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Abstract

A mean coloring of a connected graph G of order 3 or more is an edge coloring c of G with positive integers where the
average of the colors of the edges incident with each vertex v of G is an integer. This average is the chromatic mean of v.
If distinct vertices have distinct chromatic means, then c is called a rainbow mean coloring of G. The maximum vertex
color in a rainbow mean coloring c of G is the rainbow chromatic mean index of c and the rainbow chromatic mean index of
the graph G is the minimum chromatic mean index among all rainbow mean colorings of G. It is shown that the rainbow
chromatic mean index exists for every connected graph of order 3 or more. The rainbow chromatic mean index is determined
for paths, cycles, complete graphs, and stars.
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1. Introduction

It is graph theory folklore that in every nontrivial graph, there are always two vertices having the same degree. Indeed,
this fact is listed (indirectly) among the 24 theorems in an article by David Wells [6], asking which of these 24 theorems
is the most beautiful. A graph G was initially called perfect and later called irregular if the degrees of all vertices of G are
distinct. Consequently, no nontrivial graph is perfect, that is, irregular.

Over the years, “irregular graphs” have been looked at in a variety of ways (see [1–3,5], for example). While no nontrivial
graph is irregular, there are irregular multigraphs of each order n ≥ 3. A multigraph M can be looked at as a labeled
graph GM where each edge uv of GM is labeled with the positive integer equal to the number of parallel edges joining u

and v in M . The degree of v in M is then the sum of the labels of the edges in GM that are incident with v. Later each edge
label was considered as an edge color and the sum of the labels incident with a vertex was referred to as its chromatic sum
which became the color of the vertex.

In 1986, at the 250th Anniversary of Graph Theory Conference held at Indiana University-Purdue University Fort
Wayne (now called Purdue University Fort Wayne), the concept of “irregularity strength” was introduced by Gary Char-
trand, which is the smallest positive integer k for which an edge coloring from the set [k] = {1, 2, . . . , k} exists giving rise to
vertex colors (chromatic sums), all of which are distinct (see [4]). Consequently, the problem was to determine the smallest
positive integer k such that each edge of a graph can be colored with an element of [k] in such a way that the vertex colors
are distinct. This then results in a vertex coloring of the graph, often called a rainbow coloring since all vertex colors are
distinct. Here, we consider edge colorings of graphs with positive integers such that each vertex color is the average of the
colors of its incident edges and all vertex colors are distinct.

2. Rainbow mean index

An edge coloring c of a connected graph G of order 3 or more with positive integers is called a mean coloring of G if the
chromatic mean cm(v) of each vertex v of G, defined by

cm(v) =

∑
e∈Ev

c(e)

deg v
, where Ev is the set of edges incident with v,

is an integer. If distinct vertices have distinct chromatic means, then the edge coloring c is called a rainbow mean coloring
of G. The following result shows that for every connected graph of order 3 or more, such an edge coloring always exists.
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Theorem 2.1. Every connected graph of order 3 or more has a rainbow mean coloring.

Proof. Suppose that G is a connected graph with E(G) = {e1, e2, . . . , em} where m ≥ 2. Thus, ∆(G) = ∆ ≥ 2. Let
k = 2∆ and t = ∆!km. Define the edge coloring c : E(G) → [t] by c(ei) = ∆!ki for 1 ≤ i ≤ m. We show that the
coloring c has the desired property. Assume, to the contrary, that there are two distinct vertices u and v of G such that
cm(u) = cm(v). Let deg u = r and deg v = s, where r ≤ s say, and let Eu = {ei1 , ei2 , . . . , eir} and Ev = {ej1 , ej2 , . . . , ejs} where
1 ≤ i1 < i2 < · · · < ir ≤ m and 1 ≤ j1 < j2 < · · · < js ≤ m. If uv /∈ E(G), then Eu ∩ Ev = ∅; while if uv ∈ E(G), then
Eu ∩ Ev = {uv}. Consequently,

cm(u) =
∆!

r

(
ki1 + ki2 + · · ·+ kir

)
cm(v) =

∆!

s

(
kj1 + kj2 + · · ·+ kjs

)
,

where both cm(u) and cm(v) are positive integers. We consider two cases, according to whether r = s or r < s.
Case 1. r = s. Then ki1 + ki2 + · · ·+ kir = kj1 + kj2 + · · ·+ kjr .

• First, suppose that ir 6= jr. We may assume that ir < jr. Let p = jr ≥ 2. Since k = 2∆ ≥ 4, it follows that
kp > k + k2 + . . . + kp−1. However then,

kj1 + kj2 + · · ·+ kjr ≥ kjr = kp > k + k2 + . . . + kp−1 ≥ ki1 + ki2 + · · ·+ kir ,

which is a contradiction.

