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Abstract

In this review, we present the main results related to bargraphs from the enumerative point of view. We consider several
geometrically motivated statistics in combinatorial families: compositions, words, set partitions, permutations and integer
partitions, when such families are presented as bargraphs. The review contains presentation of main results of each consid-
ered paper. The main discussion is preceded by short historical notes. Methods used throughout the review are discussed
briefly. The review includes an up-to-date bibliography.
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1. Introduction

The interest in bargraphs comes mainly from two different directions: enumeration of polyominoes and enumeration of
compositions of a natural number. The enumeration of polyominoes has been closely related to some works in physics,
percolation theory, computational science, recreational mathematics, etc. In regard to the second direction, compositions
(as well as other combinatorial families: words, set partitions, permutations, integer partitions, etc.), when presented as
bargraphs, create the possibility to consider them as geometric objects and to look for their geometric properties, such as
area, perimeter and so on.

In this review, we will focus in the second direction, i.e. enumeration of compositions (words, set partitions, permuta-
tions, etc) presented as bargraphs, according to geometrically motivated statistics.

1.1 Polyomiones
By a cell, we will mean the interior and the boundary of a unit square, whose vertices belong to integer lattice. A poly-
omino is a finite connected collection of cells, such that its interior is also connected. Depending on the number of cells,
polyominoes are classified as monomino - 1 cell, domino - 2 cells, tromino - 3 cells, tetromino - 4 cells, pentomino - 5 cells,
etc. In Figure 1, we present all of the polyominoes that have three cells, i.e. all trominoes.

Figure 1: Trominoes.

A column (resp. row) of a polyomino is the intersection between the polyomino and any infinite vertical (resp. horizontal)
strip of unit squares.

The word polyomino was used for the first time by Golomb in 1953 [60], although therein, it is mentioned that pentomi-
noes date back from antiquity. The first polyomino (pentomino) problem was posed in the book Canterbury Puzzles [47].
Gardner [57] contributed to the popularization of the term ’polyomino’ as well as to the problems related to polyominoes.
For a brief historical review on polyominoes, we refer the interested reader to [62].

The enumeration of polyominoes did not cope with its popularization and it was not easy at all as one may have the
impression in the beginning. To give some account on the difficulty of the problem, let P(n) denote the number of polyomi-
noes with n cells. From Figure 1 we conclude that P(3) = 6. It is easy to see that P(1) = 1 and P(2) = 2. The sequence
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P(n) looks like: 1, 2, 6, 19, 63, 216, 760, 2725, 9910, 36446, 135268, 505861, . . . and it stops after few more terms, and to be more
precise the latest known term is P(56) = 69150714562532896936574425480218 and it is due to Jensen [65]. The sequence
P(n) corresponds to the sequence A001168 in OEIS (see [96]).

Despite a lot of effort this “simply stated” and “elementary looking” enumeration problem, in general case, remains
unsolved. However there are algorithms to generate polyominoes inductively, and this can be easily seen from the simple
fact that each polyomino of order n+ 1 can be obtained by adding a square to a polyomino of order n. The earliest method
used to enumerate polyominoes is from [60]. As described there, to each polyomino in the list of polyominoes of order n,
one adds squares in all possible positions in such a way that the resulting polyomino of order n+ 1 is not a duplicate of one
already found. A more advanced method is due to Redelmeier [93]. His method besides the enumeration of polyominoes
with n+1 cells also provides an upper bound on their number and it is worth mentioning that when looking for polyominoes
of order n+ 1 it does not require to store the polyominoes of order n.

The most modern algorithms for enumerating fixed polyominoes are due to Conway [36] and Jensen [66], with the
second one being an improvement of the first one. The common of those algorithms is that they both are exponential in
n and both use the Transfer-matrix method. They count the number of polyominoes with a given certain width. Then,
clearly the number for all widths is the total number of polyominoes.

Moving into asymptotic aspects of polyomino enumeration we refer to [68]. It is conjectured that

P(n) ∼ cλn

n

where λ = 4.0626 and c = 0.3169. However, the results of this conjectured estimate are not ’close’ to the best known results.
It is proved the existence of the following limit

lim
n→∞

P(n)
1
n = λ.

The best-known lower bound for λ is 4.00253 and is due to [11]. The best known upper bound is λ < 4.65 and is due to [70].
The enumeration of polyominoes has motivated some works in physics [55, 62, 90, 92], in percolation theory [61, 97],

computational science [67], recreational mathematics [87], etc.
Since the enumeration of polyominoes in general case appeared to be out of reach at present, the research was focused

in studying some large subclasses of polyominoes. These subclasses have been enumerated with respect to various prop-
erties of the polyominoes. The most often considered properties that a polyomino has, include its area and its perimeter.
Naturally, the area of a polyomino is the number of cells and the perimeter is the length of the border. For example, given
a family of polyominoes under consideration, one might ask for the number of such polyominoes with a fixed area, or the
number of polyominoes with a fixed perimeter.

In the next few lines, we present a family of polyominoes, known as convex polyominoes [30, 99]. A polyomino is said
to be horizontally convex (vertically convex) if each of its rows (columns) is a single contiguous block of cells. In Figure 2
(leftmost and middle) it is shown an example of a horizontally convex and a vertically convex polyomino. A polyomino is said

Figure 2: A horizontally convex (left), vertically convex polyomino (middle), and a convex polyomino (right).

to be convex if it is both vertically and horizontally convex. In Figure 2 it is shown an example of a convex polyomino. We
remark that horizontally (vertically) convex polyominoes sometimes are refereed to as row (column) convex polyominoes.

A surprising simple result, proved by Delest and Viennot [41] shows that the number of convex polyominoes of perimeter
2n+ 8 equals (2n+ 11)4n − 4(2n+ 1)

(
2n
n

)
.

In this review, we will consider one of the very well known family of nonconvex polyominoes - bargraphs. We will begin
with a few equivalent definitions of bargraphs (see Figure 3).

Definition 1.1. A bargraph is a vertically convex polyomino, whose lower edge lies on the horizontal axis.

An alternative definition of the bargraph is the following one:

Definition 1.2. A bargraph (or a skyline polyomino) is a lattice path in N2
0, where N0 = {0, 1, 2, . . .}, that starts with (0, 0)

and ends upon their first return to the x-axis (sometimes, we require that after the first return to the x-axis the progression
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ends at (0, 0)). Each step is an up step (0, 1), a down step (0,−1), a right horizontal step (1, 0), or a left horizontal step (−1, 0).
The first step has to be an up step, the right horizontal steps must all lie above the x-axis, and the left horizontal steps must
all lie on the x-axis. An up step cannot directly follow a down step and vice versa. Clearly, the number of down steps must
equal the number of up steps.

Figure 3: A bargraph (left) and its lattice path (right).

In Figure 3 it is presented an example of a bargraph as a lattice path. A semi-perimeter of a bargraph π is half of the
perimeter of π, while the perimeter of π is the number of steps in the border of π. For instance, the semi-perimeter and the
perimeter of the bargraph in Figure 3 are 18 and 36 (including the steps on the x-axis), respectively.

We remark that a bargraph can be described as a sequence (called composition, see below) of columns c = c1c2 . . . cm

such that the jth column (from the left) contains cj cells or unit squares, where m denotes the number of horizontal steps
of the bargraph. That is, a bargraph with m columns (horizontal steps) can be described as a composition with m parts.
For example, the sequence 24123612 corresponds to the bargraph in Figure 3.

1.2 Compositions
A composition of a positive integer n is a sequence σ = σ1σ2 . . . σm of positive integers such that σ1 + · · · + σm = n. The
σ1, . . . , σm are called the parts, and m denotes the number of parts of σ. We refer to n as the order of the composition. For
example, the compositions of 3 are 111, 12, 21 and 3.

In the following few lines, we provide very brief information on compositions and refer the reader for more details to a
recent book [63]. The study of compositions can be traced back to Percy Alexander MacMahon, who in 1893, published his
work, entitled Memoir on the Theory of Compositions of a Number [72], which later on would become influential. Therein
compositions are described as partitions in which the order of occurrence of the parts is essential. Several results related
to compositions were derived. We mention here, for example, the total number of compositions, the number of compositions
with a given number of parts, presentation of a composition as a graph and so on. He was also able to provide answers to
some of the questions he tackled, by using simple combinatorial arguments. After MacMahon’s work [72] there was a long
break in research in enumerative combinatorics, with sporadic works, mainly on partitions and permutations, partially
influenced by [72]. The break was even longer in relation to compositions since till the late 1960s, there were only individual
studies on various aspects of them, but this constituted neither focused nor systematic research.

The situation changed positively in the 1970s when several groups of authors developed new research directions. The
study of compositions and words, besides enumerating the total number of those objects, also involved certain of their
characteristics (statistics). Several generalizations of previous results and the introduction of new concepts have appeared
in the last decade. In particular, the research on pattern avoidance in words and compositions has followed earlier very
active research on pattern avoidance in permutations.

In this review, we consider all the known studies on the enumeration of bargraphs according to some statistics. Due to
the geometric nature of bargraphs, we will mainly focus on those statistics having a geometric flavour.

In the following example, we show some interactions of the same objects: compositions - bargraphs, by giving situations
where statistics on bargraphs are easy to be expressed compared to analogue statistics on compositions and the other way
around.

Example 1.1. See below the statistics “perimeter”, “site-perimeter”, “water cells”, “number of pushes”, etc.

Figure 4 presents the all bargraphs with one, two and three cells. Clearly, to the these bargraphs correspond the
following compositions 1, 11, 2, 111, 21, 12, 3.

It is very common to encode the steps in a lattice path with letters as following: “up step” – “u”, “down step”–“d”,
“horizontal step”–“h”. Using this notation the bargraphs in Figure 4 will be encoded as: uhd, uhhd, uuhdd, uhhhd, uuhdhd,
uhuhdd and uuuhddd, respectively.
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Figure 4: All the bargraphs with one, two or three cells.

1.3 The structure of the paper
The structure of the paper is as follows. We begin the next section by introducing the notations for the further sections,
listing all the statistics that we will cover through the review and providing some preliminary results. At the end of the
section, we will emphasize, without many details, the methods and techniques that will be used throughout the review.
From Section 3 and afterward, in the beginning, we will introduce some definitions and notations.

We consider Bargraphs in Section 3. We begin this section with the table presenting the time line of research for
bargraphs. We continue the work by presenting the main results for most important statistics on bargraphs, in most
of the cases each of them occupying a subsection. We will cover the following statistics: number of horizontal steps,
number of up steps, perimeter, site-perimeter, lattice paths (with focus on Dyck paths and Motzkin paths), inner-site
perimeter, height, width, walls, descents, up steps, levels, peaks, water cells, protected cells, corners, interior vertices and
edges, depth, durfee squares and counting bargraphs (bargraphs in bargraphs). Other statistics appearing throughout the
paper, although not as individual sections include the number of cells in the rightmost column, horizontal half-perimeter,
vertical half-perimeter, the position of the first level, height of the first level, position of the first peak, the distance between
leftmost and rightmost peaks, the height of the first column, double rises, peaks/valleys of width `, corners of type dh and
uh, horizontal segments, horizontal segments of length `, length of the first descent, number of columns of height h, least
column height, the width of the leftmost horizontal segment, occurrences of UHU , length of the initial staircase, area,
initial u steps, final d steps, sum of heights of valleys, grounded squares, bargraph c of one column, bargraph 11 . . . 1 of one
row, bargraph c1, bargraph cd, border cells, and tangent cells.

We consider Words in Section 4. After the table presenting the time line of research for words, we present the main
results for the most important statistics on words. We will cover the following statistics: perimeter, site-perimeter, water
cells and shedding light.

In Section 5 we consider Set partitions. As in other previous sections, we begin with the time line of research for set
partitions. Then we present the main results for the most important statistics on set partitions. We will cover the following
statistics: area and up steps, perimeter, site-perimeter, interior vertices, water cells, corners, 1 × 2 rectangles and 2 × 2

squares.
Statistics on Permutations presented as bargraphs are covered in Section 6. After the time line of research for permu-

tations, we present the following statistics: descents and up steps, site-perimeter, water cells and pushes.
In Section 7, we cover statistics: perimeter and corners in integer partitions presented as bargraphs.
We end the review with Section 8, in which we present several extensions and generalizations for bargraphs. More

precisely, we consider x-bargraphs, cylindrical bargraphs, superdiagonal bargraphs, symmetric bargraphs, weakly alter-
nating bargraphs and t-bargraphs, bargraphs and a topological index.

We end the paper by presenting an updated bibliography of research covered in the review and related either directly
or indirectly to bargraphs.

2. Notations, preliminaries, statistics and methods

Let N denote, as usual, the set of all nonnegative integers. For n ∈ N denote by [n] the set of integers {1, 2, . . . , n}. We
denote the set of all bargraphs (including the empty bargraph) by B, the set of all bargraphs with n cells by Bn and the set
of all bargraphs with n cells and m columns by Bn,m. Clearly, B = ∪n≥0Bn and Bn = ∪nm=0Bn,m.

A combinatorial class F is a set such that each element in it has a size in N. In this context the size of element f ∈ F is
denoted size(f). A statistic st is a function from F to N. For given statistics st1, st2, . . . , std on F , we define the generating
function Bst1,st2,...,std(t, x1, x2, . . . , xd) where t marks the size and xi marks sti for all i = 1, 2, . . . , d. That is,

Fst1,st2,...,std(t, x1, x2, . . . , xd) =
∑
π∈F

tsize(π)
d∏
i=1

x
sti(π)
i .

