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Abstract

Let G be a finite simple graph with the vertex set V , edge set E and minimum degree at least 1. For any non-zero real
number α, the general ordinary irregularity irro,α and general total irregularity irrt,α for the graphG are defined as irro,α =∑
uv∈E |deg(u)

α− deg(v)α| and irrt,α =
∑
{u,v}⊆V |deg(u)

α− deg(v)α|, respectively. We denote the graph parameter irrt,α−
irro,α by irro,α and call it general ordinary co-irregularity. In this paper, some mathematical aspects of the parameters
irro,α, irrt,α and irro,α are explored for α = 1, 2. Graphs with the first eight smallest irro,2-values are also characterized
from the class of all n-vertex trees.
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irregularity.
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1. Introduction

This paper is concerned with only finite and simple graphs. The vertex set and edge set of a graph G is denoted by V (G)

and E(G), respectively. We use the notation degG(v) and NG(v) to denote the degree of a vertex v ∈ V (G) and the set of
all vertices adjacent to v, respectively. The symbol ∆(G) is used for the maximum degree of G. The number of vertices of
degree i are denoted by ni(G). The number of those edges in a graph G whose end vertices have degrees i and j is denoted
by mi,j(G). We will drop the letter “G” from the aforementioned notations when there is no chance of confusion.

The set of all degrees of the vertices in a graph is called degree set. A graph whose degree set consists of only one element
is referred as a regular graph. By a nonregular graph, we mean a graph which is not regular. An irregularity measure
IM of a graph G is a non-negative graph parameter satisfying the property: IM(G) = 0 if and only if every component
of G is regular. The main purpose of an irregularity measure is actually to check how much a graph is nonregular with
respect to the considered irregularity measure. In the paper [3], Albertson introduced the following irregularity measure
and named it as “irregularity”:

irr(G) =
∑
uv∈E

|deg(u)− deg(v)|.

The irregularity measure irr is also called Albertson index [19]. The concept of irr has been modified in several directions.
More precisely, Abdo, Brandt and Dimitrov [1] devise the following extended version of the irregularity measure irr in
order to overcome its certain shortcomings and they named it as the “total irregularity”:

irrt(G) =
∑

{u,v}⊆V

|deg(u)− deg(v)|.

The following extensions of the irregularity measure irr was considered by Gutman [8]:

irrAlb2(G) =
∑
uv∈E

(deg(u)− deg(v))2 and irrtot2(G) =
∑

{u,v}⊆V

(deg(u)− deg(v))2.

The measure irrAlb2 is known as the sigma index [2, 11, 16]. Recently, Yousaf et al. [19] studied the following modified
version of irr and called it as the “modified Albertson index”:

A∗(G) =
∑
uv∈E

|deg(u)2 − deg(v)2|.
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Recent results about the irregularity measure irr and its variants can be found in the papers [5,7,9,13–15,17,18]. In the
present study, we are concerned with the following natural generalizations of the irregularity measures irr and irrt:

irro,α =
∑
uv∈E

|deg(u)α − deg(v)α|

and
irrt,α =

∑
{u,v}⊆V

|deg(u)α − deg(v)α| ,

where α is a non-zero real number and the graph G has minimum degree at least 1. We propose to call the measures irro,α
and irrt,α as the “general ordinary irregularity” and “general total irregularity”. It is clear that irro,1 = irr, irro,2 = A∗ and
irrt,1 = irrt. We denote the graph parameter irrt,α − irro,α by irro,α and call it as the “general ordinary co-irregularity”.
It should be mentioned here that irro,1(G) = irr(G), where G is the complement of a graph G, which is a graph with the
vertex set V (G) = V (G) and two vertices inG are adjacent if and only if they are not adjacent inG. The main purpose of the
present paper is to derive some relations between the parameters irro,α, irrt,α and irro,α for α = 1, 2. We also characterize
the graphs with the first eight smallest irro,2 values from the class of all n-vertex trees.

2. Main results

Firstly, we establish some relations between the general ordinary irregularity irro,α, general total irregularity irrt,α and
general ordinary co-irregularity for α = 1, 2.

Theorem 2.1. If G is the complement of an n-vertex graph G, then

irrt,2(G) + irrt,2(G) = 2(n− 1)irrt(G).