• Next, suppose that ir = jr. Then ki1 + ki2 + · · · + kir−1 = kj1 + kj2 + · · · + kjr−1 and ir−1 6= jr−1. We can apply the
argument above to produce a contradiction.

Case 2. r < s. Then s
[
ki1 + ki2 + · · ·+ kir

]
= r

[
kj1 + kj2 + · · ·+ kjs

]
.

• First, suppose that ir < js. Let p = js ≥ 2. Since 1 > 1
kp−1 + 1

kp−2 + · · ·+ 1
k , it follows that

2 > 1
kp−1 + 1

kp−2 + · · ·+ 1
k + 1 > 1

kp−2 + 1
kp−3 + · · ·+ 1

k + 1.

Hence, k = 2∆ > ∆
(

1
kp−2 + 1

kp−3 + · · ·+ 1
)
. Because ∆ ≥ s/r, it follows that

kj1 + kj2 + · · ·+ kjs ≥ kjs = kp = k(kp−1) > ∆

(
1

kp−2
+

1

kp−3
+ · · ·+ 1

)
kp−1

= ∆(k + k2 + · · ·+ kp−1) ≥ s

r
(k + k2 + · · ·+ kp−1)

≥ s

r

[
ki1 + ki2 + · · ·+ kir

]
,

which is a contradiction.

• Next, suppose that ir ≥ js. The argument in Case 1 shows that ki1 + ki2 + · · ·+ kir > kj1 + kj2 + · · ·+ kjs . Since r < s,
it follows that 1 ≥ r/s and so

ki1 + ki2 + · · ·+ kir > kj1 + kj2 + · · ·+ kjs > r
s

[
kj1 + kj2 + · · ·+ kjs

]
,

which is a contradiction.

For a rainbow mean coloring c of a graph G, the maximum vertex color is the rainbow chromatic mean index (or simply,
the rainbow mean index) rm(c) of c. That is, rm(c) = max{cm(v) : v ∈ V (G)}. The rainbow chromatic mean index (or the
rainbow mean index) rm(G) of the graph G itself is defined as

rm(G) = min{rm(c) : c is a rainbow mean coloring of G}.

Consequently, if G is a connected graph of order n ≥ 3, then rm(G) ≥ n.
For a mean coloring of a connected graph G, the chromatic sum cs(v) of a vertex v of G is the sum of the colors of the

edges incident with v. Hence, cs(v) = deg v · cm(v). The following is an elementary yet useful result.

Proposition 2.1. If c is a mean coloring of a connected graph G, then∑
v∈V (G)

cs(v) = 2
∑

e∈E(G)

c(e).
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Proof. When the chromatic sums of the vertices of G are added, the color of each edge xy is counted twice, once in cs(x)

and once in cs(y).

Let G be a connected graph of order 3 or more with a mean coloring. A vertex v of G is called chromatically even if cs(v)

is even and v is chromatically odd otherwise. The following is an immediate consequence of Proposition 2.1.

Proposition 2.2. Let G be a connected graph with a mean coloring. Then G has an even number of chromatically odd
vertices.

Proof. By Proposition 2.1, the sum of the chromatic sums of all vertices of G is an even number. Therefore, there is an
even number of chromatically odd vertices.

A consequence of Proposition 2.2 is stated next.

Corollary 2.1. Let G be a connected graph of order n ≥ 6 where n ≡ 2 (mod 4) such that all vertices of G are odd. Then
rm(G) ≥ n + 1.

Proof. Assume, to the contrary, that rm(G) = n. Since n ≡ 2 (mod 4) and n ≥ 6, it follows that n = 4k+2 for some positive
integer k. Hence, G has 2k + 1 chromatically odd vertices. This contradicts Proposition 2.2.

3. The rainbow mean index of paths and cycles

To illustrate the concepts we have described, we determine the rainbow mean index of each path Pn and cycle Cn of
order n ≥ 3, beginning with the path P4, which we will see is a special case.

Proposition 3.1. rm(P4) = 5.