We are not only interested in finding an explicit formula for this generating function, but would also like to find the expected
value of a given fixed statistic. The expected value of the statistic st1 (for example) on all members of F having size n is
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given by
[tn] ∂∂qFst1,st2,...,std(t, q, 1, 1, . . . , ) |q=1

[tn]Fst1,st2,...,std(t, 1, 1, 1, . . . , )
.

We will use this observation throughout the paper, where F can be either set of bargraphs, set partitions, k-ary words,
permutations, or set of integer partitions (see below).

The aim of this paper is to review all the known results up to today in the area of statistics on bargraphs. Below we list
most of the statistics (in alphabet order) that this paper covers. For B ∈ B, we define the following statistics:

• #L denotes the number of occurrences of the word L.
For example, #u is the number of up steps, #h is the
number of horizontal steps, etc.

• Border cell of B is a cell inside of B that has at least
one edge in common with an outside cell of B.

• Corner of B is a point of intersection of an u step or a
d step with a h step.

• Corner of type dh in B is a point proceeded by d step
and followed by h step.

• Corner of type uh in B is a point proceeded by u step
and followed by h step.

• Depth of a cell c inB, denoted by dep(c), is the minimum
number of horizontal or up steps to exitB starting from
c. The depth of B is defined as dep(B) = maxc dep(c),
where the maximum is over all cells c of B.

• Descent in B is two consecutive columns such that the
size of the left column is greater than the size of the
right column.

• Edge visiting is a horizontal step of the bargraph which
lies on the x-axis.

• Height of a peak/valley of B is the y-coordinate of its h
steps.

• Height of B is the maximum of y-coordinate that it
reaches, that is, the size of the highest column in it.

• Height of a column in B is the size of the column.

• Horizontal half-perimeter of B is the half of #h in the
perimeter of B.

• Horizontal segment in B is an occurrence hj in B with
j maximal, where j ≥ 1.

• Horizontal segment of length ` in B is an occurrence h`

in B with ` maximal.

• Inner site-perimeter ofB is the number of cells insideB
that have at least one edge in common with an outside
cell.

• Interior vertex of B is a vertex that is adjacent to ex-
actly four different cells of B.

• Interior edge of B is an edge that is formed from inte-
rior vertices.

• Length of first descent in B is the number of first con-
secutive d steps.

• Length of the longest initial staircase in B is the length
of the longest initial sequence of the form uhuh · · · in
B.

• Level in B is a pair of consecutive columns with the
same size.

• Number of cells in the rightmost column inB is the size
of the rightmost column of B.

• Number of double rises in B is the number of triples of
consecutive columns such that the size of the columns
is increasing.

• Number of double falls in B is the number of triples of
consecutive columns such that the size of the columns
is decreasing.

• Peak in B is an occurrence of uhjd for some j ≥ 1.

• Peak of width ` in B is an occurrence of uh`d.

• Perimeter of B is the length of its border.

• Rise in B is formed by two consecutive columns such
that the size of the left column is smaller than the size
of the right column.

• Shedding light cell is a cell whose edge facing north or
the edge facing west or both is hit by the ray of light
under the assumption that a light source at infinity in
the North-West direction sheds parallel light rays onto
the bargraph. It is also called a lit cell.

• Site-perimeter of B is the number of nearest-
neighboring cells outside the boundary of B.

• Tangent cell of B is a cell inside of B which is not a bor-
der cell ofB and that has at least one vertex in common
with an outside cell of B.

• Valley of B is an occurrence of dhju for some j ≥ 1.

• Valley of width ` of B is an occurrence of dh`u.

• Vertical half-perimeter of B is the half of #u in the
perimeter of B.

• Vertex visiting is a point on the bargraph which lies on
the x-axis.

• Water cells or Water capacity ofB is the number of cells
that keep the water after it falls through bargraph.
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Before we start to discuss specific counting problem on bargraphs, we present several general methods and techniques
that were used in deriving the results.

Wasp-waist decomposition: Bousquet-Mélou and Rechnitzer [30] and Prellberg and Brak [92] decompose the graphs
into two smaller bargraphs at a special column. They called it the Wasp-waist decomposition, and it depends on the leftmost
column of height 1. More precisely, any nonempty bargraph π is decomposed as either π = 1, π = 1π′′, π = π′, π = π′1 or
π = π′1π′′, where the size of each column in π′ is at least two and π′, π′′ are nonempty bargraphs.

Scanning-element algorithm or Column by column: The Scanning-element algorithm has been suggested by Firro
and Mansour [53] to study the number of permutations of length n that satisfy a certain set of conditions. Then it is used
by Heubach and Mansour in [63] to study the number of compositions of n according to a fixed statistic. The main idea of
this algorithm is to scan each composition/bargraph letter by letter (column by column) either from left to right or from
right to left. In each step, we try to see if our set with the letters that have been scanned is in bijection with another set
with less scanned letters.

Adding a slice: Sometimes, instead of removing, it is more convenient to add a column to the structure, for instance,
see Example III.22 in [54]. This method is introduced while studying some combinatorial problems which were suggested
in statistical mechanics, see [98].

Maximal column: The main idea in this method is to consider the column of maximal size, which is to consider the
set of all bargraphs of B such that each column has size at most d. Denote such set by B(d). Then each bargraph B ∈ B(d)

can be written as B(0)dB(1)d · · ·B(s−1)dB(s), for some s ≥ 0, where B(j) ∈ B(d−1) for all j = 0, 1, . . . , s. This factorization
gives a recursive relation between the number of bargraphs of B(d) and those bargraphs of B(d−1). This method is used a
lot in counting occurrences of “subword patterns”, for example, see [63].

Note that instead of looking at the column with maximal size, we can consider the column with minimal size, which is
to write each bargraph in B as B(0)1B(1)1 · · ·B(s−1)1B(s), for some s ≥ 0, where each column of B(j) ∈ B has size at least 2,
for all j = 0, 1, . . . , s. Clearly, considering the column with the minimal size is equivalent to Wasp-waist decomposition.

3. Statistics on bargraphs

By the obvious bijection between the set of bargraphs with n cells and compositions of n, we have that the number of
bargraphs with n cells is given by 2n−1 (see [63]). Such a bijection implies that a given generating function for the number
of compositions of n according to some statistics stj (see [63]), is the same generating function for the number of bargraphs
according to the area (number of cells) and statistics stj . Therefore, from now on, we will not be interested in counting
bargraphs according to the area and statistics stj , unless these statistics are not considered on compositions. To give an
example, the problem of counting the number of bargraphs according to the area and perimeter is not discussed in [63],
however, in this section, we will present a complete answer for it (see Theorem 3.3).

3.1 Counting bargraphs
Let Sm,n be the number of bargraphs from (0, 0) to (m, 0) with m horizontal steps and n up steps. Clearly, the perimeter
of a bargraph in Sm,n is 2m + 2n (including the steps on the x-axis). Define the following generating function f(x, y) =∑
n,m≥0 Sm,nx

myn. Geraschenko [58] showed that f = f(x, y) satisfies

f = y

(
x

1− x
+

1

(1− x)2
· f

1− xf
1−x

)
.

Using the Lagrange inversion formula [99], we have the following result.

Theorem 3.1. [58] For all n,m ≥ 0, Sm,n =
∑n
i=0N(n − 1, i)

(
m+2i−1
2n−2

)
, where N(n − 1, i) are the Narayana numbers

(see [101]).

Moreover, in [58] the above result is interpreted by constructing a bijection between Dyck paths and bargraphs, see
Subsection 3.4.
In this section, we describe the time line of the research on counting bargraphs according to some statistics (see Table 1).

3.2 Perimeter
Using Wasp-waist decomposition, we can state the following result.
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Year Statistic, Reference Theorem
1982 Perimeter, [45] 3.2
1990 Perimeter, Area [91] 3.2, 3.3
1993 Perimeter, Area [90] 3.2, 3.3
1995 Perimeter [92] 3.2
1997 Area [31,37,42] 3.8
2002 Edge visiting, Vertex visiting [64]
2003 Number of cells in the rightmost column, Horizontal half-perimeter, Vertical half-perimeter,

Site-perimeter [30]
3.4

2015 Horizontal and up steps [58] 3.1
Height [25] 3.11
Width [25] 3.13
Levels, Position of the first level, Height of the first level, [15] 3.18

2016 Peaks, Position of the first peak, Height of the first peak, Distance between leftmost and right-
most peaks [14]

3.17

Staircases [27]
Descents, Up-steps, Levels [16] 3.15, 3.16

2017 Walls [12] 3.14
Height of the first column, Double rises, Peaks/Valleys of width `, Corners of type dh and uh,
Horizontal segments, Horizontal segment of length `, Length of the first descent, Number of
columns of height h, Least column hight, Width of the leftmost horizontal segment, Occurrences
of UHU , Length of the initial staircase, Area [42]

3.8

2018 Corners [82] 3.23
Water Cells [85], [17] 3.19, 3.20
Peaks, Valleys, Semi-perimeter, initial u steps, final d steps, Sum of heights of valleys [43] 3.7
Durfee squares, Grounded squares [7] 3.26, 3.27
Bargraph c of one column, Bargraph 11 · · · 1 of one row, Bargraph c1, Bargraph cd [79] 3.29

2019 Protected Cells [86] 3.21, 3.22
Interior vertices and edges [78] 3.24, 3.25
Inner site-perimeter [19,76] 3.10
Border cells, Tangent cells [76] 3.9
Perimeter [34,44] 8.1
Depth [23] 3.28

Table 1: Time line of research for bargraphs.

Theorem 3.2. [30,31,92] The generating function that counts all nonempty bargraphs is given by

B(x, y) =
1− x− y − xy −

√
(1− x− y − xy)2 − 4x2y

2x

where x counts the number of horizontal steps and y counts the number of vertical up steps.

Thus, the generating function for nonempty bargraphs in terms of the semi-perimeter often called the isotropic gen-
erating function, is given by B(x, x). Feretić, [49] derived again the expression for B(x, y). Moreover, in [49] it is found
the generating function for column-convex polyominoes according to the perimeter on the honeycomb lattice (A plane with
hexagonal tiles is called a hexagonal lattice and is also known as the honeycomb lattice).

The asymptotics of the coefficient of xn in B(x, x) has been considered, and it is computed the dominant singularity ρ
which is the positive root of 1− 4x+ 2x2 + x4 = 0. Thus, by singularity analysis (for example, see [54]) we have

[xn]B(x, x) ∼ 1

2

√
1− ρ− ρ3
πρn3

ρ−n with ρ =
1

3

(
−1− 28/3

(13 + 3
√

3)1/3
+ 21/3(13 + 3

√
33)1/3

)
≈ 0.295598 · · · . (1)

Blecher, Brennan and Knopfmacher [16] by using Scanning-element method refined Theorem 3.2, by finding the generating
function for bargraphs according to the number of horizontal steps, number of up steps and area, where it is shown that

Theorem 3.3. [16] We have

B#h,#u,area(x, y, q) =
y
∑
i≥0

xi+1(y−1)iq(
i+2
2 )∏i

j=1(1−qj)
∏i+1
j=1(1−yqj)

1−
∑
i≥0

xi+1(y−1)iq(
i+2
2 )∏i+1

j=1(1−qj)
∏i
j=1(1−yqj)

.

Moreover, in [16], by differentiating B#h,#u,area(x, x, q) with respect to q and evaluating at q = 1, it is found that
the average semi-perimeter of a bargraph with n cells is given by 15n+29

18 − 2−n(1 + (−1)n
9 ). In the computation of the
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asymptotics, in [16] it is used singularity analysis (see for instance [54]) and showed that the average area for bargraphs
of semi-perimeter n is asymptotic to

√
πρ3/2(2−ρ−ρ3)2

2(1+ρ2)2(1−ρ−ρ3)3/2n
3/2 as n 7→ ∞.

The enumeration of bargraphs according to the perimeter (see Theorem 3.2) has been considered as “SOS” walks by
Owczarek and Prellberg [90] (see also Penaud [91]), where has been derived the generating function for the number of
bargraphs according to the perimeter and the area (see [37,45] to find the motivation on perimeter and the area statistics).
In the case of counting column-convex and row-convex polyominoes according to the perimeter, we refer the reader to
[10,29,31,32,38,39,41,46,49–52,71] and references therein.

3.3 Site-perimeter
A staircase polyomino is a polyomino such that its perimeter contains only up and horizontal steps. Delest, Gouyou-
Beauchamps and Vauquelin [40] showed that the generating function for staircase polyominoes according to the site-
perimeter is given by

x2

2
(1− x2 − 2x3 + x4 − (1 + x− x2)

√
(1 + x+ x2)(1− 3x+ x2)).

The techniques used in deriving this generating function were quite close to the techniques used for deriving the generating
function B(x, x). Using the Wasp-waist decomposition of bargraphs, Bousquet-Mélou and Rechnitzerin [30] studied the
number of bargraphs according to the site-perimeter.

Theorem 3.4. [30] Let A(x) =
1+2x3−x4−x5−

√
(1+2x3−x4−x5)2−4x2(1+x−x2)2

2x2(1+x−x2) . Then the generating function for the number of
bargraphs according to the site-perimeter is given by

−x3
∑
j≥0

Ajx(
j+5
2 )

(1+x−x2)j
∏j
i=1(1−xi)

∏j
i=1(1−xi+2A2)∑

j≥0
Ajx(

j+5
2 )

(1+x−x2)j
∏j
i=1(1−xi)

∏j
i=1(1−xi+2A2)

(1−Axj+1)(1−Axj+2)+A2x2j+4(1−x)
(1−Axj)(1−Axj+1)

.

