng — 8n? — 5n3 — 10010y

with equality if and only if G is either (1,2, 3)-tridegreed graph or (1,2)-bidegreed graph.

Proof. By definition of the graph parameter irr, 2, we have

irra(G) = Y min(5° —i?)
1<i<j<n—1

n—1 n—1

=3nina+ > mn; (5P =)+ Y nany (P -+ D nny(5° — i)

Jj=3 Jj=3 3<i<j<n—1
n—1 n—1

> 3nine + annj(f -1+ Zn2nj(j2 —4)
j=3 Jj=3

n—1 n—1

> 3ninz + 8ni Z n; + Hng Z n;

Jj=3 Jj=3

= 8nni + dSnng — Sn% — 5n§ — 10n1ns .

Certainly, the equation irr, »(G) = 8nny + 5nny — 8n? — 5n3 — 10n1ns holds if and only if G is either (1,2, 3)-tridegreed
graph or (1,2)-bidegreed graph. O

Next, we solve the problem of finding graphs with the first eight minimum irr, » values from the class of all n-vertex
trees for n > 12. By direct computations, we find that the first eight smallest irr, » values for the n-vertex trees are 6, 24,
32, 40, 42, 48, 50 and 56 for n > 12. In what follows, we find all those graphs from the class of all n-vertex trees which
satisfy the inequality

irro2(T) < 56. (5)

The following known result brings us one step closer to the solution of the above-mentioned extremal problem concerning

To,2.

Proposition 2.2. [19]1If T is a tree with maximum degree A then irr,o(T) > A(A% — 1) with equality if and only if T is
isomorphic to either a path or a tree containing only one vertex of degree greater than 2.

Due to Proposition 2.2, in order to find all the n-vertex trees satisfying Inequality (5), it is enough to consider only those
trees which have the maximum degree at most 3.

Lemma 2.1. [19] Let uv be an edge of a graph G satisfying one of the following conditions
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1. deg(u) = 1 and deg(v) > 2;
2. at least one of the vertices u,v has degree 2.
If G’ is the graph obtained from G by inserting a new vertex x ¢ V(G) of degree 2 on the edge uv, then irr, o(G') = irr, 2(G).

Let P := vgvy---v, be a path in a graph G. The path P is called a pendant path if deg(vy) > 3, deg(v,) = 1 and
deg(vy) = deg(vs) = ... = deg(vr,—1) = 2. While, the path P is called an internal path if deg(vy), deg(v;) > 3 and deg(v1) =
deg(vy) = ... =deg(v,—1) = 2. An edge incident to a pendant vertex is called a pendant edge.

Corollary 2.4. Let G be an n-vertex nonregular connected graph different from the path graph P,. Let G* be the graph
obtained from G by replacing every pendant path of length greater than 1 with a pendant edge and every internal path of
length at least 3 by an internal path of length 2. Then irr,2(G) > 8n1(G) with the equality if and only if G* is a (1, 3)-
bidegreed graph.

Proof. Suppose that M = {uv € E(G*) : v is a pendant vertex of G*}. By Lemma 2.1, we have irr,2(G) = irr, 2(G*) and
S0

irroa(G) = Y |dega(u)® =1+ > |dega(u)® — dega- (v)?]

uveM weE(G*)\M
> > |degas (u)? — 1] > 8ny(G),
uveM
with the equality if and only if G* is a (1, 3)-bidegreed graph. O

Lemma 2.2. [10] If T is a tree of order n with ny < 7, then n3 < 5.

Lemma 2.3. [19] Let uwv be an edge of a graph G satisfying deg(u) = deg(v) = 3. If G' is the graph obtained from G by
inserting a new vertex © ¢ V(G) of degree 2 on the edge uv, then irr, »(G') = irr, o(G) + 10.

Table 1. All the classes of n-vertex trees satisfying A =2 or 3,1 < n3 <5 and irry2 < 56.

Class ns3 ngy ny  msg n irroo
Ay 0 n—2 2 0 n>3 6
Ao 1 n-4 3 0 n >4 24
Ag 2 n—=~6 4 1 n>06 32
Ay 3 n—8 5 2 n>8 40
As 2 n—-6 4 0 n>7 42
Ag 4 n-—-10 6 3 n > 10 48
A 3 n-8 5 1 n>9 50
Ag 5 n-12 7 4 n>12 56
T1) T(2) T(3) T4) T(5)

Figure 1: The trees 7", 7(2) ... 70,

Theorem 2.5. For n > 12 and i = 1,2,---,8,if T; € A; and if T is an n-vertex tree different from the trees Ty, Ts, - --, Tg,
then

’L'T'T‘OQ(T) > irTO’Q(Tj+1) > iTTO’Q(Tj) s

for j =1,2,--- .7, where the classes A;’s are defined in Table 1 (for i = 1,2, 3, 4,5, we note that T; € A, is isomorphic to either
the tree TV, depicted in Figure 1, or some subdivision of T").

Proof. If A > 4 then from Proposition 2.2, it follows that irr, 2(T) > 56. If n3 > 6 then by Lemma 2.2, we have n; > 8
and hence Corollary 2.4 ensures that irr, »(T) > 56. Bearing in mind Lemma 2.3, we find all the n-vertex trees satisfying
A=2or3,1<ng<5andirr,s < 56; see Table 1. O

Remark 2.1. With the notations described in Theorem 2.5, the following statements hold.
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. Ifn=100r 11, then irr, o(T) > irreo(Tjp1) > irreo(Ty), for j=1,2,--- 6.

Ifn =29, then irro,o(T) > irre 2(T7) > irro 2(T5) > irreo(Th) > irreo(Ts) > irre o(Ta) > irre o(T1).
If n =8, then irry, o(T) > irreo(Ts) > irreo(Th) > irreo(Ts) > irreo(Ta) > irre o(Th).

If n =17, then irr, o(T) > irro2(T5) > irre2(Ts) > irre2(Te) > irr o(Th).

If n =6, then irry 2(T) > irry o(T5) > irro2(T2) > irre o (Th).

If n =>5o0r 4, then irr, o(T) > irrg2(To) > irre o (Th).
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