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Abstract
We derive an alternative matrix formula for steady state probabilities in the asymmetric exclusion process where particles
hop at equal rates inside a one-dimensional finite lattice. The result is derived using the combinatorial properties of staircase
tableaux and alternative tableaux.
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1. Introduction

The asymmetric simple exclusion process (ASEP) is a model of particle transport with applications in biology, physics
and other fields. It belongs to a wide class of particle-hopping models called exclusion processes, where particles hop in a
network subject to hardcore exclusion, or the property that at most one particle can occupy a site at a time. The particles
can be protein molecules, quantum dots or even vehicles. For an account of the motivation behind the ASEP and details
of its dynamics as a stochastic transport model, we refer the reader to [9, Chapter 4].

In this paper, we consider the ASEP on one-dimensional lattice ofN sites, where particles enter and exit from both ends
of the lattice. We represent each state τ in the ASEP as a string in {0, 1}N , where the t-th letter τ(t) of τ equals 1 if the t-th
site from the left of the lattice is occupied and 0 otherwise. Subject to hardcore exclusion, the transition probabilities are as
follows: a particle enters from the left at probability α/(N +1), exits from the right at probability β/(N +1), exits from the
left at probability γ/(N +1), enters from the right at probability δ/(N +1), hops to the left inside the lattice at probability
q/(N + 1) and to the right at probability 1/(N + 1). Moreover, if P (τ → τ ′) denotes the probability of transitioning from τ

to τ ′, then P (τ → τ) = 1−
∑
P (τ → τ ′), where the sum runs over all states τ ′ with transitions from τ .

One of the key results in the study of the ASEP was derived by Derida et al. [4], who showed that given matrices D and
E, and column vectors v and wT which satisfy the matrix ansatz

DE − qED = D + E, βDv− δEv = v, αwE − γwD = w , (1)

the steady state probability of a state τ is given by

P (τ ;α, β, γ, δ, q) =
w
(∏N

t=1 τ(t)D + (1− τ(t))E
)

v
w(E +D)Nv .

If τ is rewritten as a string in {E,D}N by replacing each 0 with E and each 1 with D, then

P (τ ;α, β, γ, δ, q) =
wτv

w(E +D)Nv . (2)

Using (2) and by an abuse of notation, we can view τ ∈ {E,D}N both as an ASEP state and a matrix product.
Denote the unnormalized numerator wτv in (2) by f(τ ;α, β, γ, δ, q), and the denominator, also called the partition

function, by ZN (α, β, γ, δ, q). Note that ZN (α, β, γ, δ, q) is also equal to the sum of f(τ ;α, β, γ, δ, q) over all the states τ .
When q = 1, Corteel and Williams [2] and Uchiyama et al. [11] showed that ZN (α, β, γ, δ, 1) has the following surprisingly
simple form

ZN (α, β, γ, δ, 1) =

n−1∏
j=0

(α+ β + γ + δ + j(α+ γ)(β + δ)) .
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The study of the ASEP found its way into combinatorics as researchers obtain connections between computing the steady
state probabilities and enumerating certain combinatorial objects. Shapiro and Zeilberger [10] expressed P (τ ; 1, 1, 0, 0, 0)
in terms of the determinant of a matrix with binomial entries. Viennot [12] obtained a formula for f(τ ;α, β, 0, 0, q) as the
generating function of alternative tableaux, while Corteel and Williams [3] expressed f(τ ;α, β, 0, 0, q) as the generating
function of a related object called permutation tableaux. Corteel and Williams [2] also generalized their result to the
case where all five parameters are arbitrary using staircase tableaux. Mandelshtam [6] obtained a compact formula for
f(τ ;α, β, 0, 0, q) in terms of a combinatorial determinant. Connections with other combinatorial objects were discussed by
Wood et al. [13]. More recently, results for generalizations of the ASEP involving multiple species of particles have also been
obtained [5, 7, 8]. As to the single-species ASEP, while the probabilities have already been completely characterized via
an enumerative formula, an explicit formula has not yet been found. Indeed, this is the case even for the three-parameter
ASEP where δ = γ = 0.

In this paper, we revisit the five-parameter ASEP by focusing on the case when q = 1. We write P (τ), f(τ) and ZN

for simplicity, unless the value of q is assumed to be arbitrary. The rest of the paper is organized as follows. In Section
2, we define the staircase tableau and the alternative tableau and recall some relevant results. We state our main result
in Section 3, which is an expression for f(τ) as a product of linear combinations of known matrix solutions of the three-
parameter ASEP. Some remarks are given in Section 4.

