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On the complementary distance energy of join of certain graphs
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Abstract

The complementary distance matrix of a graph G is defined as CD(G) = [ci;], in which ¢;; =1+ D —d;; ifi # jand ¢;; =0
if ¢ = j, where D is the diameter of G and d;; is the distance between the vertices v; and v; in G. The complementary
distance energy CDE(G) of G is defined as the sum of the absolute values of the eigenvalues of complementary distance
matrix of G. Two graphs G; and G are said to be C' D-equienergetic if CDFE(G1) = RCDE(G2). In this paper, we obtain
the C' D-polynomial and C' D-energy of the join of regular graphs of diameter at most two. We use these results to show that
there exists at least one pair of C'D-non-cospectral, C' D-equienergetic graphs on n vertices, for every n > 6.
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1. Introduction

Let G be a simple connected graph with n vertices and m edges. Let the vertex set of G be V(G) = {v1,vs,...,v,}. The
distance between the vertices v; and v;, denoted by d,; = d(v;, v;) is the length of shortest path joining them. The diameter
of a graph G, denoted by diam(G), is the maximum distance between any pair of vertices of G [1].

The complementary distance between the vertices v; and v, is defined as ¢;; = 1+ D — d;;, where D = diam(G) and d;;
is the distance between the vertices v; and v; in G. The complementary distance (CD) matrix [6] of a graph Gisann x n
real symmetric matrix CD(G) = [¢;;], where

1+ D —dy, ifij
cij =
0, otherwise.
The complementary distance matrix gives a quantitative structure-property relationship (QSPR) models in chemistry.
The structural descriptors computed with the C'D-matrix are used to develop structure-property models for the boiling
temperature, molar heat capacity, standard Gibbs energy of formation, vaporization enthalpy, refractive index and density
of alkanes [6, 7].

The characteristic polynomial of CD(G) is defined as ¥(G : p) = det(ul — CD(G)), where I is the identity matrix of
order n. The eigenvalues of the complementary distance matrix, denoted by 1, o, . . ., iun, are said to be the complementary
distance eigenvalues or C D-eigenvalues of G and their collection is called the C D-spectra of G. Two non-isomorphic graphs
are said to be CD-cospectral if they have same C D-spectra. The complementary distance energy or CD-energy of a graph G
denoted by CDE(G) is defined as

CDE(G) =Y |uil - (1)
=1

The Equation (1) is in full analogy to the ordinary graph energy [2], which is defined as the sum of the absolute values of
the eigenvalues of the adjacency matrix of G. For details about the graph energy, one can refer the survey articles [3,4, 9]
and the books [5, 8].

Two graphs G and G are said to be complementary distance equienergetic or CD-equienergetic if CDFE(G1) = CDE(G>).
Obviously, the C D-cospectral graphs are C D-equienergetic. Therefore, it is worthy to find C' D-non-cospectral, C D-equienergetic
graphs having the equal number of vertices. Distance and distance-like equienergetic graphs have been reported in [10-12].

In [13], the C D-energy of line graphs of certain regular graphs was obtained and thus the pairs of C' D-equienergetic graphs
were obtained. Here, we obtain the characteristic polynomial of the C D-matrix of the join of two regular graphs whose
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diameter is less than or equal to 2 and thereby we show that there exists at least one pair of C'D-non-cospectral, CD-
equienergetic graphs on n vertices, for every n > 6.

2. CD-spectra and C D-energy of join of graphs

Definition: The join of two graphs GG; and G5, denoted by G1VGs, is a graph obtained from G; and G2 by joining each
vertex of G to all vertices of G5 (for example, see Figure 1).

Pl

G1VGy

Figure 1: Two graphs G; and G, and their join.

Theorem 2.1. Let G; be an r;-regular graph on n; vertices and diam(G;) = 2, i = 1,2. Then the characteristic polynomial
of the complementary distance matrix of G1VGy is

—ay)(p — az) — 4niny]

Y(G1VGy : p) = C (1 —a1)(p — az)

Y(G1 ) (Ga ), (2)

where a; =n; +r, —land ay =ne +1r9 — 1.
Proof.