Proof. The edge coloring of P4 in Figure 1 shows that rm(P4) ≤ 5. Next, we show that rm(P4) ≥ 5. Assume, to the
contrary, that there is a rainbow mean coloring c of P4 such that rm(c) = 4. Let P4 = (v1, v2, v3, v4). Since {cm(vi) : 1 ≤
i ≤ 4} = [4], no two edges can be colored the same. Consequently, since only one vertex is colored 1, this implies that
cm(v1) = 1 or cm(v4) = 1, say the former. Therefore, c(v1v2) = 1. Hence, the edges of P4 are colored with distinct odd
integers. If some edge of P4 is colored 7 or more, then some vertex of P4 is colored 5 or more, which is impossible. Thus,
{c(vivi+1) : i = 1, 2, 3} = {1, 3, 5} and so {c(v2v3), c(v3v4)} = {3, 5}. Whether c(v2v3) = 3 or c(v2v3) = 5, it follows that
{cm(vi) : 1 ≤ i ≤ 4} 6= [4], a contradiction. Thus, rm(P4) ≥ 5 and so rm(P4) = 5.

P4 : .......
........
.........................................................................................
........
...... .......

........
.........................................................................................
........
...... .......

........
.........................................................................................
........
......1 2 541 3 5.......

........
.........................................................................................
........
......

Figure 1: A rainbow mean coloring of P4.

For all other paths Pn of order n ≥ 3 and n 6= 4, the rainbow mean index of a path is its order. To show this, an
appropriate rainbow mean coloring can be given.

Theorem 3.1. For each integer n ≥ 3 and n 6= 4, rm(Pn) = n.

The rainbow mean index of every cycle is determined next.

Theorem 3.2. For each integer n ≥ 4,

rm(Cn) =

{
n if n ≡ 0, 1 (mod 4)

n + 1 if n ≡ 2, 3 (mod 4).

Proof. We consider two cases, according to whether n ≡ 0, 1 (mod 4) or n ≡ 2, 3 (mod 4).
Case 1. n ≡ 0 (mod 4) or n ≡ 1 (mod 4). In this case, it suffices to show that there is a rainbow mean coloring c of Cn

such that rm(c) = n. First, suppose that n ≡ 0 (mod 4). Thus, n = 4k for some positive integer k. Let C4k be the cycle
obtained from the paths P = (u1, u2, . . . , u2k) and P ′ = (v1, v2, . . . , v2k) by adding the two edges u1v1 and u2kv2k. The edge
coloring c : E(C4k)→ [4k + 1] is defined by

c(e) =


1 if e = u1v1

4k + 1 if e = u2kv2k

2i + 1 if e = uiui+1 for 1 ≤ i ≤ 2k − 1

2i− 1 if e ∈ V (P ′) and e is incident with vi where i is odd and 1 ≤ i ≤ 2k − 1.
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Note that there is exactly one edge e = uv colored n + 1 in Cn and {cm(u), cm(v)} = {n − 1, n}. Then cm(ui) = 2i for
1 ≤ i ≤ 2k and cm(vi) = 2i− 1 for 1 ≤ i ≤ 2k. Therefore, rm(C4k) = 4k for each positive integer k.

Next, suppose that n ≡ 1 (mod 4). Thus, n = 4k + 1 where k ∈ N (the set of positive integers). Then Cn can be obtained
by subdividing exactly one edge of Cn−1, where then n−1 ≡ 0 (mod 4). A rainbow mean coloring cn of Cn can be constructed
from the rainbow mean coloring cn−1 of Cn−1 described above by subdividing the edge u2kv2k colored n by a new vertex w

and coloring the two edges u2kw and wv2k in Cn by n. Therefore, rm(C4k+1) = 4k + 1 for each positive integer k.
Case 2. n ≡ 2 (mod 4) or n ≡ 3 (mod 4). Let C = (v1, v2, . . . , vn, vn+1 = v1) where ei = vivi+1 for 1 ≤ i ≤ n. First, we

show that rm(Cn) ≥ n + 1. Assume, to the contrary, that rm(Cn) = n. Then there is a rainbow mean coloring c of Cn such
that {cm(v) : v ∈ V (Cn)} = [n]. Since the color of some vertex of Cn is 1, the color of each edge incident with this vertex
is also 1. This implies that c(e) is odd for each e ∈ E(Cn). Thus, c(ei) = 2ai + 1 for some nonnegative integer ai where
1 ≤ i ≤ n. First, suppose that n ≡ 2 (mod 4). Then n = 4k + 2 for some positive integer k. Hence,

2
∑

v∈V (Cn)

cm(v) = 2

(
4k + 3

2

)
= (4k + 3)(4k + 2) = 16k2 + 20k + 6.