Moreover, the number of bargraphs with site-perimeter n is asymptotic to Cξ−nn−3/2 for some positive constant C, where
ξ = 0.45002 . . . is the smallest positive root of the polynomial 1− 2x− 2x2 + 4x3 − x4 − x5.

By appending one or two columns at a time to a bargraph, in [30] it is shown the following result.

Theorem 3.5. [30] The generating function B(s, x, y, q) for the number of bargraphs according to the number of cells in the
rightmost column, horizontal half-perimeter, vertical half-perimeter and site-perimeter (marked by s, x, y, q) satisfies

B(s, x, y, q) = a(s) + b(s)B(1, x, y, q) + c(s)B(sq, x, y, q) + d(s)B(sq, x, y, q),

where

a(s) =
sxyq4

1− syq2
, b(s) =

sxq((1− syq)(1− syq2) + s2xy2q4(1− q))
(1− s)(1− syq)(1− syq2)

, c(s) =
sx2yq4(1− q)

(1− yq)(1− syq)(1− syq2)
,

d(s) = −xq((1− yq)(1− q)(1 + s2yq2) + sq((1− yq)(1 + yq2 − 2yq) + xyq3(1− q)))
(1− yq)(1− s)(1− syq2)

.

In [30] is used the kernel method to solve the functional equation in the above theorem. It is shown the following result.

Theorem 3.6. [30] The generating function for the number of bargraphs according to horizontal half-perimeter, vertical
half-perimeter and site-perimeter (marked by x, y, q) is given by

−yq3
∑
j≥0

Ajx2jq3j(1−q)j(yq)(
j+2
2 )

(1−yq)j(1+xq−xq2)j
∏j
i=1(1−qi)

∏j
i=1(1−qi+2y2A2)∑

j≥0
Ajx2jq3j(1−q)j(yq)(

j+2
2 )

(1−yq)j(1+xq−xq2)j
∏j
i=1(1−qi)

∏j
i=1(1−qi+2y2A2)

(1−A(yq)j+1)(1−Aq(qy)j+1)+xA2q2(yq)2j+2(1−q)
(1−A(yq)j)(1−A(yq)j+1)

,

where A is the unique power series in q which satisfies

(1− yq)(1−A)(1−Ayq2) = −xq(((1− yq)(1− q)(1 +A2yq2) +Aq((1− yq)(1 + yq2 − 2yq) + xy2q3(1− q)))).
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3.4 Lattice paths
A Motzkin path of length n is a lattice path that starts at (0, 0), ends at (n, 0), remains weakly above the x-axis, and
consists of up steps U = (1, 1), down steps D = (1,−1) and horizontal (or level) steps H = (1, 0). A Dyck path of length
2n or semi-length n is a Motzkin path of length 2n that has no level steps. It is well-known that the number of Motzkin
paths of length n and Dyck paths of semi-length n is given by the nth Motzkin number and nth Catalan number 1

n+1

(
2n
n

)
,

respectively. Given P any Dyck path, a peak in P is an occurrence of UD, a valley in P is an occurrence ofDU , and a return
in P is a down step that ends on the x-axis. The height of a peak in P is the maximal y-coordinate of its points. The height
of P is the maximal y-coordinate it reaches.

Dyck paths: Following results obtained by Deutsch and Elizalde [43], we establish a bijection φ between Dyck paths
and bargraphs, where the semi-length of a Dyck path becomes the semi-perimeter minus the number of peaks of the
corresponding bargraph. Here is the construction. Let P be any Dyck path, define the height of each step of P to be the
highest point of the y-coordinates of it. In this context, we denote the sequence of these y-coordinates by Y C(P ). For
example, Figure 5 presents the Dyck path P = UDUUDUDDUDUD with Y C(P ) = 111222211111. We define φ(P ) as

��@@�
�
�@@��@

@
@��@@��@@

Figure 5: A Dyck path and its corresponding bargraph.

cd11 c
d2
2 · · · cdmm , where di is the length of the ith maximal block of ci consecutive letters (here cd means the word cc · · · c with

d occurrences of c). For instance, if P is the Dyck path in 5 then Y (P ) = 111222211111, so c1 = 3, d1 = 1, c2 = 4, d2 = 2,
c3 = 5 and d3 = 1, which implies φ(P ) = 12211 (see Figure 5).

Theorem 3.7. [43] The map φ exhibited above is a bijection between Dyck paths and bargraphs. Moreover, if P is any Dyck
path and B = φ(P ) is its corresponding bargraph, then:

• semi-length of P=semi-perimeter ofB - number of peaks
in B;

• number of peaks in P=#h in B - number of valleys in
B;

• sum of heights of peaks in P=area of B - sum of heights
of valleys in B;

• height of P=height of B;

• Number of initial up steps in P=number of initial u
steps in B;

• Number of final down steps inP=number of final d steps
in B;

• number of returns in P=number of h steps at height 1

in B + 1− δP of height one, where δX is defined as 1 when X is
true and 0 otherwise.

As a corollary of the above result, it is shown that the number of bargraphs B having semi-perimeter of B-number of
peaks in B=m is given by the mth Catalan number 1

m+1

(
2m
m

)
. Moreover, in [43] it is shown that the generating function

G(x, q) =
∑
n≥1

∑
π∈Bn q

number of peaks inπxsemi-perimeter ofπ satisfies x(1−x)G2(x, q)− (1− 3x+x2 + qx3)G(x, q) + qx2(1−x) = 0. Thus,

G(x, q) =
qx2(1− x)

1− 3x+ x2 + qx3
C

(
qx3(1− x)2

(1− 3x+ x2 + qx3)2

)
,

where C(x) = 1−
√
1−4x
2x is the generating function for the Catalan numbers. In particular,

G(1/q, q) =
∑
n≥1

∑
π∈Bn

qsemi-perimeter of π-#peaks in π = C(q)− 1 =
∑
m≥1

1

m+ 1

(
2m

m

)
qm.

Note that Blecher et al. [25] established a bijection between Dyck paths avoiding UUDD and bargraphs. Let fh(x)

be the generating function for the number of Dyck paths avoiding UUDD with height at most h. By the First return
decomposition of a Dyck path, in [25] is shown that fh(x) = 1/(1− x(fh−1(x)− x)) with f0(x) = 1 and f1(x) = 1/(1− x). By
induction on h, we see that

fh(x) =
(1− x)Uh−2(t)−

√
xUh−3(t)√

x((1− x)Uh−1(t)−
√
xUh−1(t))

, (2)
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where t = (1 + x2)/(2
√
x) and Um is the mth Chebyshev polynomial of the second kind (which is defined via the recurrence

relation Um(t) = 2tUm−1(t)− Um−2(t) with the initial conditions U0(t) = 1 and U1(t) = 2t, see [95]).

Motzkin paths: Janse van Rensburg and Rechnitzer [64] established a bijection between Motzkin paths and bar-
graphs. Using the Wasp-waist decomposition of a bargraph (as a path from (0, 0) to (m, 0)), therein it is found that the
generating function g(z, w) = B#u+#h+#d,ev(z, w) (ev is the number of horizontal steps on x-axis) is given by

g(z, w) =
wz + z2g(z, 1) + wz3g(z, 1)

1− wz − wz3g(z, 1)
.

Moreover, if h(z, v) = B#u+#h+#d,vv(z, w) (vv is the number of vertices of the path on x-axis), then

h(z, v) =
v2z + v2z2h(z, 1) + v3z3h(z, 1)

1− vz + v2z3h(z, 1)
.

For motivation and more details on these generating functions, we refer the interested reader to [64].
Following [64], Deutsch and Elizalde [42] noticed a bijection between Motzkin paths and bargraphs as follows. Given a

path in M , insert an up step at the beginning and a down step at the end, and then turn all the up steps U = (1, 1) into u,
all the down steps D = (1,−1) into d, and leave the horizontal steps H = (1, 0) unchanged as h. By using this bijection, it
is derived the generating function B(x, y) (as in Theorem 3.2). Moreover, it is shown the following result.

Theorem 3.8. [42] Let Bst = B#h,#u,st(x, y, q) be the generating function for the number of bargraphs according to the
number of horizontal steps, the number of up steps and occurrences of the statistic st.

• If st=height of the first column, then

(1− q(1− x+ y + xy) + q2y)Bst
2 − q(1− y)(1− x− qy − qxy)Bst + q2xy(1− y) = 0.

• If st=number of double rises, then xB2
st − (1 − x − qy − xy)Bst + xy = 0. Moreover, there exists a bijection between

bargraphs of semi-perimeter n+ 1 with no double rises and secondary structures on n vertices (A secondary structure
is a simple graph with vertices [n] such that (i, i+ 1) is an edge for all i, every i is adjacent to at most one vertex j with
|j − i| > 1, and there are no two edges (i, k), (j, l) with i < j < k < l).

• If st=number of valleys of width `, then (1− (1− q)(1− x)x`−1)Bst
2 − (1− x− y − xy − (1− q)x`+1y)Bst + xy = 0.

• If st=number of peaks of width `, then xBst2 − (1− x− y − xy − (1− q)x`+1y)Bst + y(x− (1− q)(1− x)x`) = 0.

• If st=number of corners of type DH, then qxB2
st − (1− x− y + xy − qxy − xy)Bst + xy = 0.

• If st=number of corners of type UH, then xB2
st − (1− x− y + xy − xy − qxy)Bst + qxy = 0.

• If st=number of horizontal segments, then qxB2
st − (1− x− y + xy − 2qxy)Bst + qxy = 0.

• If st=number of horizontal segments of length 1, then

x(q + x− qx)B2
st − ((1− x)(1− y)− 2xy(q + x− qx))Bst + xy(q + x− qx) = 0.

• If st=length of the first descent, then

Bst = q(1− x− y)
1− x− y − xy −

√
(1− y)(1− x)2 − y(1− y)(1 + x)2

2x(1− x− qy)
.

• If st=x-coordinate of the first descent, then

Bst = qy
1 + (1− 2q)x− y − xy −

√
(1− y)(1− 2x− y − 2xy + x62− x2y)

2(1− q − (1− q)y + q(q − 1)x+ qxy)
.

• If sth=number of columns of height h, then Bsth = y
x(1−x−xBsth−1

) −
y(1+x)
x with

Bst1 =
(1− x)2 − y − (2q − 1)x2y − (1− x)

√
(1− y)(1− x)2 − y(1− y)(1 + x)2

2x(1− qx)
.
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• If st=least column height, then

Bst = q(1− y)
1− x− y − xy −

√
(1− y)(1− x)2 − y(1− y)(1 + x)2

2x(1− qx)
.

• If st=width of the leftmost horizontal segment, then

Bst =
q(1− q)xy

1− qx
+ q

(1− x)2 − y − (2q − 1)x2y − (1− x)
√

(1− y)(1− x)2 − y(1− y)(1 + x)2

2x(1− qx)
.

• If st=number of occurrences of uhu, then xB2
st − (1− x− y − qxy)Bst + xy = 0.

• If st=length of the initial staircase uhuh . . ., then Bst = q(A−(1−x+qx2−q2xy)
√
B)

2x(1−q2x+q2x2−q2xy+q2(q2−1)x2y) , where A = (1− x)2 − y + q(1−
x+ y)x2− q2x(1− y)y+ (q2 + q2y− 1)x2y+ q(1− 2q2)x3y and B = (1− y)((1−x)2− y(1 +x)2). Moreover, the generating
function for the number of bargraphs according to the number of horizontal steps, up steps, the number of odd-height
and number of even-height columns is given in [42].

• If st=area=number of cells, then
Bst = −y +

y

−qx+ 1
1−y+ y

−q2x+ 1
1−y+ y

−q3x+ 1

...

.

3.5 Inner site-perimeter
Let B be a bargraph. The inner site-perimeter is the number of cells inside B that have at least one edge in common with
an outside cell. A border cell of B is a cell inside of B that has at least one edge in common with an outside cell of B.
Clearly, the inner site-perimeter of B is the number of border cells of B. A tangent cell of B is a cell inside of B which is
not a border cell of B and that has at least one vertex in common with an outside cell of B. By decomposing each bargraph
regrading to columns of size 1, Mansour [76] showed the following result.

Theorem 3.9. [76] Let C(x, y, p, q) be the generating function for the number of bargraphs according to the area, width,
number of border cells and number of tangent cells marked by x, y, p and q, respectively. Then the generating function
C(x, y, p, q) satisfies

C(x, y, p, q) =
C(x, pxy, p, q)

1− pxyC(x, pxy, p, q)
,

where C(x, y, p, q) satisfies

C(x, y, p, q) = 1 + p2W (y) + p2
(
C(x, xy, p, q)− 1− pW (y)

)
+

pxy
(
1 + p2W (y) + pq

(
C(x, xy, p, q)− 1− pW (y)

))2
1− pxy

(
1 + pqW (y) + q2

(
C(x, xy, p, q)− 1− pW (y)

))
and W (y) = x2y

1−px .

By differentiating C(x, y, p, q) with respect to p or q and evaluating at p = 1 or at q = 1, we obtain the total number of
border and tangent cells.