Proof. Because of the fact |degG(u)− degG(v)| = |degG(u)− degG(v)|, we have

irrt,2(G) + irrt,2(G) =
∑

{u,v}⊆V (G)

(
degG(u) + degG(v)

)
|degG(u)− degG(v)|

+
∑

{u,v}⊆V (G)

(
degG(u) + degG(v)

)
|degG(u)− degG(v)|

=
∑

{u,v}⊆V (G)

|degG(u)− degG(v)|
[
degG(u) + degG(u)

+ degG(v) + degG(v)
]

= 2(n− 1)
∑

{u,v}⊆V (G)

|degG(u)− degG(v)| = 2(n− 1)irrt(G).

Bearing in mind the inequality
|irrt,2(G)− irrt,2(G)| ≤ irrt,2(G) + irrt,2(G),

we have the next corollary as a direct consequence of Theorem 2.1.

Corollary 2.1. If G is the complement of an n-vertex graph G, then∣∣irrt,2(G)− irrt,2(G)
∣∣ ≤ 2(n− 1)irrt(G) .

Theorem 2.2. If G is the complement of an n-vertex graph G, then

irro,2(G) + irro,2(G) = 2(n− 1)irr(G).

Proof. We note that

irro,2(G) + irro,2(G) =
∑

uv∈E(G)

|degG(u)2 − degG(v)2|+
∑

uv/∈E(G)

|degG(u)2 − degG(v)2|

=
∑

uv∈E(G)

|degG(u)2 − degG(v)2|+
∑

uv∈E(G)

|degG(u)2 − degG(v)2|
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=
∑

uv∈E(G)

|degG(u)− degG(v)|
[
degG(u) + degG(u)

+ degG(v) + degG(v)
]

= 2(n− 1)irr(G),

as desired.

From Theorem 2.2 and the inequality

|irro,2(G)− irro,2(G)| ≤ irro,2(G) + irro,2(G),

the next corollary follows.

Corollary 2.2. If G is the complement of an n-vertex graph G, then

|irro,2(G)− irro,2(G)| ≤ 2(n− 1)irr(G).

By an (r, s)-bidegreed graph, we mean a graph with the degree set {r, s}. The path graph with n vertices is denoted by
Pn.

Proposition 2.1. Let G be a connected n-vertex nonregular graph with n ≥ 3. Then,

3irr(G) ≤ irro,2(G) ≤ (2n− 3)irr(G), (1)

3irr(G) ≤ irro,2(G) ≤ (2n− 3)irr(G), (2)

3irrt(G) ≤ irrt,2(G) ≤ (2n− 3)irrt(G). (3)

If G ∼= Pn then the left equality sign in either of Inequalities (1), (2), (3) holds and if G is an (n−2, n−1)-bidegreed graph
then the right equality sign in either of Inequalities (1), (2), (3) holds.

Proof. We note that if u, v ∈ V (G) such that deg(u) 6= deg(v), then it holds that

3 ≤ deg(u) + deg(v) ≤ 2n− 3

with left equality if and only if one of deg(u) and deg(v) is 1 and the other is 2, while the right equality holds if and only if
one of deg(u), deg(v) is n− 1 and the other is n− 2. Hence, the result follows from the following inequality

3|deg(u)− deg(v)| ≤ |deg(u)2 − deg(v)2| ≤ (2n− 3)|deg(u)− deg(v)| .

If the graph G is triangle-free in Proposition 2.1, then the upper bound given in (1) can be improved.

Corollary 2.3. Let G be a connected nonregular triangle-free graph with n vertices such that n ≥ 3. Then,

irro,2(G) ≤ n · irr(G), (4)

If G is an (n−∆,∆)-bidegreed graph then the equality sign in (4) holds.

Proof. The result follows from the fact that deg(u) + deg(v) ≤ n for every uv ∈ E(G) because G is a triangle-free graph.

Now, we derive two lower bounds on the graph parameter irrt,2 for nonregular graphs. First such lower bound is actually
in terms of n1 andM1, where ni is the number of those vertices of a graph G which have degree i andM1 is the first Zagreb
index [4,6], which was firstly appeared in a formula reported in [12]. The first Zagreb index for a graph G is defined as

M1 = M1(G) =
∑
v∈V

deg(v)2.