,uInl - CD(Gl) (_2)Jn1><n2

Y(G1VGy : ) = det(ul = CD(GIVGy)) = | H ) Pl o se  |

3)

where J is the matrix whose all entries are equal to one and I is an identity matrix. The determinant given in the right
hand side of (3) can be written as

M —012 PR _clnl —2 —2 PR —2
—Co1 n . —Con, -2 -2 e -2
—Cny1 —Cpy2 I -2 -2 e -2 (4)
-2 -2 e -2 n —C/12 e _c/1n2 ’
— — . -2 _6121 I . —CIan
-2 -2 -2 _C'/n,gl _c’/na? "

where c;; is the complementary distance between the vertices v; and v; in G1 and ¢}, is the complementary distance between
the vertices u; and u; in G. Since every G; is an r;-regular graph and diam(G;) = 2 for i = 1,2, every vertex of G; is at
distance one from r; vertices and distance 2 from remaining (n; — 1 — r;) vertices. Therefore,

ni

Zcij:nl"_rl_]- for i:1,2,...,n1 (5)
j=1
and
na
Zc;j:ng—l-rg—l for i=1,2,...,no. (6)
j=1
By subtracting the row (n; + 1) from the rows (n1 +2), (n1 + 3), ..., (n1 + n2) of (4), we obtain (7)
M —C1y o+ —Cin, —9 -9 -9
—Co1 M e —Com, -9 -9 -9
—Cny1 —Cpya e M -9 -9 -9 o
-2 -2 e -2 " 70/12 e 7clln2 '
0 0 T 0 _0/21 K pt 0/12 T _c/2n2 + c/an
0 0 e 0 _C{ngl — M _C{n22 + C/12 o ®+ C/lng
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By adding the columns (n; + 2), (n; + 3),...,(n1 + n2) to the column (n; + 1) of (7) and using Equation (6), we get the
determinant (8), where ay = ny + ro — 1.

1% —C12 ce —Cln, —2’/7,2 -2 s —2
oy L cee —Cop,  —2n9 _9 . _9
_cn11 _Cn12 e M _2n2 -2 e -2 (8)
_9 _9 ... 2 p—as — .. i,
0 0 o 00 pdy e —chy, +dh,
0 0 0 0 —Chy2tClp 1+ Cip,
Determinant (8) is equal to (9).
1% —Ci2 -0 —Cip,  —2n2
—C21 1 st —Cony —2no
|Bl, €
—Cny1 —Cpy2 - % —2ng
-2 -2 .- -2  pu—as
where
1+ o —Chz+Chy o —Chy, +Chy,
—C59 + ¢ p+c T !
|B| _ 32 ‘ 12 13 ‘ 3ng 1ne . (10)
—Chy2t €y —Chzt iy B Clp,
The first determinant in (9) is of order (n; + 1). By subtracting the first row from the rows 2, 3, ..., n;, in the first determi-
nant of (9), we obtain (11).
1% —C12 e —Cin, —2ng
—C21 — 1+ ci2 ©rr —Cpy T Cipy 0
: : 1Bl (11)
—Cpy1l — [ —Cpy2F+Ci2 - K+ Ciny 0
-2 -2 e -2 uw— as

Adding columns 2, 3,...,n; to the first column of the first determinant in (11) and using Equation (5) we get (12), where

a1 =ny+r; — 1.

H—ay —C12 e —Cin, —2ny
0 W+ ci2 cr+ —Cap, t Cing 0
I : |B| . (12)
0 —Cpy2+Cl2 v B+ Ciny 0
—2n, -2 e —2 [
Expanding the first determinant of (12) along the first column gives (13).
{(p—a1) Ay = (=1)""(2n1) A2} | B, (13)
where
W+ cio —C23+C13 -+ —Copy t+ Cing 0
—c32 + C12 u+ci3 “r+ —C3p, t Cing 0
Al = . .
—Cpi2+Cl2 —Cpz3+ciz oo W+ Clny 0
-2 —2 e -2 U — as
and
—cC12 —c13 e —Cln, —2n9
W+ ci2 —Co3+cC13 -+ —Copy t+Ciny 0
Ay =| —C2tci2 p+ c13 St —C3ny Tt Ciny 0
—Cp2+Cl2 —Cpyzt+ciz v p+ Cin, 0