2. The ASEP, staircase tableaux and alternative tableaux

Let 0 ≤ α, β, γ, δ ≤ q and let N be the number of sites in the lattice. Corteel and Williams [2] derived an expression for
f(τ) as the generating function of objects called staircase tableau, which is defined as follows.

Definition 2.1. A staircase tableau of sizeN is a Young diagram whose columns lengths from left to right are n, n−1, . . . , 2, 1,
such that the boxes are labeled with α, β, γ or δ subject to the following conditions:

• no box along the diagonal is empty;

• all boxes in the same row and to the left of a β or a δ are empty; and

• all boxes in the same column and above an α or a γ are empty.

Figure 1: A staircase tableau.

Given a staircase tableau T , the type (T ) of T is the word in {E,D}N obtained by reading the diagonal labels from
northeast to southwest and writing a D for each α or δ and an E for each β or γ. The outline (T ) of T is defined similarly,
except that we write a D for each α or γ and an E for each β or δ. For q = 1, we define the weight (T ) of T as the product
of the labels in all boxes. There are additional conditions when q is arbitrary, for which the interested reader is referred
to the paper [2]. Figure 1 gives an example of a staircase tableau of type EDEDEED, outline DDDEDEE, and weight
α2β2γ4δ2.

For arbitrary q, Corteel and Williams [2] showed that

P (τ ;α, β, γ, δ, q) =

∑
(T )

ZN (α, β, γ, δ, q)
, (3)

where the sums runs over all staircase tableaux of type τ . This result was proved by deriving an alternative matrix ansatz
to (1).
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We define a condensed staircase tableau as the collapsed tableau obtained from a staircase tableau by removing the
columns (respectively, rows) that contain an α or γ (respectively, β or δ) in the diagonal cell, and then labeling the underside
border of the resulting tableau by the corresponding diagonal labels. Figure 2 gives the condensed staircase tableau from
the staircase tableau in Figure 1.

Figure 2: A condensed staircase tableau.

For a state τ ∈ {E,D}N , we denote by B(τ) the Ferrers board whose underside border is outlined by the lattice path
obtained from the string τ by replacing E and D with a unit horizontal step and a unit vertical step, respectively. Notice
that while the type of a staircase tableau gives the ASEP state to which it corresponds, its outline gives the shape of its
condensed version.

Another object related to staircase tableaux are the alternative tableaux, which were used by Viennot [12] to compute
the steady state probabilities. An example is shown in Figure 3.

Definition 2.2. An alternative tableau is a Young diagram containing up and left arrows such that every cell pointed to
by an arrow is empty.

Figure 3: An alternative tableau.

Viennot showed that P (τ ;α, β, 0, 0, q) is proportional to the quantity

f∗(τ ;α, β, 0, 0, q) =
∑

A of shape B(τ)

qfcell(A)α−fcol(A)β−frow(A) , (4)

with statistics defined as follows: fcell(A) is the number of cells with no arrows pointing toward it, fcol(A) is the number
of columns not containing an up arrow and frow(A) is the number of rows not containing a left arrow. For instance, in the
alternative tableau shown in Figure 3, fcell = 5, fcol = 1, frow = 3.

Viennot’s result can be restated as follows. Define the weight of an alternative tableau as q raised to the number of cells
not pointed to and not occupied by an arrow, and denote by Aτq (i, j) the total weight of all alternative tableaux of shape
B(τ) for which frow = i and fcol = j. Since DE − qED = D + E, each string in {E,D}N can be normally ordered; that is,
written as the sum of monomials EiDj , by replacing every occurrence of DE with qED, D or E. In terms of placing arrows
in a Ferrers board of shape B(τ) to form an alternative tableau, these replacements correspond to leaving a cell empty,
placing an up arrow and placing a left arrow, respectively. We then have

τ =
∑
i,j

Aτq (i, j)E
iDj ,

from which (4) follows using the other relations in the ansatz, namely βDv = v and αwE = w.
Given a staircase tableau containing only α’s and β’s, we can obtain a unique alternative tableau by condensing the

staircase tableau and replacing each cell label α by an up arrow and each β by a left arrow. Observe that the quan-
tity f∗(τ ;α, β, 0, 0, q) contains α’s and β’s with negative exponents, which can be eliminated by multiplying (αβ)N , i.e.,
f(τ ;α, β, 0, 0, q) = (αβ)Nf∗(τ ;α, β, 0, 0, q).
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3. Steady state probabilities as a matrix product

In this section, we derive an expression for the steady state probabilities as a matrix product which is slightly different
from the form P (τ) = wτv, but which also generalizes it when q = 1. This form presents the advantage that the matrices
involved are solutions to the matrix ansatz of the three-parameter ASEP.