A vertex of degree 1 is called a pendant vertex.
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Theorem 2.3. If G is an n-vertex nonregular graph with the first Zagreb indexM1 and with the number of pendant vertices
n1, then

irrt,2(G) ≥ n1(M1 − n)

with equality if and only if G is a (1,∆)-bidegreed graph.

Proof. If P is the set of all pendant vertices of G, then

irrt,2(G) =
∑

{u,v}⊆V

|deg(u)2 − deg(v)2|

=
∑

u∈V \P

n1|deg(u)2 − 1|+
∑

{u,v}⊆V \P

|deg(u)2 − deg(v)2|

≥ n1
∑

u∈V \P

(deg(u)2 − 1)

= n1[M1 − n1 − (n− n1)] = n1(M1 − n).

Clearly, the equation irrt,2(G) = n1(M1 − n) holds if and only if G is an (1,∆)-bidegreed graph.

By an (a, b, c)-tridegreed graph, we mean a graph with the degree set {a, b, c}. Now, we derive a lower bound on irrt,2

for nonregular graphs in terms of number of vertices and number of vertices of degrees 1 and 2.

Theorem 2.4. IfG is an n-vertex nonregular graph with n1 and n2 as the number of vertices of degrees 1 and 2, respectively,
then

irrt,2(G) ≥ 8nn1 + 5nn2 − 8n21 − 5n22 − 10n1n2

with equality if and only if G is either (1, 2, 3)-tridegreed graph or (1, 2)-bidegreed graph.

Proof. By definition of the graph parameter irrt,2, we have

irrt,2(G) =
∑

1≤i<j≤n−1

ninj(j
2 − i2)

= 3n1n2 +

n−1∑
j=3

n1nj(j
2 − 1) +

n−1∑
j=3

n2nj(j
2 − 4) +

∑
3≤i<j≤n−1

ninj(j
2 − i2)

≥ 3n1n2 +

n−1∑
j=3

n1nj(j
2 − 1) +

n−1∑
j=3

n2nj(j
2 − 4)

≥ 3n1n2 + 8n1

n−1∑
j=3

nj + 5n2

n−1∑
j=3

nj

= 8nn1 + 5nn2 − 8n2
1 − 5n2

2 − 10n1n2 .

Certainly, the equation irrt,2(G) = 8nn1 + 5nn2 − 8n21 − 5n22 − 10n1n2 holds if and only if G is either (1, 2, 3)-tridegreed
graph or (1, 2)-bidegreed graph.

Next, we solve the problem of finding graphs with the first eight minimum irro,2 values from the class of all n-vertex
trees for n ≥ 12. By direct computations, we find that the first eight smallest irro,2 values for the n-vertex trees are 6, 24,
32, 40, 42, 48, 50 and 56 for n ≥ 12. In what follows, we find all those graphs from the class of all n-vertex trees which
satisfy the inequality

irro,2(T ) ≤ 56 . (5)

The following known result brings us one step closer to the solution of the above-mentioned extremal problem concerning
irro,2.

Proposition 2.2. [19] If T is a tree with maximum degree ∆ then irro,2(T ) ≥ ∆(∆2 − 1) with equality if and only if T is
isomorphic to either a path or a tree containing only one vertex of degree greater than 2.

Due to Proposition 2.2, in order to find all the n-vertex trees satisfying Inequality (5), it is enough to consider only those
trees which have the maximum degree at most 3.

Lemma 2.1. [19] Let uv be an edge of a graph G satisfying one of the following conditions
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1. deg(u) = 1 and deg(v) ≥ 2;

2. at least one of the vertices u, v has degree 2.

If G′ is the graph obtained from G by inserting a new vertex x 6∈ V (G) of degree 2 on the edge uv, then irro,2(G′) = irro,2(G).

Let P := v0v1 · · · vr be a path in a graph G. The path P is called a pendant path if deg(v0) ≥ 3, deg(vr) = 1 and
deg(v1) = deg(v2) = . . . = deg(vr−1) = 2. While, the path P is called an internal path if deg(v0), deg(vl) ≥ 3 and deg(v1) =

deg(v2) = . . . = deg(vr−1) = 2. An edge incident to a pendant vertex is called a pendant edge.