The expression (13) can be written as

{(n = a1) (k= az) |A] = (=1)™ (2m1) (1) (=2n2) A } | B = {( — a1) (1 — a2) — 4nina} |A]| B, (14)



H. S. Ramane and M. M. Gundloor / Discrete Math. Lett. 2 (2019) 57-64 60

where
W+ ci2 —Co3 +C13 -+ —Copy t+ Cin,
—C32 + C12 W+ ci3 st —C3p, T Ciny
|A] = : . : (15)
—Cpy2+Cl2 —Cpy3+cCi3 - W+ Cing
The determinant (15) can be written as
H—ax —C12 —C13 ce —Cin,
) 0 W+ ci2 —Coz+C13 0 —Copy t+Ciny
A= ——— 0 —c32 + C12 B+ cis o —C3py tCiny || (16)
(1 —a1) )
0 —Cp,2 +Cl2 —Cpzt+ciz oo W+ Cin,

From Equation (5), it follows that the sum of the i-th row in (16) is p + ¢;; fori = 2,3, ..., ny. Therefore, by subtracting the

columns 2,3, ...,ny of (16) from the first column, we obtain (17).
H —C12 —C13 ce —Cin,
) —H = C21 H A+ c12 —C3+C13 - —Copy T Cimy
A = ———— | “H—G1 G + ci2 W+ ci3 “rr —C3p, +Clny | a7
(1 —an) : :
—H—Cny1  —Cpy2+Cl12 —Cpyz+cC13 v n+ Cin,

Adding first row to the rows 2,3,...,ny of (17), we get

2 —C12 —C13 - —Ciny
1 —C21 1% —C23 -+ —Cop, 1
1A = —C31  —C32 T = ——— (e N (18)
(M - al) : : (H’ - al)
_cn11 _cn12 _cn13 e M

Similarly, we can show that from (10) the following equation follows
1

(1 —a2)

Substituting (18) and (19) into (14) gives Equation (2). O

|B| = V(Ga i) . (19)

Theorem 2.2. Let K, be the complete graph on p vertices. Let G be an r-regular graph on n vertices and diam(G) = 2. Then
the characteristic polynomial of the complementary distance matrix of K,VG is

f—2p+2)(p—b) —4pn]

(1 + 2P p(G ), (20)

whereb=n+r — 1.
Proof.

(/f« + 2)Ip - (2)Jp><p (_Q)Jpxn

VKV : ) = det(ul — CD(K,V@)) = (=2) T ul, = CD(G) |’

(21)

where J is the matrix whose all entries are equal to one and I is an identity matrix. The determinant (21) can be written

as
-2 -2 ... -2 I —C12 v —Cin ’ (22)
-2 -2 e -2 —Co1 " e —Con
-2 -2 ... -2 —Cpl  —Cp2 - "

where ¢;; is the complementary distance between the vertices v; and v; in G. Since G is an r-regular graph and diam(G) = 2,
every vertex of G is at distance one from r vertices and distance 2 from remaining (n — 1 — r) vertices. Therefore,

n
ZCij:n+T_1 for i=1,2,...,n. (23)
j=1
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By subtracting the row (p + 1) from the rows (p + 2),(p+ 3),..., (p + n) of (22), we get

uo =2 -2 -2 -2 -2

-2 -2 -2 -2 -2

—2 =2 oy —2 -2 -2

-2 =2 -2 o) —C12 —Cin @4

o 0 -+ 0 =—co—p pter —Con + Cip

0 0 - 0 —cp1—p —Cp2tcio w+ cin

By adding the columns (p + 2),(p + 3),...,(p + n) to the column (p + 1) of (24) and using Equation (23) we arrive at the

determinant (25), where b =n +r — 1.

no =2 -2 —2n —2 —2
-2 pu -2 —2n -2 -2
-2 =2 -~ u  —2n -2 -2
-2 =2 -2 u—=5 —C12 —Cin
0 o --- 0 0 W+ ci2 —Can + Cin
0 O 0 0 —Cp2 + C12 B+ Cin
which is equal to (26):
no =2 -2 —=2n
-2 u -2 —2n
: : 1B,
-2 -2 -~ un  —2n
2 =2 o =2 pu—b
where
H + C12 —C23 + C13 —C2n + Cin
—cC32 + C12 W+ ci3 —C3n + Cin
|B| =
—Cp2 + €12 —Cpz +Ci3 W+ Cin

The first determinant in (26) is of order (p 4+ 1) . Subtracting first row from the rows 2,3, ...