To state our main result, we will need the following. Denote by aτ (i, j) the number of alternative tableaux of shape
B(τ) containing i left arrows and j up arrows. In addition, for φ, τ ∈ {E,D}N , define the weight of φ with respect to τ as
the product

wtτ (φ) =
N∏
t=1

(β[φ(t) = τ(t) = E] + γ[φ(t) = D, τ(t) = E] + α[φ(t) = τ(t) = D] + δ[φ(t) = E, τ(t) = D]) .

The following lemma expresses the steady state probabilities in terms of the number of alternative tableaux.

Lemma 3.1. Let 0 ≤ α, β, γ, δ ≤ 1, q = 1 and τ ∈ {E,D}N . Then,

P (τ) =

∑
φ∈{E,D}N

∑
i,j wtτ (φ)(β + δ)i(α+ γ)jaφ(i, j)

ZN
.

Proof. The basic idea is to collect all staircase tableaux of type τ having the same outline and express the sum of the weight
of all such staircase tableau in terms of the number of alternative tableaux of that shape. Due to the restrictions on the
placements of labels α, β, γ, δ on a staircase tableau, we can think of a label of β or δ as row-canceling and a label of either α
or γ as column-canceling, analogous to how left and up arrows in an alternative tableau cancel the cells they are pointing
to.

First, we compute the weight contributed by diagonal labels. Pick a staircase tableau T of type τ . As previously
described in Section 2, we obtain from T a unique alternative tableau T ′ via its corresponding condensed staircase tableau.
This alternative tableau T ′ has shape B(φ), where φ = (T ). It can be verified that the product of the diagonal labels of T
is exactly τ (φ). For instance, if τ(t) = E, then the t-th diagonal label of T is either β or γ. On the other hand, if φ(t) = D,
then the t-th column from the right of T was canceled and therefore the t-th diagonal entry of T is column-canceling and
must therefore be γ. The rest of the conditions inside the Iverson brackets in the definition of τ (φ) can be verified similarly.

Now, we compute the weight contributed by all possible off-diagonal labels. Collect all staircase tableaux whose diagonal
labels are identical to T and whose number of row-canceling and column-cancelling labels are the same as T , say i and
j, respectively. These staircase tableaux have outline φ and correspond to the some alternative tableau of shape B(φ),
and there are aφ(i, j) ways to choose the position of the labels. Since there are two choices for row-canceling labels (β or
δ) and two choices for column-canceling labels (α or γ), the total weight of all possible off-diagonal labels is (β + δ)i(α +

γ)jaτ (i, j).

The following lemma translates Lemma 3.1 into a matrix ansatz.

Lemma 3.2. Let 0 ≤ α, β, γ, δ ≤ 1, q = 1. Let Ẽ, D̃ be matrices and ṽ, w̃T be column vectors that satisfy the relations

w̃ṽ = 1, D̃Ẽ = ẼD̃ + (α+ γ)D̃ + (β + δ)Ẽ, D̃ṽ = ṽ, and w̃Ẽ = w̃.

Then, for τ ∈ {E,D}N we have

P (τ) =

∑
φ∈{Ẽ,D̃}N wtτ (φ)w̃φṽ

ZN
, (5)

where wtτ (φ) is defined with φ treated as a string in {E,D}N . Equivalently,

P (τ) =
w̃
(∏N

t=1(h
∗(t)Ẽ + h′(t)D̃)

)
ṽ

ZN
, (6)

where

h∗(t) =

{
β, if τ(t) = E

δ, if τ(t) = D
and h′(t) =

{
α, if τ(t) = D

γ, if τ(t) = E .

Proof. Let φ ∈ {Ẽ, D̃}N and φ′ ∈ {E,D}N be φ considered as a word in {E,D}N , i.e., by removing the tildes. Since D̃, Ẽ
satisfy D̃Ẽ = ẼD̃ + (α + γ)D̃ + (β + δ)Ẽ, φ can be normally ordered; that is, written as a sum of monomials EiDj by
replacing every leftmost D̃Ẽ with ẼD̃, (α + γ)D̃ or (β + δ)Ẽ. In terms of alternative tableaux, replacing D̃Ẽ with ẼD̃
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corresponds to leaving a cell empty, with (α+ γ)D̃ to placing an up arrow with weight (α+ γ), and with (β+ δ)Ẽ to placing
a left arrow with weight (β + δ). It follows that if φ has e E’s and d D’s, φ =

∑
i,j(β + δ)i(α + γ)jaφ

′
(i, j)Ee−iDd−j . Now,

since wtτ (φ) = wtτ (φ′), and D̃ṽ = ṽ and w̃Ẽ = w̃, we have∑
φ∈{D̃,Ẽ}N

wtτ (φ)w̃φṽ =
∑

φ∈{D̃,Ẽ}N
wtτ (φ)

