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Abstract

The cyclomatic number ν of a graph G is the minimum number of those edges of G whose removal makes G as acyclic. The
second Zagreb index M2 for a graph G is the sum of the products of degrees of adjacent vertices of G. For ν =

(
k−1
2

)
+ t

with 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n − 2, let G∗ be the graph having maximum M2 value in the class of all connected graphs
with order n and cyclomatic number ν. Xu et al. [MATCH Commun. Math. Comput. Chem. 72 (2014) 641–654] posed a
conjecture concerning the exact structure of the graph G∗. In this note, a partial progress is made on this conjecture by
proving that G∗ has a specific type of subgraph with the size

(
k−1
2

)
+ t and minimum degree at least one.
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1. Introduction

Every graph considered in this note is simple and finite. The vertex set and edge set of a graph G will be denoted by
V (G) and E(G), respectively. Edge connecting the vertices u, v ∈ V (G) and the degree of a vertex u will be denoted by uv
and du(G) (or du, when there is no confusion), respectively. A pendant vertex of a graph is a vertex with degree 1. By an
n-vertex graph, we mean a graph of order n. The cyclomatic number of a graph G, denoted by ν(G) (or ν, when there is no
confusion), is the minimum number of those edges of G whose removal makes G as acyclic. Denote by Gn,ν the class of all
n-vertex connected graphs with cyclomatic number ν. By saying that two graphs G and H are disjoint, we mean that the
graphs G and H are vertex-disjoint as well as edge-disjoint. The union and join of two graphs G1, G2 will be denoted by
G1 ∪G2 and G1 +G2, respectively. Throughout this note, union and join will be taken over disjoint graphs. Denote by rK1

the union of r isolated vertices. The set of all vertices adjacent to a vertex u ∈ V (G) will be denoted by NG(u). Undefined
terminology and notation from graph theory can be found in some standard books, like [3,9].

The second Zagreb index M2 (appeared in [7] within the study of molecular branching) for a graph G is defined as

M2(G) =
∑

uv∈E(G)

dudv.

Although the mathematical theory of the second Zagreb index is well-documented (for example, see the recent survey
paper [4] and the related references listed therein), some interesting extremal graph-theoretical problems regarding this
index are still open. One of these open problems is the problem of finding graph(s) with the maximal second Zagreb index
in the graph class Gn,ν . Indeed, a partial progress on the solution of this open problem has already been made: Deng [6]
solved this problem for ν ≤ 2; Xu et al. [10] gave the solution of this problem for the cases ν ≤ 3 and ν =

(
k−1
2

)
, where

4 ≤ k ≤ n− 2, and also they posed the following conjecture regarding this problem.

Conjecture 1.1. [10] Let ν =
(
k−1
2

)
+ t where 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n − 2. The graph Kn−k

k (t) has the maximum
M2 value among all the graphs of Gn,ν , where Kn−k

k (t) is the graph obtained from [Kk−1 ∪ (n− k)K1] +K1 by adding t new
edges between a fixed pendant vertex and t other vertices of degree k − 1.

In [1,8], it was proved that Conjecture 1.1 holds for ν = 4. Recently, in [2], this conjecture was proved for the case ν = 5.
In this note, a partial progress is made on Conjecture 1.1 by proving that the graph having maximumM2 value in the class
Gn,ν , has a specific type of subgraph with the size

(
k−1
2

)
+ t and minimum degree at least one, where ν =

(
k−1
2

)
+ t with

1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n− 2.
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2. Main results

In order to state and prove the main results, we need two already known lemmas. The first of these two lemmas is the
following one, which is due to Xu et al. [10].

Lemma 2.1. [10] Let ν =
(
k−1
2

)
+ t where 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n− 2. If G is the graph with the maximum M2 value

in Gn,ν then the maximum degree of G is n− 1.

For stating the next lemma, we need some definitions and notations. Let

M∗(G) =
∑

uv∈E(G)

(du + 1)(dv + 1).

For the simplicity, we write di = dvi for vi ∈ V (G). In what follows, we recall the definition of a graph class, given in [5].
Let G̃ = G(d1, d2, . . . , dN ) be a graph with the vertex set

N⋃
j=0

Ij ,

as a disjoint union, where I0 = {v1, v2, . . . , vN}, |Ij | = dj − dj+1 for j = 1, 2, . . . , N − 1, |IN | = dN − (N − 1) and d1 ≥ d2 ≥
· · · ≥ dN ≥ N − 1. Also, for j = 1, 2, . . . , N , we take

NG̃(vj) = (I0 \ {vj}) ∪

 N⋃
k=j

Ik


and assume that all the vertices of the set

N⋃
j=1

Ij

are pairwise non-adjacent. The graph G̃ is shown in Figure 1. It is clear that the size of the graph G̃ is
N∑
i=1

di −
(
N

2

)
.

Denote by F the class of all graphs of the form G̃.