Theorem 3.10. [19,76] The average number of border cells (inner site-perimeter)/tangent cells over all bargraphs of Bn is
given by 27

28n+ 13
49 +O(n/2n)/ 3n

112 −
71
392 +O(1/2n), respectively.

3.6 Height
Using the Wasp-waist decomposition of any bargraph, Blecher et al. [25], studied the generating function Hh(x, y) for the
number of bargraphs with height at most h, where xmarks the total number of horizontal steps, y marks the total number
of up steps.

Theorem 3.11. [25] The generating function Hh(x, y) is given by xy(th+−t
h
−)

x2y(th−1
− −th−1

+ )+(1−x)((t+−y−xy)th−1
+ −(t−−y−xy)th−1

− )
, where

t± =
1−x+y+xy±

√
(1−x+y+xy)2−4y
2 .

Using (1) and (2), in [25] is studied the average height of Dyck paths avoiding UUDD of semi-length n, and it is shown
the following result.
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Theorem 3.12. [25] The average height of Dyck paths avoiding UUDD of semi-length n and the average height of bargraphs
of semi-perimeter n is asymptotic to 1

2

√
nπ

ρ(1−ρ−ρ3) .

Note that to find the average of the statistic under consideration over all bargraphs with semi-perimeter n, as n 7→ ∞,
we do the following steps: (1) Find a formula for the generating functionBstat(x, y, w) (not necessary to be explicit), (2) Find
∂
∂wBstat(x, x, w) |w=1, (3) Using singularity analysis of (1), find the asymptotics of the coefficient of xn in ∂

∂wBstat(x, x, w) |w=1,
then at the end (4) we divide what we got from Step 3 by (1) (the asymptotic formula of the number of bargraphs with semi-
perimeter n, as n 7→ ∞).

3.7 Width
By Theorem 3.2, we see that the generating function B(xy, y) counts all the bargraphs according to the width (marked by
x) and total semi-perimeter (marked by y). In [25] is studied the generating function B(xy, y) and it is shown the following
result.

Theorem 3.13. [25] The average width of bargraphs of semi-perimeter n is asymptotic to (1−ρ)(1−2ρ−ρ2)n
ρ2(1−ρ−ρ3) , where ρ is defined

in (1).

3.8 Walls
A wall in a bargraph is a subword consisting of a maximal number of adjacent up steps. If a wall consists of precisely r
up steps it is called a wall of size r. In the latest case, it can neither preceded nor followed by another adjacent up step.
Referring to Figure 3, there are 3 walls of size 1; 2 walls of size 2 and 1 wall of size 3. The main results obtained by Blecher,
Brennan and Knopfmacher [12] include the generating functions for the number of bargraphs according to the number of
walls of size r, horizontal steps, and vertical steps and asymptotics for the total number of walls of size r. In deriving their
results, the authors used a variant of what is known as Wasp-waist decomposition. After they described the decompositions
and turned the problem into generating functions, they stated the following result.

Theorem 3.14. [12] The generating function for the total number of walls of size r over all bargraphs is given by

21−rxy(−1 + y)(1 + x(−1 + y) + y
√
X)r√

X(−1 + x− y − xy +
√
X)

,

where x counts horizontal steps, y counts vertical steps and X = (1− y)(1 + x2(1− y)− y − 2x(1 + y)). The average number
of walls of size r is asymptotic to 21−r(1−ρ)ρ2(1+ρ2)1−r·n

1−ρ−ρ3 as n→∞, where ρ = 0.295598 . . . is the dominant singularity, which
is the positive root of polynomial 1− 4x+ 2x2 − x4.

3.9 Descents, up-steps, levels
Blecher, Brennan and Knopfmacher [16] studied the generating function for the number of bargraphs according to h steps,
u steps, number of descents (des), and area, and it is shown the following results.

Theorem 3.15. [16] We have

B#h,#u,des,area(x, y, p, q) =
y
∑
i≥1

xiq(
i+1
2 )(py−1)i−1∏i

j=1(1−yq
j(p−1)/(py−1))∏i

j=1(1−qj)
∏i
j=1(1−yqj)

1−
∑
i≥1

xi(py−1)i−1q(
i+1
2 )∏i

j=1(1−yqj(p−1)/(py−1))∏i
j=1(1−qj)

∏i−1
j=1(1−yqj)

.

Moreover, the average number of descents in bargraphs of semi-perimeter n is asymptotic to ρ(1−ρ2)
2(1−ρ−ρ3)n, as n 7→ ∞.

By Theorem 3.15 it is shown that the average number of up steps in bargraphs of semi-perimeter n is asymptotic to
1−ρ−ρ2−ρ3
2(1−ρ−ρ3) n, as n 7→ ∞.

Theorem 3.16. [16] We have

B#h,#u,level,area(x, y, q, w) =
y
∑
i≥1

xiqi

1−yqi
∏i−1
j=1(yqj/(1− yqj)− 1/(1− qj) + w)

1−
∑
i≥1

xiqi

1−qi
∏i−1
j=1(yqj/(1− yqj)− 1/(1− qj) + w)

.

Moreover, the average number of levels in bargraphs of semi-perimeter n is asymptotic to 1−3ρ+ρ2+ρ3
2(1−ρ−ρ3) n, as n 7→ ∞.
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3.10 Peaks
We define a peak to be the set of horizontal steps in a sequence of the form uhkd with k ≥ 1. We define the height of the
peak to be the y-coordinate of the horizontal step(s) of the peak (see [14]).

In all following theorems, related to above-mentioned statistics on peaks, ρ is defined in (1).

Theorem 3.17. [14] Let ρ as in (1).

• The generating function for the number of bargraphs according to the number horizontal steps, vertical up steps, and
the number of peaks is given by

(1− x)2 − y(1− wx2)−
√

((1− x)2 − y(1− wx2))2 − 4wx2y(1− x)2

2x(1− x)
,

where x counts the number of horizontal steps, y counts the number of vertical up steps, and w counts the number of
peaks. Moreover, the average number of peaks in a bargraph of semi-perimeter n is asymptotic to ρ2(1+ρ2)n

2(1−ρ)(1−ρ−ρ3) .

• The generating function for the number of bargraphs according to the number horizontal steps, vertical up steps, and
the number of horizontal steps in all the peaks is given by

(1− wx)(1− x)2 − y(1− wx− wx2 + wx3)−
√
X

2x(1− wx)(1− x)
,

whereX = −4wx2y(1−wx)(1−x)3+((1−wx)(1−x)2−y(1−wx−wx2+wx3))2, x counts the number of horizontal steps,
y counts the number of vertical up steps and w counts the number of horizontal steps in peaks. Moreover, the average
number of horizontal steps in all the peaks in the bargraphs of semi-perimeter n is asymptotic to ρ2(1+ρ2)n

2(1−ρ)2(1−ρ−ρ3) .

• The generating function for the number of bargraphs according to the number horizontal steps, vertical up steps, and
the height of the first peak is given by

2wxy

(2− w)(1− x)− wy − wxy + w
√

(1− y)((1− x)2 − y(1 + x)2)
,

where x counts the number of horizontal steps, y counts the number of vertical up steps and w counts the height of the
first peak. Moreover, the average height of the first peak in the bargraphs of semi-perimeter n is asymptotic to 16(1−ρ)ρ3

(1−2ρ−ρ3)2 .

• The generating function for the number of bargraphs according to the number horizontal steps, vertical up steps, and
the position of the first peak is given by

xy(1− x) + x2y(1− w)

(1− x)(1− wx− y − xy + 1
2 (−1 + x+ y + xy +

√
(1− x− y − xy)2 − 4x2y))

,

where x counts the number of horizontal steps, y counts the number of vertical up steps and w counts the position of
the first peak. Moreover, the average position of the first peak in the bargraphs of semi-perimeter n is asymptotic to
8ρ4(3−10ρ+4ρ2+ρ4)
(1−ρ)(1−2ρ−ρ2)4 .

• The generating function for the number of bargraphs according to the number horizontal steps, vertical up steps, and
the distance between the leftmost peak and the rightmost peak is given by

xy(1− x)

(1− x)2 − y

(
1− 2wx2y(1 + wx(y − 1) + y −

√
Y )

(1− x)(1− x(2 + w(y − 1) + y −
√
Y ))

)
,

where Y = (1− y)(1 + w2x2(1− y)− y − 2wx(1 + y)), x counts the number of horizontal steps, y counts the number of
vertical up steps and w counts the height of the first peak. Moreover, the average of the distance between the leftmost
peak and the rightmost peak in the bargraphs of semi-perimeter n is asymptotic to 4ρ6(3−8ρ+4ρ2−2ρ3+3ρ4)n

(1−3ρ+ρ2)(1−2ρ−ρ2)3(1−ρ−ρ3) .

3.11 Levels
A level in a bargraph is a maximal sequence of two or more adjacent horizontal steps denoted by hr where r ≥ 2. It is
preceded and followed by either an up step or a down step. The length of the level is the number r of horizontal steps
in the sequence. The height of a level is the y-coordinate of the horizontal steps in the sequence. Using the Wasp-waist
decomposition, we obtain the following theorem which is due to Blecher, Brennan and Knopfmacher [15].
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Theorem 3.18. The generating function for the number of bargraphs according to the number of horizontal steps, up steps
and levels is given by

BLevels(x, y, w) =
1− x− y − xy + 2x2y − 2wx2y − 2x

√
A

2x(1− x+ wx)
,

where A = (1− x− y− xy+ 2x2y− 2wx2y)2− y(1− x(1−w))2, x counts the number of horizontal steps, y counts the number
of up steps and w counts the number of levels. Moreover, the average number of levels in bargraphs of semi-perimeter n is
asymptotic to 1−4ρ+4ρ2−ρ4

2(1−ρ−ρ3) n as n 7→ ∞ (see (1)).

Further, in [15] is obtained an explicit formula for the generating functions Bstat1(x, y, w) and Bstat2(x, y, w), where
stat1 and stat2 represent statistics: the leftmost x-coordinate and the height of the first level, respectively.

3.12 Water cells
By a water capacity of a composition/bargraph we mean the number of cells which keep the water after it falls through
it. Sometimes, such a number is refereed to as the number of water cells. For example, if we let water to flow through
bargraph 276347175, see Figure 6, we find that its water capacity is 14.

Figure 6: The water capacity of bargraph w = 276347175.

Note that each composition with parts in [d] can be decomposed as either π′ or π′dπ′′ such that π′ is a composition with
parts in [d− 1] and π a composition with parts in [d]. Using such a decomposition, Mansour and Shattuck [85] studied
the generating function for the number of bargraphs according to the number of water cells. More precisely, they showed
the following result. Let B(d)

n be the set of bargraphs of n where the size of each column is at most d. Define

fd(x, y; p, q) = 1 +
∑
n≥1

 ∑
π∈B(d)

n

yν(π)pdes(π)qwc(π)

xn

to be the generating function for the number of bargraphs of B(d)
n with m columns, according to the number of descents

and the number of water cells (marked by p and q, respectively).

Theorem 3.19. [85] For all d ≥ 1,

fd(x, y; p, q) =
1

1− xy
+

d∑
k=2

xky
ak−1(x, yq; p, q)

ak(x, y; p, q)

k−1∏
m=1

(1− xmy(1− p))(am−1(x, yq; p, q))2

(am(x, y; p, q))2
,

where am(x, y; p, q) = 1− xy
∑m−1
j=0 xjqm−1−j

∏j
i=1(1− xiy(1− p)qm−i).

The water capacity of bargraphs is also studied by Blecher, Brennan and Knopfmacher [17]. More precisely, therein it
is shown the following result.

Theorem 3.20. [17] The water capacity generating function for all bargraphs Bkn is given by

k∑
r=1

zt
(

1 +
(x− z)zr

(x− z)− z(xr − zr)

) r−1∏
i=1

zt
(

1 +
(x− z)zi

(x− z)− z(xi − zi)

)2
.

Moreover the mean water capacity in compositions of n as n→∞ is given by

n log2 n

2
+
n

2

(3γ − 4

log 2
− 3

2

)
+

n

2 log 2
δ2(log2 n) + o(n),

where γ is Euler’s constant and δ2(x) is a periodic function of period 1, mean zero and small amplitude, and it is given by
the Fourier series δ2(x) =

∑
k 6=0(χk + 3)Γ(−1− χk)e2kπix, where the complex numbers χk are given by χk = e2kπix/ log 2.
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3.13 Protected cells
Assume it is given a bargraph B that contains m horizontal steps. It can be identified as a sequence of columns t(B) =

t1t2 . . . tm such that the jth column from the left contains exactly tj cells. For a cell s of B, we denote its left (respectively,
right) neighbour by L(s) (respectively, R(s)). Further, let m be the number of columns of B and let b be the maximal height
of its columns. Then B defines uniquely a rectangle (m, b), denoted by R(B). A cell s in R(B) is called a protected cell
(respectively, empty cell, empty protected cell) of B if and only if the cells s, L(s) and R(s) lie in t(B) (respectively, if the
cells s, L(s) and R(s) lie in R(B) \ t(B)). Consider the bargraph 24123612 given in Figure 7. It has 7 protected cells (cells
marked with red lines), 21 empty cells and 13 empty protected cells (cells marked with blue lines). Clearly, the empty cells
are those cells of rectangle not contained within the bargraph. In our example there 6 · 8 − 27 = 21. Protected cells were

Figure 7: The bargraph B = 24123612 with protected cells and empty protected cells.

studied by Mansour, Schork and Yaqubi [86].