Hence, 2
∑

v∈V (Cn)
cm(v) ≡ 2 (mod 4). On the other hand,

2
∑

v∈V (Cn)

cm(v) = 2

4k+2∑
i=1

c(ei) = 2

4k+2∑
i=1

(2ai + 1) =

4k+2∑
i=1

(4ai + 2)

=

[
4k+2∑
i=1

4ai

]
+ (8k + 4) ≡ 0 (mod 4),

which is impossible. Next, suppose that n ≡ 3 (mod 4). Thus, n = 4k + 3 for some positive integer k. Then

2
∑

v∈V (Cn)

cm(v) = 2

(
4k + 4

2

)
= (4k + 4)(4k + 3) = 4(k + 1)(4k + 3).

Hence, 2
∑

v∈V (Cn)
cm(v) ≡ 0 (mod 4). On the other hand,

2
∑

v∈V (Cn)

cm(v) = 2

4k+3∑
i=1

c(ei) = 2

4k+3∑
i=1

(2ai + 1) =

4k+3∑
i=1

(4ai + 2)

=

[
4k+3∑
i=1

4ai

]
+ (8k + 6) ≡ 2 (mod 4),

which is impossible. Therefore, rm(Cn) ≥ n + 1 if n ≡ 2 (mod 4) or n ≡ 3 (mod 4).
It remains to show that there exists a rainbow mean coloring c of Cn such that rm(c) = n + 1. First, suppose that

n = 4k + 2 for some positive integer k. Define c : E(Cn)→ [n + 1] by

c(e) =

{
i if e is incident with vi, i is odd and i ∈ [1, 2k − 1]

i + 2 if e is incident with vi, i is odd and i ∈ [2k + 1, n− 1].

Consequently, the chromatic means of the vertices of Cn are given by

cm(vi) =



i if i is odd and i ∈ [1, 2k − 1]

i + 2 if i is odd and i ∈ [2k + 1, n− 1]

i if i is even, i ∈ [2, 2k − 2] and k ≥ 2

2k + 1 if i = 2k

i + 2 if i is even and i ∈ [2k + 2, n− 2]

2k + 2 if i = n.

Next, suppose that n ≡ 3 (mod 4) and so n + 1 ≡ 0 (mod 4). Then Cn can be obtained from Cn+1 (colored as described
above) by deleting a vertex v and joining the two neighbors u and w of v by the edge uw. A rainbow mean coloring cn of Cn

with rm(cn) = n + 1 can be constructed from the rainbow mean coloring cn+1 of Cn+1 with rm(cn+1) = n + 1 in Case 1 by
deleting the vertex v colored 1 and coloring the edge uw with 1.
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4. The rainbow mean index of complete graphs

We now turn our attention to the complete graphs Kn of order n ≥ 3. It is convenient here to consider the matrix represen-
tation of an edge-colored graph. Let G be a connected graph of order n ≥ 3 with V (G) = {v1, v2, . . . , vn} and let c : E(G)→ N
be an edge coloring of G. The matrix representation M of G with the edge coloring c is the n× n matrix [mi,j ] where

mi,j =

{
c(vivj) if 1 ≤ i 6= j ≤ n

0 if 1 ≤ i = j ≤ n.

There are several elementary observations that can be made about the matrix representation M of a graph G of order n

with an edge coloring c. First, all entries along the main diagonal of M are 0 since no vertex of G is adjacent to itself.
Second, M is a symmetric matrix, that is, row i of M is identical to column i of M for every integer i with 1 ≤ i ≤ n. Also,
if we were to add the entries in row i (equivalently, in column i), then we obtain deg vi · cm(vi) = cs(vi) for 1 ≤ i ≤ n. We
now show that rm(Kn) = n for many integers n ≥ 4.

Theorem 4.1. For an integer n ≥ 4 with n ≡ 0, 1, 3 (mod 4), rm(Kn) = n.

Proof. Since rm(Kn) ≥ n, it suffices to show that there is a rainbow mean coloring of Kn having rainbow mean index n.
We consider three cases.

Case 1. n ≥ 4 and n ≡ 0 (mod 4). Thus, n = 4k for some positive integer k. In order to describe a rainbow mean
coloring cn of Kn with rm(cn) = n, we construct an n × n symmetric matrix Mn. First, we define, recursively, a sequence
B1, B2, . . . , Bk of 4× 4 symmetric matrices. For a = n− 1, let

B =


0 a a 2a
a 0 2a a
a 2a 0 a
2a a a 0

 and B1 =


0 1 1 1
1 0 1 a + 1
1 1 0 2a + 1
1 a + 1 2a + 1 0

 .