Lemma 2.2. [5] Let k′ and t be positive integers with 1 ≤ t ≤ k′. If G is a graph of minimal degree at least one and has
maximum M∗ value among all the graphs of size

(
k′

2

)
+ t, then G ∈ F.

Now, we are ready to state and prove the first main result of the present note.

Proposition 2.1. Let ν =
(
k−1
2

)
+ t where 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n − 2. If G is a graph with the maximal M2 value

among all the graphs of Gn,ν then G ∼= (H ∪ sK1) +K1 and

M2(G) = (n− 1)(n+ 2t+ k2 − 3k + 1) +M∗(H). (1)

where H ∈ F and s is some non-negative integer.

Proof. By Lemma 2.1, the graph G must have a vertex of degree n − 1. If v ∈ V (G) is a vertex of degree n − 1 then order
and size of the graph G− v are

n− 1 and
(
k − 1

2

)
+ t ,

respectively, where 1 ≤ t ≤ k − 1, 4 ≤ k ≤ n− 2. By using the definition of the second Zagreb index, we have

M2(G) = dv(G)
∑

x∈V (G−v)

dx(G) +
∑

uw∈V (G−v)

du(G)dw(G)

= dv(G)
∑

x∈V (G−v)

(dx(G− v) + 1) +
∑

uw∈V (G−v)

(du(G− v) + 1)(dw(G− v) + 1)

= (n− 1)(n+ 2t+ k2 − 3k + 1) +M∗(G− v). (2)

It is evident that if H is the graph obtained from G− v by removing all isolated vertices (if H does not contain any isolated
vertex, we take H ∼= G− v), then

M∗(G− v) = M∗(H). (3)
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Figure 1: The graph G̃.

Bearing in mind the definition of G, from Equations (2) and (3), we conclude that H must have the maximal M∗ value
among all the graphs of size

(
k′

2

)
+ t, where 1 ≤ t ≤ k′ and k′ = k − 1. But then, Lemma 2.2 ensures that H belongs to the

class F.

Because of Equation (1), in order to determine the graph with the maximal M2 value in Gn,ν , it is enough to find the
graph having maximum M∗ value in the graph class F. Thus, Conjecture 1.1 will be true if the following conjecture holds.

Conjecture 2.1. If a graphG has the maximumM∗ value among all the graphs of Fwith the size
(
k−1
2

)
+twhere 1 ≤ t ≤ k−1

and 4 ≤ k ≤ n − 2, then G is isomorphic to the graph consisting of the (k − 1)-vertex complete graph Kk−1 together with an
additional vertex joined to t vertices of Kk−1.

The first step towards Conjecture 2.1 is the next proposition, which gives M∗ value of an arbitrary graph of F.

Proposition 2.2. If G ∈ F then

M∗(G) =

N∑
i=1

i (di + 1)2 +

(
N∑
i=1

di

)2

−N(N − 1)

N∑
i=1

di −N3.
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Proof. Suppose that the set A contains all those edges of G whose one end vertex belongs to I0 and the other one belongs
to Ij for some 1 ≤ j ≤ N , and let B = E(G) \A. We take

Λ1 =
∑
uv∈A

(du + 1)(dv + 1) and Λ2 =
∑
uv∈B

(du + 1)(dv + 1),

then M∗(G) = Λ1 + Λ2. For the edges of A, we have

|I1| = d1 − d2,

|I2| = d2 − d3,

|I3| = d3 − d4,
...

|IN−1| = dN−1 − dN ,

|IN | = dN − (N − 1).

Hence,

Λ1 = (d1 − d2)(2d1 + 2) + (d2 − d3)

(
3

2∑
i=1

di + 6

)
+ (d3 − d4)

(
4

3∑
i=1

di + 12

)

+ · · ·+ (dN−1 − dN )

(
N

N−1∑
i=1

di +N(N − 1)

)

+(dN − (N − 1))

(
(N + 1)

N∑
i=1

di +N(N + 1)

)

=

[
2d1(d1 − d2) + (d2 − d3)

(
3

2∑
i=1

di

)
+ (d3 − d4)

(
4

3∑
i=1

di

)

+ · · ·+ (dN−1 − dN )

(
N

N−1∑
i=1

di

)
+ (dN − (N − 1))

(
(N + 1)

N∑
i=1

di

)]
+

[
2(d1 − d2) + 6(d2 − d3) + 12(d3 − d4) + · · ·+N(N − 1)(dN−1 − dN )

+N(N + 1)(dN − (N − 1))

]
=

[(
2d21 + 3d2

2∑
i=1

di + 4d3

3∑
i=1

di + · · ·+NdN−1

N−1∑
i=1

di + (N + 1)dN

N∑
i=1

di

)

−

((
2d1d2 + 3d3

2∑
i=1

di + 4d4

3∑
i=1

di + · · ·+NdN

N−1∑
i=1

di

)
+ (N2 − 1)