∑
i,j

(β + δ)i(α+ γ)jaφ
′
(i, j)w̃Ee−iDd−jṽ

=
∑

φ∈{D̃,Ẽ}N
wtτ (φ)

∑
i,j

(β + δ)i(α+ γ)jaφ
′
(i, j)

=
∑

φ∈{D,E}N
wtτ (φ)

∑
i,j

(β + δ)i(α+ γ)jaφ(i, j)

= ZNP (τ)

where the last equality follows from Lemma 3.1. This proves (5). Finally, (6) follows from (5) and the fact that

N∏
t=1

(h∗(t)Ẽ + h′(t)D̃) =
∑

φ∈{Ẽ,D̃}N
wtτ (φ)φ .

We now state our main result.

Theorem 3.1. Let 0 ≤ α, β, γ, δ ≤ 1, q = 1. In addition, let D̂, Ê be matrices and v̂, ŵT be column vectors that satisfy the
relations

ŵv̂ = 1, D̂Ê = ÊD̂ + D̂ + Ê, (β + δ)D̂v̂ = v̂, and (α+ γ)ŵÊ = ŵ.

Let h∗(t) and h′(t) be as in Lemma 3.2. Then, for τ ∈ {E,D}N ,

P (τ) =
ŵ
(∏N

t=1

(
h∗(t) (α+ γ) Ê + h′(t) (β + δ) D̂

))
v̂

ZN
.

Proof. Suppose that D̂, Ê, v̂, ŵ satisfy the relations above. Define the matrices Ẽ = (α+ γ) Ê, D̃ = (β + δ) D̂ and the
vectors ṽ = v̂, w̃ = ŵ. Then

D̃Ẽ = (α+ γ)(β + δ)D̂Ê

= (α+ γ)(β + δ)
(
ÊD̂ + D̂ + Ê

)
=
(
(α+ γ)Ê

)(
(β + δ)D̂

)
+ (α+ γ)

(
(β + δ)D̂

)
+ (β + δ)

(
(α+ γ)Ê

)
= ẼD̃ + (α+ γ)D̃ + (β + δ)Ẽ .

Furthermore, D̃ṽ = (β + δ)D̂v̂ = v̂ = ṽ and w̃Ẽ = (α + γ)v̂Ê = ŵ = w̃. Hence, D̃, Ẽ, ṽ, w̃ satisfy the relations in
Lemma 3.2.

Suppose that E,D,v,wT satisfy the matrix relations in the three-parameter ASEP, given by

wv = 1, DE = qED +D + E, βDv = v, and αwE = w. (7)

Replacing the parameters α and β above with (α+γ) and (β+δ), respectively, and setting q = 1 will then provide a solution
to the matrices in Theorem 3.1, which gives the value of f(τ) in terms of products of linear combinations of these matrices.
Solutions to (7) were derived by a number of authors [1,4,11]. We give here the solution due to Corteel and Williams [3]:

D =


0 β−1 0 0 · · ·
0 0 β−1 0 · · ·
0 0 0 β−1 · · ·
...

...
...

...


=
[
β−1[j = i+ 1]

]
1≤i<∞
1≤j<∞

E =


α−1 0 0 0 · · ·
α−1β 1 + α−1q 0 0 · · ·
α−1β2 β(1 + 2α−1q) 1 + q + α−1q2 0 · · ·

...
...

...
...


30
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=

[
βi−j

(
α−1qj−1

(
i− 1

j − 1

)
+

j−2∑
r=0

(
i− j + r

r

)
qr

)]
1≤i<∞
1≤j<∞

w = (1, 0, 0, 0, . . .) , v = (1, 1, 1, 1, . . .)T

4. Some remarks

Derrida et al. [4] showed that matrix solutions to the ASEP are useful in computing the values of certain physical quantities.
For instance, the density profile 〈τ(t)〉N , which is the average number of particles at site t, is given by

〈τ(t)〉N =

∑
τ(t)=D f(τ)

ZN
=

w(E +D)t−1D(E +D)n−1v
ZN

.

Let κ = (α+ γ)(β + δ) and suppose q = 1. Using Theorem 3.1, 〈τ(t)〉N takes the form

〈τ(t)〉N =
ŵ(κÊ + κD̂)t−1κD̂(κÊ + κD̂)N−1v

ZN
,

Here, ZN is the usual partition function in terms of E,D,w,v, which is also equal to

ZN = ŵ(κÊ + κD̂)N v̂ .

Higher correlations 〈τ(s), . . . , τ(t)〉N are computed analogously.
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