Theorem 3.21. [86] The generating function for the total number of protected cells in all bargraphs according to the number
of cells is given by x3

(1−2x)2(1−x)(1−x3) . Moreover, as n→∞ the total number of protected cells in all bargraphs with n cells is
given by n

7 2n+1.

A d-bargraph is a bargraph where the height of all columns is at most d and which has at least one column of height d.
The following result appeared in [86].

Theorem 3.22. [86] Let qi mark the number of empty cells in ith row of a given d-bargraph. The generating function for
the number of d-bargraphs according to the number of cells, the number of columns, and the number of empty cells in each
row is given by:

1 +
∑
d≥1

xdy(
1− y

∑d
i=1 qi+1qi+2 . . . qdxi

)(
1− y

∑d−1
i=1 qi+1qi+2 . . . qdxi

) .
Moreover the generating function for the number of d-bargraphs according to the number of cells and the number of empty
protected cells in the top row is given by

(1− (q − 1)fd(x))2xd(
1− q x−xd1−x − xd + (q − 1)xdfd(x)

)(
1− q x−xd1−x

) ,
where fd(x) = x+ 2x2 + . . .+ (d− 1)xd−1 + (d− 1)xd + . . .+ 2x2d−3 + x2d−2.

3.14 Corners
A corner in a bargraph is a point of intersection of an up (u) or down (d) step with a horizontal (h) step. Considering
left-to-right orientation we distinguish four basic types of corners: up-horizontal (uh), horizontal-up (hu), down-horizontal
(dh), and horizontal-down (hd). Let coruh(π) denote the number of corners of type uh in a bargraph π, and similarly
corhu(π), cordh(π), corhd(π) for the corners of type hu, dh, hd, respectively. By symmetries, it is not hard to see that
coruh(π) = corhu(π) and cordh(π) = corhd(π) (see [82]). Referring to the example in the Figure 7, where it is presented the
bargraph π = 24123612, we have that coruh(π) = 6 = corhu(π) and cordh(π) = 2 = corhd(π). Define

B(x, y; p, q) =
∑
n≥0

n∑
m=0

xnym
∑

σ∈Bn,m

pcoruh(σ)qcordh(σ).

to be the generating function that counts bargraphs of Bn according to the number of columns, the number of corners of
types uh and the number of corners of types dh (marked by y, p and q, respectively). By the Scanning-element algorithm,
Mansour, Shabani and Shattuck [82] showed the following.
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Theorem 3.23. [82] The generating function B(x, y; p, q) is given by

1 + p(q − 1)y
∑
m≥1

(
(q − p)m−1ym−1

∑
0<i1<···<im

xi1+···+im∏m
j=1(1−(1−p)x

ij y)

)
1− py

∑
m≥1

(
(q − p)m−1ym−1

∑
0<i1<···<im

xi1+···+im∏m
j=1(1−(1−p)x

ij y)

) .

Moreover, the total number of corners of type uh (hu) in all bargraphs of Bn, n ≥ 1, is given by (3n+13)2n−2−(−1)n
9 .

Also, Mansour, Shabani and Shattuck [82] studied the joint distribution for corners of type uhi in bargraphs of Bn,m.

3.15 Interior vertices and edges
A vertex is called an interior vertex if it is adjacent to exactly four different cells of a bargraph B, otherwise, it is called
a boundary vertex. A horizontal/vertical edge of a bargraph is called a d-h-edge/d-v-edge if it is formed from d interior
vertices. Let ehintd(B)/evintd(B) denote the number of horizontal/vertical edges in B formed from d interior vertices. By
the Scanning-element algorithm, Mansour and Shabani [78] showed the following result.

Theorem 3.24. [78] The generating function for the number of bargraphs in Bn,m according to the number interior vertices
is given by

1 +
∑
j≥1

(1−q)jq(
j
2)x(

j+1
2 )+j

yj∏j−1
i=0 (1−qixi+1)(1−qi+1xi+1)

1−
∑
j≥0

(1−q)jq(
j
2)x(

j+2
2 )yj+1

(1−qj+1xj+1)
∏j−1
i=0 (1−qixi+1)(1−qi+1xi+1)

,

where x marks n, y marks m and q marks the number of interior vertices. Moreover, the total number of interior vertices in
all bargraphs of Bn is given by 3n−11

9 2n−2 + 1
18 (9 + (−1)n).

In [78] is also found an explicit formula for the generating function for the number of bargraphs in Bn,m according to
the number of horizontal d-edges, d = 0, 1, 2. This leads to the following result.

Theorem 3.25. [78] Asymptotically, the total number of all horizontal 0-edges/1-edges/2-edges over all bargraphs of Bn
is given by 13n

12 2n/ n
212n/ n

282n as n 7→ ∞, and the total number of all vertical 0-edges/1-edges/2-edges over all bargraphs of
Bn is given by 25n

48 2n/n8 2n/ 13n
336 2n as n 7→ ∞, respectively.

3.16 Durfee squares
A bargraph π is said to contain an s × s square if π contains s consecutive columns each of which has at least s cells.
Durfee squares are the largest squares that lie on the base of the bargraph representation of a given composition (in an
analogy to the classical Durfee square of an integer partition which is the largest square in the Ferrers diagram of that
partition, see [5]). We decompose any bargraph π using symbolic decomposition (see [54]) as π=π1π′1π2π′2 . . . π′aπa+1 where
the compositions π′i are singletons of size less than or equal to s and the πi are compositions of length 0, 1, 2, . . . , s with
parts of any size greater than s. Using such a decomposition, one has the following result.

Theorem 3.26. [7] The generating function for the compositions of n that avoid Durfee squares of size s is given by

(1− x)s+1 − (1− x)xs
2

(1− x)s+1 − x(1− x)s + xs2+1(1− xs−1)
.

Note that Archibald et. al. [7] considered the asymptotics for compositions that avoid Durfee squares of size s. Therein,
it is studied the number of times an s× s grounded squares (namely the s× s squares, not necessarily maximal) occur on
the bottom row of a bargraph.

Theorem 3.27. [7] The generating function for the number of compositions of n with m parts according to the number of
grounded s× s squares, counted by q, is given by

Fs(x, y, q) :=
x− 1(

qysXs

qyxs+x−1 −
ysXs−1
yxs+x−1

)−1
− yxs + xy

.

where X = xs

1−x . Moreover, the total number of grounded s× s squares of all bargraphs in Bn is given by(
n− s2 + s− 1

s− 1

)
+

n−s2∑
k=1

2k−2(k + 3)

(
n− s2 + s− 1− k

s− 1

)
.

From the last relation it follows that the average number of grounded s× s squares in a bargraph with n cells is asymptotic
to n+3−s−s2

2s2−s+1
as n→∞.
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3.17 Depth
Let B be any bargraph. The depth of a cell c in B, denoted by dep(c), is the minimum number of horizontal or up steps to
exit B starting from c. The depth of B is defined as dep(B) = maxc dep(c), where the maximum is over all cells c of B. An
alternative conception of the depth of B is given by the size of its Durfee square, see Section 3.16. Equivalently, the depth
of B can be understood as the number of times the inner site-perimeter can be recursively removed from B until nothing
remains. For instance, the depth of the composition 3454312 is three. Blecher et. al [23] characterized the set of bargraphs
with depth at most r in terms of “patterns”. In particular, they showed that a composition (bargraph) σ satisfies dep(σ) ≥ r
if and only if it contains τ (r) := r(r + 1) · · · (2r − 2)(2r − 1)(2r − 2) · · · (r + 1)r. To enumerate the compositions that avoid
(i.e., do not contain) τ (r) for any given r, Blecher et. al [23] defined a directed graph and then by using the transfer matrix
found a determinantial formula. In particular, they showed the following result.

Theorem 3.28. [23] The generating function for the number of compositions of n that avoid τ (2) = 232 is given by
(1− x)2 + x3(1− x) + x5

(1− 2x)(1− x) + x3(1− 2x) + x5 − x6

and the generating function for the number of compositions of n that avoid τ (3) = 34543 is given by
(1− x)4 + x5(1− x)3 + x9(1− x)2 + x13 − x14 + x16

(1− 2x)((1− x)3 + x5(1− x)2 + x9(1− x) + x13) + x16(1− x− x2)
.

In general, they presented an explicit formula for the transfer matrix (the adjacent matrix of the directed graph).

3.18 Counting bargraphs
Let B and C be any two bargraphs. Following [79], we say that a vertex (x, y) of B is a C-vertex if C lies entirely in B

when positioned starting at (x, y). Let C(B) denote the number of C-vertices of B, so C(B) is the number of ways C can be
positioned within B so that its vertices coincide with those contained on or within B. We point out that the definition of
C-vertices is related to the generalized factor order in words (see, e.g., [69]), where we recall that the word σ = σ1σ2 · · ·σm
is a generalized factor order of the word π = π1π2 · · ·πn at position j if σs ≤ πj−1+s for all s = 1, 2, . . . ,m. Thus our
C = C1C2 · · ·Cm-vertex at (a, b) in bargraph B = B1B2 · · ·Bn corresponds to the word (C1 + b)(C2 + b) · · · (Cm+ b) which is a
generalized factor order of the word Ba+1Ba+2 · · ·Ba+m. For instance, if C = 12, then the bargraph 23213 contains C three
times, namely, the C-vertices are (0, 0), (0, 1), (1, 0) and (3, 0), which correspond to the factor 12 at position 1, the factor 23

at position 1, the factor 12 at position 2 and the factor 12 at position 1, respectively.
Let C be a fixed bargraph. Mansour and Shabani [79] studied the generating function FC(x, y, q) for the number of

bargraphs with n cells (marked by x) and m columns (marked by y) according to the number of C-vertices (marked by q),
namely

FC(x, y, q) =
∑
n≥0

∑
B∈Bn

xny#columns inBqC(B).

In [79] are studied the cases when C = m is one column, C = 1c = 11 · · · 1 is one row, C = c1, and C = cd.

Theorem 3.29. [79]
(1) Let C be a bargraph with c cells and one column. Then the generating function FC(x, y, q) is given by

1

1− x−xc
1−x y −

xcyq
1−xq

.

(2) Let C = 1c with c ≥ 1. Then the generating function FC(x, y, q) is given by

α(x, y, q)− 1/qc−1

qxy − 1

α(x, qxy, q)− 1/qc−1

(qx)2y − 1

α(x, (qx)2y, q)− 1/qc−1

(qx)3y−
. . .

,

where α(x, y, q) =
∑c−1
j=0

xjyj(1−qj−c+1)
(1−x)j .

(3) The generating function Fc1(x, y, q) is given by∑
j≥0

x
c(j+1

2 )qc(
j
2)yj(1−q)j∏j−1

i=0 (1−xi+1qi)(1−(xq)i+1)

1−
∑
j≥0

x
c(j+1

2 )qc(
j
2)(1−q)jyj

(
y((xj+1qj)c−xj+1qj)

xj+1qj−1
+ q1+cjxc(1+j)y

1−(qx)j+1

)
∏j−1
i=0 (1−xi+1qi)(1−(xq)i+1)

.
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(4) Let c ≥ d ≥ 1 and C = cd. Then the generating function Fcd(x, y, q) is given by∑
j≥0 α(qjxj)

∏j−1
i=0 β(qixi)

1−
∑
j≥0 α

′(qjxj)
∏j−1
i=0 β(qixi)

,

where

α(u) = 1− (1− y(qxu)d−1)
(1− q)xc−d+1yuc−d+1

qd−1(1− xu)(1− qxu)
, β(u) =

(1− q)xc−d+1yuc−d+1

qd−1(1− xu)(1− qxu)
,

α′(u) =

c−1∑
j=1

xjyuj +
(1− q)xcyuc

(1− xu)(1− qxu)

d−1∑
j=1

xjy +
qxcyuc

1− qxu
− β(u)

d−1∑
j=1

qjx2jyuj .

Note the total number occurrences of C in a bargraph has been considered in [79], where C is either C = c, C = 11 · · · 1,
C = c1, or C = cd. We remark that Blecher and Mansour [27] established the generating function that counts the number
of times the staircase C = 1+2+ · · ·m+ (which is bargraph with m columns such that the jth column has at least j cells)
fits inside a bargraph.

4. Statistics on words

We continue with another important combinatorial family - words. As described in the book [63], many statistics have
been considered in words over a finite alphabet, with a special attention given to those statistics characterized in terms of
“patterns”. In this section, we do not look at such statistics and instead we focus on statistics that are not easily formulated
in terms of patterns, but can be seen as geometric properties when the word is presented as a bargraph. In this regard
we emphasize that these statistics have not been considered in [63]. First we recall a definition of k-ary words. A word w

of length n over the alphabet [k] is an element of [k]n. It is also called a k-ary word of length n. For instance, the words of
length two over the alphabet [3] = {1, 2, 3} are 11, 12, 13, 21, 22, 23, 31, 32 and 33. A word can be represented by a bargraph
such that the height of the ith column in the bargraph equals the number of cells in the corresponding part of that word.
Therefore these bargraphs have column heights less than or equal to k.

LetWst1,...,std;k(x, x1, . . . , xd) be the generating function F#col,st1,...,std(x, x1, . . . , xd) where #col is the number of columns
in the bargraphs, and F is the combinatorial class of all k-ary words represented as bargarphs (including the empty word),
see Section 2.