N∑
i=1

di

)]
+

[
2d1 + 4d2 + 6d3 + · · ·+ 2NdN −N(N2 − 1)

]
=

[(
2d21 + 3d22 + 4d23 + · · ·+ (N + 1)d2N

)
+

((
d1d2 + d3

2∑
i=1

di + d4

3∑
i=1

di + · · ·+ dN

N−1∑
i=1

di

)
− (N2 − 1)

N∑
i=1

di

)]

+

[
2

N∑
i=1

idi −N(N2 − 1)

]

=

N∑
i=1

(i+ 1)d2i − (N2 − 1)

N∑
i=1

di + 2

N∑
i=1

idi −N(N2 − 1)

+

(
d1d2 + d3

2∑
i=1

di + d4

3∑
i=1

di + · · ·+ dN

N−1∑
i=1

di

)
Now, we calculate Λ2 as follows

Λ2 = (d1 + 1)

(
N∑
i=2

di + (N − 1)

)
+ (d2 + 1)

(
N∑
i=3

di + (N − 2)

)
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+(d3 + 1)

(
N∑
i=4

di + (N − 3)

)
+ · · ·+ (dN−1 + 1)

(
N∑
i=N

di + 1

)
= [(N − 1)(d1 + 1) + (N − 2)(d2 + 1) + (N − 3)(d3 + 1) + · · ·+ (dN−1 + 1)]

+

(
d1

N∑
i=2

di + d2

N∑
i=3

di + d3

N∑
i=4

di + · · ·+ dN−1

N∑
i=N

di

)

+

(
N∑
i=2

di +

N∑
i=3

di +

N∑
i=4

di + · · ·+
N∑
i=N

di

)

=

[
((N − 1)d1 + (N − 2)d2 + (N − 3)d3 + · · ·+ 2dN−2 + dN−1) +

N(N − 1)

2

]
+

(
d1

N∑
i=2

di + d2

N∑
i=3

di + d3

N∑
i=4

di + · · ·+ dN−1

N∑
i=N

di

)

+

(
N∑
i=2

di +

N∑
i=3

di +

N∑
i=4

di + · · ·+
N∑
i=N

di

)

=

(
d1

N∑
i=2

di + d2

N∑
i=3

di + d3

N∑
i=4

di + · · ·+ dN−1

N∑
i=N

di

)

+(N − 1)

N∑
i=1

di +
N(N − 1)

2

Finally, we have

M∗(G) = Λ1 + Λ2

=

N∑
i=1

id2i −N(N − 1)

N∑
i=1

di + 2

N∑
i=1

idi −
N(N − 1)(2N + 1)

2

+

[ N∑
i=1

d2i +

(
d1d2 + d3

2∑
i=1

di + d4

3∑
i=1

di + · · ·+ dN

N−1∑
i=1

di

)

+

(
d1

N∑
i=2

di + d2

N∑
i=3

di + d3

N∑
i=4

di + · · ·+ dN−1

N∑
i=N

di

)]

=

N∑
i=1

id2i −N(N − 1)

N∑
i=1

di + 2

N∑
i=1

idi −
N(N − 1)(2N + 1)

2

+

[
d1

(
d1 +

N∑
i=2

di

)
+ d2

(
d1 + d2 +

N∑
i=3

di

)
+ d3

(
2∑
i=1

di + d3 +

N∑
i=4

di

)

+ · · ·+ dN

(
dN +

N−1∑
i=1

di

)]

=

N∑
i=1

id2i −N(N − 1)

N∑
i=1

di + 2

N∑
i=1

idi −
N(N − 1)(2N + 1)

2
+

(
N∑
i=1

di

)2

,

which gives the required result.

From Propositions 2.1 and 2.2, the next result follows.

Proposition 2.3. Let ν =
(
k−1
2

)
+ t where 1 ≤ t ≤ k − 1 and 4 ≤ k ≤ n − 2. If G is a graph with the maximal M2 value

among all the graphs of Gn,ν then G ∼= (G̃ ∪ sK1) +K1 and

M2(G) =

N∑
i=1

i (di + 1)2 +

(
N∑
i=1

di

)2

−N(N − 1)

N∑
i=1

di −N3 + (n− 1)(n+ 2t+ k2 − 3k + 1).

where G̃ = G(d1, d2, . . . , dN ) ∈ F and s is some non-negative integer.

Acknowledgement

This work was supported by the Sungkyun research fund, Sungkyunkwan University, and National Research Foundation
of the Korean government with grant No. 2017R1D1A1B03028642.

42



K. C. Das and A. Ali / Discrete Math. Lett. 2 (2019) 38–43 43

References
[1] A. Ali, Tetracyclic graphs with maximum second Zagreb index: a simple approach, Asian-European J. Math. 11(5) (2018) Art# 1850064.
[2] A. Ali, K. C. Das, S. Akhter, On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic number, Miskolc Math.

Notes, In press.
[3] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
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