Corollary 2.4. Let G be an n-vertex nonregular connected graph different from the path graph Pn. Let G? be the graph
obtained from G by replacing every pendant path of length greater than 1 with a pendant edge and every internal path of
length at least 3 by an internal path of length 2. Then irro,2(G) ≥ 8n1(G) with the equality if and only if G? is a (1, 3)-
bidegreed graph.

Proof. Suppose that M = {uv ∈ E(G?) : v is a pendant vertex of G?}. By Lemma 2.1, we have irro,2(G) = irro,2(G?) and
so

irro,2(G) =
∑
uv∈M

|degG?(u)2 − 1|+
∑

uv∈E(G?)\M

|degG?(u)2 − degG?(v)2|

≥
∑
uv∈M

|degG?(u)2 − 1| ≥ 8n1(G),

with the equality if and only if G? is a (1, 3)-bidegreed graph.

Lemma 2.2. [10] If T is a tree of order n with n1 ≤ 7, then n3 ≤ 5.

Lemma 2.3. [19] Let uv be an edge of a graph G satisfying deg(u) = deg(v) = 3. If G′ is the graph obtained from G by
inserting a new vertex x 6∈ V (G) of degree 2 on the edge uv, then irro,2(G′) = irro,2(G) + 10.

Table 1. All the classes of n-vertex trees satisfying ∆ = 2 or 3, 1 ≤ n3 ≤ 5 and irro,2 ≤ 56.

Class n3 n2 n1 m3,3 n irro,2
A1 0 n− 2 2 0 n ≥ 3 6
A2 1 n− 4 3 0 n ≥ 4 24
A3 2 n− 6 4 1 n ≥ 6 32
A4 3 n− 8 5 2 n ≥ 8 40
A5 2 n− 6 4 0 n ≥ 7 42
A6 4 n− 10 6 3 n ≥ 10 48
A7 3 n− 8 5 1 n ≥ 9 50
A8 5 n− 12 7 4 n ≥ 12 56

T (1) T (2) T (3) T (4) T (5)

Figure 1: The trees T (1), T (2), · · · , T (5).

Theorem 2.5. For n ≥ 12 and i = 1, 2, · · · , 8, if Ti ∈ Ai and if T is an n-vertex tree different from the trees T1, T2, · · · , T8,
then

irro,2(T ) > irro,2(Tj+1) > irro,2(Tj) ,

for j = 1, 2, · · · , 7, where the classes Ai’s are defined in Table 1 (for i = 1, 2, 3, 4, 5, we note that Ti ∈ Ai is isomorphic to either
the tree T (i), depicted in Figure 1, or some subdivision of T (i)).

Proof. If ∆ ≥ 4 then from Proposition 2.2, it follows that irro,2(T ) > 56. If n3 ≥ 6 then by Lemma 2.2, we have n1 ≥ 8

and hence Corollary 2.4 ensures that irro,2(T ) > 56. Bearing in mind Lemma 2.3, we find all the n-vertex trees satisfying
∆ = 2 or 3, 1 ≤ n3 ≤ 5 and irro,2 ≤ 56; see Table 1.

Remark 2.1. With the notations described in Theorem 2.5, the following statements hold.
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1. If n = 10 or 11, then irro,2(T ) > irro,2(Tj+1) > irro,2(Tj), for j = 1, 2, · · · , 6.

2. If n = 9, then irro,2(T ) > irro,2(T7) > irro,2(T5) > irro,2(T4) > irro,2(T3) > irro,2(T2) > irro,2(T1).

3. If n = 8, then irro,2(T ) > irro,2(T5) > irro,2(T4) > irro,2(T3) > irro,2(T2) > irro,2(T1).

4. If n = 7, then irro,2(T ) > irro,2(T5) > irro,2(T3) > irro,2(T2) > irro,2(T1).

5. If n = 6, then irro,2(T ) > irro,2(T3) > irro,2(T2) > irro,2(T1).

6. If n = 5 or 4, then irro,2(T ) > irro,2(T2) > irro,2(T1).
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