In this section we describe, the time line of the research on counting k-ary words represented as bargraphs according
to some statistics (see Table 2).

Year Statistic, Reference Theorem
2015 Height [25] 3.11, 3.12
2017 Perimeter [21] 4.1, 4.2, 4.3

Site-perimeter [22] 4.4, 4.5
Shedding light [6] 4.8

2018 Water cells [18] 4.6, 4.7

Table 2: Time line of research for words.

4.1 Perimeter
Using the Wasp-waist method, Blecher et. al [21] showed the following result.

Theorem 4.1. [21] The generating function Wk(x, q) for the number of k-ary words of length n according to the perimeter
satisfies

Wper;k+1(x, q) =
xq4 + q2(1 + xq2)Wper;k(x, q)

1− xq2 − xq2Wper;k(x, q)

with Wper;1(x, q) = q4x
1−xq2 , where the statistic per denotes the perimeter.

By the Scanning-element algorithm, the authors gave another form for the generating function Wper;k(x, q).

Theorem 4.2. [21] We have

Wper;k(x, q) =
1 + xq2

∑k
j=1(q2j − 1) +

∑k
j=2(xq2)jγk,j;1(q)

1− kxq2 −
∑k
j=2(xq2)jγk,j;2(q)

,
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where γk,j;d(q) =
∑

1≤i1<i2<···<ij≤k−1
∏j
s=d(q

2is − 1) and the statistic per denotes the perimeter.

Moreover, in [21], the authors presented another form for the generating function Wper;k(x, q) by solving system of k
linear equation. After, they found three different forms for the generating functionWper;k(x, q), they calculated the average
of the perimeter over all k-ary words of length n. By finding the coefficient of xn in ∂

∂qWper;k(x, q) |q=1 and then dividing it
by kn (the number of k-ary words of length n), it is shown the following result.

Theorem 4.3. [21] For n ≥ 2, the average perimeter per words of length n over the alphabet [k] is 1
3k (2k2 + 3k + 1 + (k2 +

6k − 1)n).

4.2 Site-perimeter
The site-perimeter has been investigated also for the case of k-ary words. By the Wasp-waist decomposition (see [30,92]), we
split the bargraph of any k-ary word into two smaller bargraphs at column of height 1 as follows: any nonempty bargraph
π can be decomposed as π = 1, π = 1π′′, π = π′, π = π′1, π = π′1π′′, where the size of each column in π′ is at least two and
π′, π′′ are nonempty bargraphs. Blecher et. al. [22] derived a functional equation for the generating function that counts
the number of k-ary words according to the size of the rightmost part, the number of parts, and the site-perimeter. In
particular, it is shown the following result.

Theorem 4.4. [22] Let |p|, |x| < 1 and

F (s) =
(1 + px− p2x)(1− p2s+ p2s2) + (p5x2 − p3x+ p2x− 1)s

(1− s)(1− sp2)
, G(s) = − x2p4s

(1− ps)(1− sp2)
,

H0(s) = −sxp
4(1− (sp2)k)

1− sp2
, H3(s) =

xp2k+3sk+1(1− p2 + xp4)

(1− p2)(1− sp2)
,

H1(s) = − pxs

1− s
− x2p4s2

(1− s)(1− ps)
− x2p4s2(p2 − 1− sk−1(1− s)p2k)

(1− s)(1− p2)(1− sp2)
.

Define Am(s) =
∑
j≥0(−1)j

Hm(pjs)
∏j−1
i=0 G(pis)∏j−1

i=1 F (pis)
, where m = 0, 1, 3. Then

Wsp;k(x, p) = −A0(r+)A3(r−)−A0(r−)A3(r+)

A1(r+)A3(r−)−A1(r−)A3(r+)
,

where the statistic sp denotes the site-perimeter and r± =
g±
√
g2−4p2(xp2−px−1)2
2p2(xp2−px−1) with g = x2p5 + xp4 − 2xp3 − p2 + xp2 − 1.

Differentiating the generating function in Theorem 4.4 with respect to p and evaluating at p = 1, gives the following result.

Theorem 4.5. [22] Let n ≥ 2. The average site perimeter of a k-ary word of length n is given by

2 + 3k + 16k2 + 3k3

12k2
n+
−2 + k + 8k2 + 5k3

6k2
.

4.3 Water cells
The counting of water cells was extended to the case of k-ary words. By considering the Maximal column factorization of
k-ary word, the following result was found by Blecher, Brennan and Konpfmacher [18].

Theorem 4.6. [18] We have

Wwc;k(x, q) = 1 + x

k∑
j=1

(
1 +

x(1− q)
1− x− q + qjx

) j−1∏
i=1

(
1 +

x(1− q)
1− x− q + qix

)2

,

where wc marks the number of water cells.

By differentiating Wwc;q(x, q) with respect to q and evaluating at q = 1, we obtain the average of the water cells over all
k-ary words of length n.

Theorem 4.7. [18] The total number of water cells of all k-ary words of length n is given by

kn

2
((n+ 4)(k − 1)− 4kHk−1) + (k − 1)n(n+ 2k − 2) +

k−2∑
i=1

in(i(n− 2)− kn)

i− k
,

and the average number of water cells for k-ary words of length n is k−1
2 n− 4k(Hk − 1) +O(n(k − 1)n/kn), where Hn is the

nth Harmonic number.
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4.4 Shedding light
Assume it is given a bargraph. We let the positive x, y-axis represent the East and the North, respectively. Further,
suppose that there is a light source at infinity in the North-West direction that sheds parallel light rays onto the bargraph.
Clearly, the ray of light will hit and also will miss some of the cells of a given bargraph. A cell is called Shedding light cell
or a lit cell if the ray of light hits the edge facing north or the edge facing west or both. For example, Figure 8 presents the
bargraph 24123612 with its lit cells.

@
@

@
@
@
@
@

@
@

Figure 8: The word 24123612 and its 9 lit (blue) cells.

The statistic lit has been studied by Archibald et. al. [6]. The generating functions techniques and matrix algebra were
used to study this statistic. Further a modification of an adding a slice method leads to the following result.

Theorem 4.8. [6] We have Wlit;k(x, q) =
1+

x(q−1)
γ +x(q−1)

∑k
a=2

[
Aa
γa + Ba

γa−1

]
1− xγ

∑k
a=1

Aa
γa−1

, where lit marks the number of lit cells, and

Aa = γa−1
a−1∑
j=0

(
−x
γ

)j j∏
m=0

(1−mq)
(
a− 1

j

)
,

Ba = qγa−1
a−1∑
l=0

a−1−l∑
j=0

l

a− l

(
a− 1

l, j, a− 1− j − l

)
Alx

j(q − 1)a−1−j−l

γl+j

j−1∏
m=0

(1 +mq).

and γ = 1 + x− xq. The average number of lit cells is asymptotic to ηkn, where ηk = 1
k + 1

k

∑k−1
j=1

(k−j)(kj)(−1+j)!
kj(1+j) .

5. Statistics on set partitions

Being closely related to the well known families of numbers, namely Stirling numbers of the second kind and Bell numbers,
the combinatorial family of set partitions and statistics related to it, always attracted a lot of research interest. Many
statistics in set partitions over finite alphabet, characterized in terms of “patterns” and “avoidance” were deeply described
in the book [73]. Here we review the geometrically described statistics on set partitions when the latest are formulated as
bargraphs. First we recall some definitions related to set partitions. A partition of a set or a set partition is a collection
of non-empty, mutually disjoint subsets, called blocks, whose union is the set. Let Pn,k denote the set of partitions of
[n] = {1, 2, . . . , n} having k blocks and Pn =

⋃n
k=0 Pn,k. Note that |Pn,k| = S(n, k) is the classical Stirling number of

the second kind and the number of set partitions of [n] is given by Bn the nth Bell number (see [73, 77]). Further, let
π = B1/B2/ · · · /Bk ∈ Pn,k. Then π is said to be in standard form if the blocks Bi are labeled such that min(B1) <

min(B2) < · · · < min(Bk). A set partition π in standard form can be expressed equivalently by the canonical sequential
form π = π1π2 · · ·πn wherein i ∈ Bπi for all i, which we will denote also by π. This sequence satisfies the restricted
growth property (see [73, 77]), meaning that the first occurrence of ` always precedes the first occurrence of ` + 1, that
is, πi+1 ≤ max(π1π2 · · ·πi) + 1 for all 1 ≤ i ≤ n − 1. For example, if π = {1, 6}, {2, 7, 9}, {3, 4, 8}, {5}, {10, 11} ∈ P11,5,
then π = 12334123255. We represent the restricted growth sequences associated with members of Pn,k as bargraphs. For
example, the bargraph representation of π = 12334123255 is given in Figure 9 below. Table 3 shows the time line of the

Figure 9: Bargraph representation of the set partition 12334123255.

research on set partitions.

84



T. Mansour and A. Sh. Shabani / Discrete Math. Lett. 2 (2019) 65–94 85

Year Statistic, Reference Theorem
2017 Area, Up steps [84] 5.1, 5.2
2018 Interior vertices [74] 5.6

Corners [82] 5.9, 5.10
Water Cells [85] 5.7, 5.8

2019 1× 2 rectangles [33] 5.11
Perimeter [75] 5.3, 5.4
Site-perimeter [75] 5.5

Table 3: Time line of research for set partitions.

In this section, we define Pst1,...,std;k(x, x1, . . . , xd) = F#col,st1,...,std(x, , x1, . . . , xd), where #col is the number of columns
in the bargraphs, and F is the combinatorial class of all set partitions with exactly k blocks represented as bargarphs, see
Section 2. Moreover, we define Pst1,...,std(x, y, x1, . . . , xd) =

∑
k≥0 Pst1,...,std;k(x, x1, . . . , xd)y

k.
Throughout this section, we present several basic facts.
The ordinary and exponential generating function for the Stirling numbers of the second kind is∑

n≥k

S(n, k)xn =
xk

(1− x) · · · (1− kx)
and

∑
n≥k

S(n, k)xn =
(ex − 1)k

k!
.

The number of partitions of [n] is given by the n-Bell number, with exponential generating function
∑
n≥0Bn

xn

n! = ee
x−1.

Asymptotically as n→∞ we have

Bn ∼ n!
ee
κ−1

κn
√

2πκ(κ+ 1)eκ
(3)

where κ is the positive root of κev = n+ 1, from which we get κ ≡ κ(n) = log n− log log n+ O
(

log logn
logn

)
. In order to obtain

asymptotic estimates for the averages, we need an extension of (3), namely:

Bn+h = Bn ·
(n+ h)!

n!κh

(
1 +O

(
log n

n

))
,

uniformly for h = O(log n), as given in [35].

5.1 Area and up steps
The next results are due to Mansour and Shattuck. It studies the number of set partitions according to the number of cells
(area) and the number of up steps.

Theorem 5.1. [84] Let n ≥ k ≥ 1. The sum of the areas of all partitions of [n] having k blocks is given by(
k + 1

2

)
S(n, k) +

k∑
j=1

n−k−1∑
i=0

ji
(
j + 1

2

)
S(n− i− 1, k).

Moreover, the average of area over all partitions of [n] is asymptotic to n(n+1+κ)
2κ .

Theorem 5.2. [84] If n ≥ k ≥ 1, then the total number of up steps within all members of Pn,k is given by

kS(n, k) +

(
k

3

)
S(n− 1, k) +

k∑
j=1

n−k−2∑
i=0

ji+1(j2 − 1)

6
S(n− i− 2, k).

Moreover, the average of up steps over all partitions of [n] is asymptotic to n(n+1)−κ2

6κ .

5.2 Perimeter
The perimeter statistic has been investigated also for the case of set partitions. Mansour [75], by using the Scanning-
element algorithm, has shown the following result.

Theorem 5.3. [75] Let 1 ≤ k ≤ n. The generating function for the total of the half of the perimeter over all set partitions of
[n] with exactly k blocks is given by

xk

6
∏k
j=1(1− jx)

k∑
i=1

12 + 3(i2 − 5i+ 2)x− i(i− 1)(2i− 7)x2

1− ix
.
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By translating this ordinary generating function to exponential generating function, we have the following.

Theorem 5.4. [75] The exponential generating function for the total of the half of the perimeter over all set partitions of [n]

(marked by x) with exactly k blocks (marked by y) is given by

y

36

∫ x

0

((6t− 5)y2e3t + 9(6t+ 1)ye2t + 9(y2 + 4t+ 8)et − y(4y + 9))eye
t−ydt.

Moreover, the total of the half of the perimeter over all set partitions of [n+ 1] with exactly k blocks is given by

n+ 4

6
Sn+2,k −

5

36
Sn+3,k +

36n+ 53

36
Sn+1,k +

1

4
Sn+1,k−2 −

n

6
Sn,k −

1

9
Sn,k−3 −

1

4
Sn,k−2,

and the total of the half of the perimeter over all set partitions of [n+ 1] is given by

n+ 4

6
Bn+2 −

5

36
Bn+3 +

18n+ 31

18
Bn+1 −

6n+ 13

36
Bn,

where Sn,k denotes the Stirling number of the second kind and Bn denotes the nth Bell number.

5.3 Site-perimeter
The site-perimeter statistic has been investigated also for the case of set partitions. Mansour [75], by using the Scanning-
element algorithm, has obtained the following result.