(26), we get
o -2 .. -2  —2n
—2—p p+2 .- 0 0
. . |B| .
—2—pu 0 n+2 0
-2 -2 -2 u—b
Adding columns 2,3, ..., p to the first column of the first determinant in (28), we get
w—2p-1) -2 - =2 —=2n
0 p+2 -0 0
. . |B| .
0 0 2 0
—2p -2 -2 u-—b

Expanding it along the first column we get

{(u=2(p=1)) (n+2)"" (= b) — dpn(p +2)" "'} Bl = {(n— 2p +2)) (= b) — 4pn} (u +2)"~ 1| B.

As done in Theorem 2.1, we can show that from (27), the following equation follows

1
(=)

1Bl = $(G ).

Substituting (31) into (30), we get Equation (20).

(25)

(26)

(27)

,p, in the first determinant of

(28)

(29)

(30)

(31)
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Theorem 2.3. Let G; be an r;-regular graph on n; vertices and diam(G;) = 2, where i = 1,2. Then

CDE(G1VG2) = CDE(Gl) + CDE(GQ) - (a1 + ag) + \/(al - CL2)2 + 16’/L17127
wherea; =n1+1r —land ay =no +19 — 1.
Proof. From Theorem 2.1, it follows that

= @) (s — az) — dnyng]

Y(G1VGy : p) = I (1 —a1)(p — az)

Y(Gr: (Gt p),

which gives that
(1 —a1)(p—a2)P(Gi1VGa : ) = [(p— a1)(p — a2) — dnano] (G : W) (Ga : p).

Let Pl(p,) = (‘LL — al)(u - ag) w((;lVGQ : M) and PQ([JJ) = [(,u — al)(u — ag) — 4:71,1712} ’l/)(Gl : u)z/)(GQ : ,U,) The roots ofPl(u) =0
are a1, ap and the C'D-eigenvalues of G; VG2. Therefore, the sum of the absolute values of the roots of P; (1) = 0 is

ay + ag + CDE<G1VG2) (32)

The roots of P»(1) = 0 are C' D-eigenvalues of G; and G2 and

% [(al +ag) + \/(al +a2)? — 4(a1a2 — 4”1”2)} .

Therefore, the sum of the absolute values of the roots of P>(u) = 0 is

CDE(G1) + CDE(Ga) + ’% [(m +a2) + (a1 + a2)? — 4(aras — 4n1n2)] ‘ + ’ [(m +a2) — /(a1 + a2)? — 4(aras — 4n1n2)] ’ . (33)

1
2

Since P;(u) = Py(n), equating (32) and (33), we get

CDE(G1VG2) = CDE(Gl) + CDE(GQ) — (a1 + G,Q) + ‘ {(al + (12) + \/(al + a2)2 — 4((110,2 — 4n1n2)} ‘

N |

[(al +as) — \/(a1 +a2)? —4(a1az — 4n1n2)} ’ . (34)

N =

d
Since 71 < ni; — 1 and ro < ny — 1, it holds that
ajas = (m +7ry — 1)(712 +7ro — 1) < (27L1 — 2)(2”2 — 2) = 4(711 — 1)(%2 — ].) < 4n1n2.

Therefore, Equation (34) reduces to

CDE<G1VG2) = CDE(Gl) + CDE(GQ) — (a1 + CLQ) + \/(CLl + CL2)2 — 4(@1&2 — 471177/2)

= ODE(G1) + CDE(GQ) — (Cl1 + CLQ) + \/(a1 — a2)2 + 16n1ny .
O

Corollary 2.1. If H, and H, are C D-non-cospectral, C D-equienergetic, r-regular graphs on n vertices and diam(H;) = 2,
i = 1,2, then for any regular graph G with diam(G) =2, CDE(H,VG) = CDE(H3VG).

Theorem 2.4. Let K, be the complete graph on p vertices. Let G be an r-regular graph on n vertices and diam(G) = 2. Then

CDE(K,VG) =CDE(G)+2p—2—b++/(2p —2 — )% + 16pn,
whereb=n+r — 1.