Theorem 5.5. [75] The exponential generating function ∂2

∂x2R(x, y) for the total of the site-perimeter over all set partitions
of [n] (marked by x) with exactly k blocks (marked by y) is given by

y

144
ey(e

x−1)
(
y2(9y + 16)− 12(4y3 + 3y2 − 24x− 72)ex + 72y(y2 + 12x+ 14)e2x + 4y2(102x+ 5)e3x + 3y3(12x− 11)e4x

)
.

Moreover, the total of the site-perimeter over all set partitions of [n+ 2] with exactly k blocks is given by

(
n

4
+

109

72
)Sn+3,k −

11

48
Sn+4,k + (

4n

3
+

65

16
)Sn+2,k +

1

2
Sn+2,k−2 + (

n

4
+

47

72
)Sn+1,k

− 1

3
Sn+1,k−3 −

3

4
Sn+1,k−2 +

n

6
Sn,k +

1

16
Sn,k−4 +

1

9
Sn,k−3,

and the total of the site-perimeter over all set partitions of [n+ 2] is given by

(
n

4
+

109

72
)Bn+3 −

11

48
Bn+4 + (

4n

3
+

73

16
)Bn+2 + (

n

4
− 31

72
)Bn+1 + (

n

6
+

25

144
)Bn,

where Sn,k denotes the Stirling number of the second kind and Bn denotes the nth Bell number.

5.4 Interior vertices
A vertex in a bargraph π is called an interior if it is adjacent to exactly four different cells in π, otherwise it is called a
boundary vertex. For instance, Figure 9 presents a bargraph with 8 interior vertices. Mansour [74], counted set partitions
of Pn,k according to the number of interior vertices. In particular, it is shown the following result.

Theorem 5.6. Fix k ≥ 1. Then the generating function for the number of set partitions of Pn,k according to the number of
interior vertices is given by

Piv;k(x, q) = xkq(
k−1
2 )

k∏
j=1

1 + x
∑j−2
a=1 αa(x)(qa+1−j − 1)

1− x
(
qj−1 +

∑j−1
a=1 αa(x)

)
− x2qj−1

(∑j−1
a=1 αa(x)(qa−j − 1)

) ,
where iv denotes the number of interior vertices, and

αa(x) =

a∑
m=1

xm−1

(
q(
m−1

2 )(1− q)m−1
a−m∑
k=0

qk
(
a− 2− k
m− 2

)
q

(
m− 1 + k

m− 1

)
q

)
.

In particular, the exponential generating function
∑
k≥0

∑
n≥k

∑
π∈Pn,k iv(π)x

n

n! y
k for the total number of interior vertices in

all set partitions of Pn,k is given by

E(x, y) =
(3x− 1)y2

9
e2x+ye

x−y − (6x+ 13)y

36
ex+ye

x−y +
6x+ 19

36
eye

x−y +
4y3 + 9y2 − 6

36

∫ x

0

eye
t−ydt+

4y2 + 13y − 19

36
.
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Moreover, the total number of interior vertices in set partitions of [n+ 1] with exactly k blocks is given by
4n+ 1

12
S(n+ 2, k)− 18n− 1

36
S(n+ 1, k) +

n

6
S(n, k)− 1

9
S(n+ 3, k) +

1

9
S(n, k − 3) +

1

4
S(n, k − 2).

and the total number of interior vertices in set partitions of [n+ 1] is given by
4n+ 1

12
B(n+ 2)− 18n− 1

36
B(n+ 1) +

6n+ 13

36
B(n)− 1

9
B(n+ 3),

where S(n, k) is the Stirling number of the second kind and B(n) is the nth Bell number.

5.5 Water cells
In order to find the distribution of water cells on set partitions, Mansour and Shattuck [85] determined the distribution
on words of the form kπ′(k + 1) and of the form kπ′, where π′ is a k-ary word. This leads to the following result.

Theorem 5.7. [85] For all k ≥ 1, we have

Pdes,wc;k(x, p, q) = xk
∏k−1
j=0 (1− x(1− p)qj)k−1−j

∏k−1
m=1 fm(xq; p, q)

fk(x; p, q)
∏k−1
m=1(fm(x; p, q))2

,

where des, wc denotes the number of descents and number of water cells, respectively, and

fm(x; p, q) = 1− xqm−1 −
m−2∑
j=0

xqj
m−1−j∏
s=1

(1− x(1− p)qs+j).

In particular, for p = 1, we have

Pdes,wc;k(x, 1, q) = xk
(

1− ([k]q − 1)x

1− [k]qx

) k−1∏
j=1

1− ([j]q − 1)x

(1− [j]qx)2
.

As consequence of Theorem 5.7, in [85] it is found the total number of water cells over all set partitions of Pn,k.

Theorem 5.8. [85] Let n ≥ k ≥ 2. The total number of water cells over all set partitions of Pn,k is given by(
k

2

) n−1∑
i=k

kn−i−1S(i, k) +

k−1∑
j=1

n−1∑
i=k

((
j − 1

2

)
− 1

)
jn−i−1S(i, k).

Moreover, the total number of water cells of all set partitions of [n] is given by

− 3

4
Bn+2 +

2n+ 11

4
Bn+1 −

6n+ 9

4
Bn +

n∑
j=0

(
n+ 1

j

)
BjB̃n−j

=
n+ 1

4κ2
(
(2n+ 11)κ− 3n− 6 + 4κC − 6κ2

)
Bn(1 +O(log n/n)),

where C = 0.5963473622 · · · .

Moreover, the study of water cells on non-crossing set partitions and non-nesting set partitions (see [73]) has been
investigated in [85].

5.6 Corners

Let f (r)k (x, y; q1, . . . , qa) be the generating function for the number of set partitions of Pn,k having k blocks in which the
element n belongs to the rth leftmost block, according to the area and the number of corners of type uhi for 1 ≤ i ≤ a (marked
by y and the qi, respectively). Define fk(x, y; q1, . . . , qa) =

∑k
r=1 f

(r)
k . By writing recurrence relations for f (r)k (x, y; q1, . . . , qa),

Mansour, Shabani and Shattuck [82] stated the following formula.

Theorem 5.9. [82] For all k ≥ 1,

fk(x, y; q1, . . . , qa) = LkLk−1 · · ·L2

a−1∑
j=1

(xy)jq1q2 · · · qj +
(xy)aq1q2 · · · qa

1− xy

 ,

where

Lj =
xyj(1− βj)

1− xyj − x(1− xyjβj)
(
y−yj
1−y +

∑j−2
m=1(−x)m

∑
2≤i1<···<im≤j−1 y

∑m
s=1 is y−y

i1

1−y
∏m
s=1 βis

)
for 2 ≤ j ≤ k and βr =

∑a−1
i=0 x

iyriq1q2 · · · qi(1− qi+1).
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Moreover, if q` = q and qj = 1 for all j 6= `, then Theorem 5.9 leads to an explicit formula for the total number of the
corners of type uh`.

Theorem 5.10. [82] The total number of corners of type uh` where ` ≥ 1 in all set partitions of Pn,k is given by

kS(n− `+ 1, k) +

k∑
j=2

n−k−`∑
i=1

ji−1
(
j

2

)
S(n− i− `, k).

Similarly, in [82] it is shown that the total number of corners of type h`d where ` ≥ 1 in all set partitions of Pn,k is given
by

S(n− `, k − 1) +

(
k + 1

2

)
S(n− `, k) +

k∑
j=2

n−k−`∑
i=1

ji−1
(
j

2

)
S(n− i− `, k).

Moreover, therein, are given combinatorial proofs for the total number of corners of types uh` and h`d.

5.7 1 × 2 rectangles
A 1 × 2 rectangle is a rectangle that is composed of two horizontally adjacent cells. Cakić, Mansour and Shabani [33], by
using the Scanning-element algorithm, have shown the following result.

Theorem 5.11. Let R(x, y; q; v) =
∑
k≥0(

∑k
a=1Rk(x; q|a)va)yk, where Rk(x; q|a) is the generating function enumerating the

set partitions of Pn,k such that the element n belongs to the block a, according to the number of 1× 2 rectangles. Then

R(x, y; q; v) = 1 + xR(x, vy; q; q) + xvyR(x, vy; q; q) +
x(R(x, y; q; vq)−R(x, vy; q; q))

1− v
+
x(vqR(x, y; q; 1)−R(x, y; q; vq))

1− vq
.

Moreover, the exponential generating function E(x, y) for the total number of 1 × 2 rectangles over all set partitions of Pn,k
satisfies

∂

∂x
E(x, y) =

y

36
eye

x−y(4y2(3x− 1)e3x + 9y(6x− 1)e2x + 36xex + 4y2 + 9y).

The total number of 1× 2 rectangles over all set partitions of Pn+1,k is given by

4n+ 1

12
Sn+2,k −

1

9
Sn+3,k +

18n+ 1

36
Sn+1,k +

n

6
Sn,k +

1

9
Sn,k−3 +

1

4
Sn,k−2

and the total number of 1× 2 rectangles over all set partitions of [n+ 1] is given by

4n+ 1

12
Bn+2 −

1

9
Bn+3 +

18n+ 1

36
Bn+1 +

6n+ 13

36
Bn.

The average of 1× 2 rectangles in all the set partitions of [n] is asymptotic to

n2

3(log(n)− log log n)

(
1− 1

3(log n− log log n)

)(
1 +O

(
log n

n

))
.

5.8 2 × 2 squares
Archibald et. al [8], using Column by column method from left to right, determined the generating function for the number
of set partitions of [n] with exactly k blocks according to the number of squares of size two. This leads to exact and asymptotic
formulas for the average number of 2× 2 squares over all set partitions of [n].

Theorem 5.12. [8] The total number of squares of size 2 in all set partitions of [n] is given by

19− 18n

36
Bn +

4n− 3

12
Bn+1 −

1

9
Bn+2 +

6n+ 7

36
Bn−1.

Moreover, the average of the number of squares of size 2 over all set partitions of [n] is asymptotic to n2

3 logn , as n 7→ ∞.

6. Statistics on permutations

Permutations is the combinatorial family we discuss in what follows. For the non-geometric statistics in permutations we
refer to the following book [28], in which “patterns” and “pattern avoidance” are the main characters. As it is common for
this review we again focus on statistics that are formulated via geometric properties when one presents a permutation as
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Figure 10: Bargraph representation of 123, 132, 213 ∈ S3.

a bargraph. We point out that none of these statistics has been considered in [28]. We first recall some definitions related
to permutations.

A permutation of [n] := {1, 2, . . . , n} is a bijection from [n] to itself. We denote the permutations of [n] by π = π1π2 . . . πn

and the set of all permutations of [n] by Sn. For example S3 = {123, 132, 213, 231, 312, 321}. As in the case of other combina-
torial families, a permutation π = π1π2 . . . πn can also be expressed as bargraph, in a such way that we have πj cells in the
jth column of corresponding bargraph. For example, the first three permutations of S3 are shown in the Figure 10.

Table 4 shows the time line of the research on permutations.

Year Statistic, Reference Theorem
2016 Site-perimeter [13] 6.3
2018 Descent and up steps [83] 6.1
2019 Water cells [26] 6.4

Table 4: Time line of research for permutations.

6.1 Descents and up steps
Let n ≥ 1 and 1 ≤ i ≤ b(n + 1)/2c. We denote by An,i the set of permutations of the multiset 12 · · · (n − i)(n − i + 1)i such
that no two of the letters n− i+ 1 are adjacent. For example, we have A4,2 = {1323, 2313, 3123, 3132, 3213, 3231}. Note that
for i = 1, An,i coincides with Sn - the usual set of permutations of [n].

A descent in a word w = w1w2 · · ·wn ∈ Pn is an index i ∈ [n − 1] such that wi > wi+1. Let des(w) denote the number of
descents in w, which is equivalently the number of runs of down steps in bargraph representation of the word w. Note that
up(w) = #u(w) and area(w) is simply the sum of the entries of w. For example, if w = 12334123255 (see Figure 9) then the
descents are at indexes 5, 8, thus des(w) = 2, up(w) = 9. We have the following results, due to Mansour and Shattuck [83],
regarding the up step statistic, where in the second one, are given the bounds for the up step statistic on members of An,i.

Theorem 6.1. [83] The number of up steps within the bargraph representations of all members of An,i is given by

1

3
(n− i)!

(
n− i+ 1

i

)[(
n+ 2

2

)
−
(
i

2

)]
, 1 ≤ i ≤ b(n+ 1)/2c.

In particular, the number of up steps within all bargraphs of Sn is given by (n− 1)!
(
n+2
3

)
for n ≥ 1.

Theorem 6.2. [83] Let n ≥ 1 and 1 ≤ i ≤ b(n+ 1)/2c.

1. The maximum number of up steps in the bargraph representation of a member of An,i is given by m(m + 1) −
(
i
2

)
if

n = 2m and by (m + 1)2 −
(
i
2

)
if n = 2m + 1. Furthermore, these maximum values are attained by 2(m!)2

i! members of
An,i if n = 2m and by m!(m+1)!

i! members if n = 2m+ 1.

2. The minimum number of up steps in the bargraph representation of a member of An,i is given by n +
(
i−1
2

)
, and it is

attained by 2n−2i+1(i− 1)! members of An,i.

6.2 Site-perimeter
Blecher, Brenan and Knopfmacher [13] considered the site-perimeter for the case of permutations when the latest are
presented as bargraphs. Actually, therein the authors only considered the total of site-perimeter over all permutations
of Sn, while the generating function for the number of permutations of Sn according to the site-perimeter statistic still
remains open. The main method for obtaining such a result is to construct the set of permutations of Sn+1 by raising
the permutation from Sn by 1 and then appending the letter 1 at every position between the letters. Among other results
in [13] it is shown the following result.

Theorem 6.3. [13] Let n ≥ 2. The average site-perimeter for permutations of Sn is given by 3n2+29n+14
12 .
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6.3 Water cells
Let capn be the total capacity (water cells) of all permutations of Sn. Note that each permutation in Sn+1 can be obtained
from a permutation in Sn by adding one to each element and insert 1 somewhere between the letters. By using this simple
fact, Blecher et. al [26] showed the following result.

Theorem 6.4. For all n ≥ 1, capn = n!
2 (n(n + 7) − 4(n + 1)Hn), where Hn =

∑n
j=1

1
j the nth Harmonic number. Thus, the

average capn
n! is asymptotic to n2

2 − 2n lnn+ (7/2− 2γ)n− 2 lnn when n 7→ ∞.

A permutation π in Sn is said to have exactly d-dam if there exist only d disjoint connected areas of water containment,
that is, the water cells in π exist in exactly d different connected areas. The width of each connected area is called dam
width. In [26] it is shown that the total capacity of all one-dam permutations in SN with dam width p, 1 ≤ p ≤ n − 2, is
given by pn!2n−2−p

(p+2)(n−2−p)! . Asymptotics expressions for the total capacity of all one-dam permutations in Sn and the number
of permutations in Sn with one dam are studied in [26].

6.4 Pushes
We recall that a weak left-to-right maximum is a part which is greater than or equal to all parts to its left. Assume that
the leftmost element in the permutation, which is not a weak left-to-right maximum, occurs in position i and has height
v(i). We call a push the process of shifting all cells which are to the left of i and of height greater than v(i) for one position
to the right. For example, by 4 pushes the word 322132, becomes 232132, 223132, 122332, and at end 122233. Blecher et.
al. [24] showed the following result.

Theorem 6.5. [24] Let Hn be the nth Harmonic number. Then

• the average number of pushes over all permutations of Sn is given by n−Hn.

• the average number of cells that do not move in all permutations of Sn is given by (n+ 1)(Hn+1 − 1).

• the average number of fixed cells over all members of Sn is given by 1
6 (n+ 1)(2n+ 1).

Note that in [24], is also considered the case of multipermutations. For the case of k-ary words, we refer the reader to
Archibald et. al. [9].

7. Statistics on integer partitions

The last family under consideration is the family of integer partitions. A very good research reference for integer partitions
is [3] while for an introductory reference we refer to [5]. In this section we will consider several geometrically motivated
statistics in integer partitions when the latest are represented as bargraphs, using the same approach as explained in
the case of integer compositions. To do this, we first begin by recalling some definitions related to integer partitions. A
partition of a positive integer n is a finite non-increasing sequence of positive integers, whose sum is n. The number of
partitions of n is denoted by P (n) (where we define P (0) = 1). For example, integer partitions of 4 are the following:
4, 31, 22, 211, 1111.

A standard result is ∑
j≥0

P (j)xj =
1∏

j≥1(1− xj)
.

Many studies had their focus on the number of integer partitions satisfying certain conditions (for example, see [1–4,
59, 94, 100, 101] and references therein). For instance, if Q(n) is the number of partitions of n with distinct parts where
Q(0) = 1, we have the following generating function∑

j≥0

Q(j)xj =
∏
j≥0

(1 + xj).

In [20] is defined the statistic corner for integer partitions. This is related both to descents and the number of occur-
rences of a part (of fixed size). We describe corners in terms of the associated Ferrers diagrams.

The Ferrers diagram is a useful tool for visualizing integer partitions, but not only. It is constructed by stacking left-
justified rows of cells, such that the number of cells in the ith row correspond to the size of the ith part. By rotating a given
Ferrers diagram by 900 counterclockwise gives its corresponding bargraph, see left and right side of Figure 11.
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7.1 Perimeter
It is not hard to see that the generating function P (t, s, x) of the partitions of a nonnegative integer according to the sum
of parts, the number of parts and the largest part (marked by x, t, s, respectively) is given by

P (t, s, x) = 1 +
∑
i≥1

tsixi∏i
j=1(1− txj)

(see [96, Sequence A211978]). By setting s = t = q, we obtain that the generating function for the partitions according to
the sum of parts and the semi-perimeter (of corresponding bargraphs) is given by

P (q, q, x) = 1 +
∑
i≥1

qi+1xi∏i
j=1(1− qxj)

.

The sum of the semi-perimeters of the bargraphs of the partitions of n is also discussed in [96, Sequence A211978].

7.2 Corners
A corner of a partition π is a point of degree two in the corresponding Ferrers diagram. Let cor(π) denote the number of
corners of π. For example, if π = 4422111, then cor(π) = 6, see Figure 11. Further let cork(π) denote the number of corners
at line y = k in the Ferrers diagram of π, where the topmost horizontal line of the Ferrers diagram corresponds to the line
y = 0. For example, for the partition illustrated below, cor0(π) = 2 (corners E and F ), cor4(π) = 1 (corner B), and so on.
Blecher et.al. [20] defined several types of corners. A corner is of type (a, b) if it is at the bottom-right of a specific maximal
a × b rectangle (where a and b are the height and the length of rectangle, respectively). For such a maximal rectangle
there are no cells below it and no cells to its right. Thus corner B, is at the bottom-right of the 2 by 1 rectangle, at the cell
marked by X. So that B is a (2, 1) corner. Therein were only considered corners at the bottom-right extremities of such b

by a rectangles. So for convenience, the 3 corners D, E and F at levels x = 0 and y = 0 are ignored. Thus, the partition in
Figure 11 has corners C of type (2, 2), B of type (2, 1) and A of type (3, 1).

X
X

A

B

C

D

E F

2

1

•

•

•

•

• •

Figure 11: The 6 corners of π = 4422111, with A, B and C of type (a, b).

One easily finds that a corner of type (a, b) in the Ferrers diagram of π corresponds to consecutive parts c , c− b in the
partition π such that the multiplicity of c is exactly a and the last occurrence of c is followed by a part of size c− b. Other
types of considered corners are of type (a+, b); these are corners of type (j, b) for any j ≥ a, and similarly, corners of type
(a+, b+). The size of corners of type (a, b) is defined to be a+ b.

We summarize the main results due to Blecher et. al. [20] via the following theorem.

Theorem 7.1. [20] We have

Type of corner Generating function for the Main term asymptotics for the
total number of such corners average number of such corners

All corners −3 + 3−2x
(1−x)

∏
j≥1(1−xj)

√
6n
π

(a, b)
xab

∏a
i=1(1−x

i)∏
i≥1(1−xi)

∏b+a+1
i=b+1 (1−xi)

a!b!
√
6n

π(a+b+1)!

(a+, b)
xab

∏a
i=1(1−x

i)∏
i≥1(1−xi)

∏a+b
i=b (1−xi)

a!(b−1)!
√
6n

π(a+b)!

(a+, b+)
xab

∏a−1
i=1 (1−xi)∏

i≥1(1−xi)
∏a+b−1
i=b (1−xi)

(a−1)!(b−1)!
√
6n

π(a+b−1)!

size m 1∏∞
l=1(1−xl)

∑m−1
p=1

xp(m−p)
∏p
i=1(1−x

i)∏m+1
i=m−p+1(1−xi)

1
m+1

∑m−1
a=1

(
m
a

)−1√6n
π

91



T. Mansour and A. Sh. Shabani / Discrete Math. Lett. 2 (2019) 65–94 92

8. Extensions, generalizations and connections on bargraphs

As we have seen from the previous sections, the interest for studying bargaph is growing. Besides bargraphs coming from
the representation of well known of combinatorial families, recently appeared some extensions of them. We end this paper
by presenting several such extensions related to the study of bargraphs.

• An x-bargraph is a bargraph remaining after removing the edges on x-axis, see Mansour [76]. Therein, it is shown
that the generating function for the number of x-bargraphs according to the number of border cells (inner site-
perimeter) is given by

1 + t− 3t2 + 2t3 −
√

1− 2t− 9t2 + 6t3 + 9t4 − 12t5 + 4t6

2t
.

• A cylindrical lattice is a lattice with vertex set {W (a, b) : (a, b) ∈ Zm×Z}, whose edges are formed by transformations:

W (a, b) 7→W (a+ 1, b+ 1);W (a, b) 7→W (a− 1, b+ 1),

naturally known as counterclockwise step and a clockwise step, respectively. For more on cylindrical lattices see [56].

Let m > 1 be an arbitrary fixed integer. Consider the map W : Z× Z→ R3 defined by W (a, b) =
(

cos 2πa
m , sin 2πa

m , b
)
.

By this map the lattice Z × Z simply wraps around the cylinder. To be more precise, we view the image of W as a
cylindrical lattice; which we call the m-cylinder.

A circular bargraph is a self-avoiding walk in a cylindrical lattice, starting at the origin and ending with its first
return to the xy-plane, which coincides with the starting point. In an analogy to regular bargraphs, there are three
types of steps: an up-step (0, 0, 1), a down-step (0, 0,−1), and a horizontal-step (0, 1, 0). Also it is natural to require
that an up-step cannot directly follow a down-step, and other way around, as well as that all horizontal steps must
lie strictly above the xy-plane. A circular bargraph can be presented as a sequence of columns π = π1π2 · · ·πm such
that the horizontal step of the jth column (from the left) lies on the horizontal line y = πj . It is straightforward to
see that the number of horizontal steps of the circular bargraph is m. Cakić, Mansour and Shabani [34], showed the
following result.

Theorem 8.1. [34] The generating function for the number of circular bargraph according to the number of cells,
number of columns, and the perimeter is given by

1 + x2

(1−x)(1−q2x)
∑
i≥0

(q2−1)i+1q2(i+2)yi+2x(
i+2
2 )

(1−xi+2)
∏i
j=1(1−q2xj)(1−xj)

1−
∑
i≥0

q2(i+1)(q2−1)iyi+1x(
i+2
2 )∏i

j=1(1−q2xj)
∏i+1
j=1(1−xj)

.

Moreover, the total length of the perimeter over all circular bargraphs with n cells is given by 5
18 ((3n+ 1)2n − (−1)n) +

1
2 − n.

• A superdiagonal bargraph is a bargraph such that the highest side of each column is placed above the diagonal y = x.
Deutsch, Munarini and Rinaldi [44] showed that the generating function for the number of superdiagonal bargraphs
according to the semi-perimeter is given by C(x2/(1 − x)), where C(t) = 1−

√
1−4t
2t is the generating function for the

Catalan numbers. Moreover, it is shown that there exists a bijection between the superdiagonal bargraphs of semi-
perimeter n and the Motzkin paths of length n with no level steps at even levels. In addition, it is shown that the
number of all superdiagonal bargraphs with n cells and with k columns is

(n−(k2)−1
k−1

)
.

• A symmetric bargraph is a bargraph which is invariant under reflection along a vertical line. Deutsch and Elizalde
[42] showed that the generating function for the number of symmetric bargraphs according to the number horizontal
steps and up steps is given by

(1 + x)

√
(1− y2)((1− x2)2 − y2(1 + x2)2)− 1 + x2 + y2 + 2x2y + x2y2

2x(1− x2 − y − x2y)
.

• A weakly alternating bargraph is a bargraph of the form ui1hj1dk1h`1ui2hj2dk2h`2 · · ·uimhjmdkm , where m ≥ 1 and
ir, jt, kr, `t ≥ 1 for all r. A strictly alternating bargraph is a weakly alternating bargraph with no consecutive hori-
zontal two steps. In [42] it is proved that the generating function for the weakly and strong alternating bargraphs
according to number of horizontal steps and up steps is given by

(1− x)2 − (1− 2x)y −
√

((1− x)2 − y)((1− x)2 − y(1− 2x)2)

2x(1− x)
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and
1− y + x2y −

√
(1− y)2 − x2y(2 + 2y − x2y)

2x
,

respectively. Moreover, it is shown that the generating function for the number of strong alternating bargraphs
is related to counting Motzkin paths. In particular, it is shown that there is a bijection between strong alternating
bargraphs and Motzkin paths that maps the statistic number of horizonal steps and up steps to the statistics number
of up steps+number of down steps+1 and number of horizontal steps+2.

• A t-bargraph is a bargraph that besides cells of size 1× 1, also includes d-cells (cells of size 1× d with 2 ≤ d ≤ t) such
that these cells touch the x-axis. Mansour and Shabani [81] (also, Mansour and Shabani [80] for t = 2), found the
generating function for the number of t-bargraphs according to the number of cells and the perimeter. Moreover, an
explicit formula for the total length of the perimeter over all t-bargraphs with n-cells has been derived.

• A bargraph and a topological index. Recently, Elumalai and Mansour [48], connected bargraphs with a well known
topological index - the general zeroth-order Randić index. Therein, they studied 0Rα(G) for the case whenG is a graph
corresponding to a bargraph and where 0Rα(G) is defined as 0Rα(G) =

∑
u∈V (G) deg(u)α, where deg(u) denotes the

degree of the vertex u and α is a non-zero real number. It is shown that the expected value of the general zeroth-order
Randić index over all bargraphs with n cells is asymptotic to n

3 (3α+1 + 2α + 3 · 22α−1) as n→∞.
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[51] S. Feretić, The column-convex polyominoes perimeter generating function for everybody, Croat. Chem. Acta 69 (1996) 741–756.
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