Proof. From Theorem 2.2, it follows that

[(1 —2p+2)(1 — b) — 4pn]
(L—0)

V(KpVG :p) = (1 +2)P1(G = ),

which gives that
(1 = b)Y (K,VG s p) = [(1n = 2p +2) (1 — b) — dpn] (1 + 2)P~1(G : ).

Let Q1(n) = (1 — b)Y(KpVG : u) and Qa(p) = [(1 —2p + 2) (1 — b) — 4pn] (u + 2)P~'4(G : p). The roots of Qi (y) = 0 are b
and the C'D-eigenvalues of K,VG. Therefore, the sum of the absolute values of the roots of Q1 (u) =0 is

b+ CDE(K,VG). (35)
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The roots of Q2(u) = 0 are C' D-eigenvalues of G, —2 (p — 1 times) and

%[(2p—2—|—b):t\/(2p—2—|—b)2—4((2p—2)b—4pn)}.

Therefore, the sum of the absolute values of the roots of Q2(y) = 01is

CDE(G)+2p2+‘; {(2p2+b)+\/(2p2+b)24((2p2)b4pn)H

+’; [(2p—2+b)—\/(2p—2+b)2_4((2p—2)b—4pn)H_ (36)

Since Q1 (1) = Q2(u), by equating (35) and (36), we get

|~

CDE(K,VG)=CDE(G) +2p—2—b+ ‘ [(Qp —24b)+/(2p—2+b)2—4((2p—2)b— 4pn)} ‘

N | =

+’ [(Qp_2+b) —J/@p—2+0)p _4((2p_2)b_4pn)H. (37)
Sincer <n —1,
2p—2b=02p—-2)(n+r—1)<(2p—2)2n—-2)=4(p—1)(n — 1) < 4pn.

Therefore, Equation (37) reduces to

CDE(K,VG)=CDE(G)+2p—2—b++/(20— 2+ )2 —4((2p — 2)b — 4pn)
=CDE(G)+2p—2—b++/(2p—2—b)2 + 16pn.

O
3. CD-equienergetic graphs
Theorem 3.1. There exists atleast one pair of C D-non-cospectral, C D-equienergetic graphs on n vertices for every n > 6.
Proof. Consider the graphs H, and H;, as shown in Figure 2.
H, o,
Figure 2: Graphs H, and H,.
We have,
V(Ha s p) = (1 —8)(p +4)(u+ 1) (38)
and
G(Hy ) = p(p = 8) (1 +1)*(u + 3)% (39)

Both H, and H, are 3-regular graphs on 6 vertices. Also diam(H,) = 2 = diam(H,) and CDE(H,) = CDE(H,) = 16. Let
H be any r-regular graph on p > 1 vertices such that diam(H) = 2. Then, by Theorem 2.3,

CDE(H,VH)=CDE(H,NH) = CDE(H)+9—p—7++/(9—p—r)2+ 96p.

Thus, H,VH and H,V H are C D-equienergetic graphs. By Equations (38) and (39), it follows that H, and H; are C' D-non-
cospectral, so from Theorem 2.1, it follows that H,V H and H,V H are C D-non-cospectral. Furthermore, H,VH and H,VH
possesses equal number of vertices n = 6+ p, p > 1. Theorem holds also for n = 6 and it is directly verified from Equations
(38) and (39). O

Using Theorem 2.4 we have the following result.
Theorem 3.2. Let K, be the complete graph on p vertices. If H, and H, are the graphs as shown in Figure 2, then
CDE(K,VH,) = CDE(K,VH,) =6+ 2p+/(2p — 10)2 + 96p.
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4. Conclusion

The characteristic polynomial of the join of two regular graphs of diameter at most two is obtained and using it, the
CD-energy of the join of two regular graphs of diameter at most two is expressed in terms of the C'D-energies of the
underline graphs. Using these results, the existence of C' D-equienergetic graphs has been proved. By using Corollary 2.1,
one can construct a pair of C'D-non-cospectral, C'D-equienergetic graphs. In particular, Theorems 3.1 and 3.2 reveals the
construction of a pair of C D-non-cospectral, C'D-equienergetic, n-vertex graphs for every n > 6. Further, it will be worthy
to study this topic to find out other properties of C D-equienergetic graphs.
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