For 2 ≤ i ≤ k, define Bi = Bi−1 + B = B1 + (i− 1)B. Thus,

Bi = B1 + (i− 1)B

=


0 1 1 1
1 0 1 a + 1
1 1 0 2a + 1
1 a + 1 2a + 1 0

+


0 (i− 1)a (i− 1)a 2(i− 1)a

(i− 1)a 0 2(i− 1)a (i− 1)a
(i− 1)a 2(i− 1)a 0 (i− 1)a
2(i− 1)a (i− 1)a (i− 1)a 0



=


0 (i− 1)a + 1 (i− 1)a + 1 2(i− 1)a + 1

(i− 1)a + 1 0 2(i− 1)a + 1 ia + 1
(i− 1)a + 1 2(i− 1)a + 1 0 (i + 1)a + 1
2(i− 1)a + 1 ia + 1 (i + 1)a + 1 0

 .

To describe the n×n matrix Mn, we begin with a k×k matrix A = [ai,j ] and then replace the entry ai,i on the main diagonal
of A by the 4 × 4 matrix Bi for 1 ≤ i ≤ k and each entry off the main diagonal of A by the 4 × 4 matrix J , each of whose
entries is 1. That is, Mn = [Mi,j ] is an n× n matrix, where Mi,j is a 4× 4 matrix such that

Mi,j =

{
Bi if 1 ≤ i = j ≤ k

J if 1 ≤ i 6= j ≤ k.

Thus, M4 = B1, M8 =

[
B1 J
J B2

]
, and M12 =

 B1 J J
J B2 J
J J B3

. If we were to add the entries in row i (or in column i)

in Mn, then we obtain ia for 1 ≤ i ≤ n. That is, if Mn = [mi,j ], then∑n
j=1 mi,j = ia = i(n− 1) for 1 ≤ i ≤ n. (1)

We now define an edge coloring c : E(Kn) → N by c(vivj) = mi,j for each pair i, j of integers with 1 ≤ i ≤ j ≤ n and i 6= j.
Since cm(vi) = 1

n−1
∑n

j=1 mi,j = i for 1 ≤ i ≤ n by (1), it follows that c is a rainbow mean coloring of Kn with rm(c) = n. For
example,

M4 =


0 1 1 1
1 0 1 4
1 1 0 7
1 4 7 0

 and M8 =



0 1 1 1 1 1 1 1
1 0 1 8 1 1 1 1
1 1 0 15 1 1 1 1
1 8 15 0 1 1 1 1
1 1 1 1 0 8 8 15
1 1 1 1 8 0 15 15
1 1 1 1 8 15 0 22
1 1 1 1 15 15 22 0


.
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The matrices M4 and M8 give rise to rainbow mean colorings of K4 and K8 as shown in Figure 2, respectively, where each
edge drawn with a thin line is colored 1.
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Figure 2: Rainbow mean colorings of K4 and K8.

Case 2. n ≥ 5 and n ≡ 1 (mod 4). Then n = 4k + 1 for some positive integer k. First, we define, recursively, a sequence
B1, B2, . . . , Bk of symmetric matrices, where B1 is a 5× 5 matrix and Bi is a 4× 4 matrix for 2 ≤ i ≤ k. For a = n− 1, define

B1 =


0 1 1 1 1
1 0 a + 1 1 1
1 a + 1 0 1 a + 1
1 1 1 0 3a + 1
1 1 a + 1 3a + 1 0

 and B2 =


0 2a + 1 a + 1 2a + 1

2a + 1 0 2a + 1 2a + 1
a + 1 2a + 1 0 4a + 1
2a + 1 2a + 1 4a + 1 0

.

For 3 ≤ i ≤ k, define Bi = Bi−1 + B = B2 + (i − 2)B, where B =


0 a a 2a
a 0 2a a
a 2a 0 a
2a a a 0

 was defined in Case 1. To describe

the n× n matrix Mn, we begin with a k × k matrix A = [ai,j ] and then replace the entry ai,i on the main diagonal of A by
the matrix Bi for 1 ≤ i ≤ k and each entry off the main diagonal of A by the matrix J , each of whose entries is 1. Thus, a1,1
is replaced by the 5× 5 matrix B1 and ai,i for 2 ≤ i ≤ k is replaced by the 4× 4 matrix Bi. That is, Mn = [Mi,j ] is an n× n

matrix, where

Mi,j =

{
Bi if 1 ≤ i = j ≤ k

J if 1 ≤ i 6= j ≤ k.

Thus, M5 = B1, M9 =

[
B1 J
J B2

]
, and M13 =

 B1 J J
J B2 J
J J B3

.

Case 3. n ≥ 7 and n ≡ 3 (mod 4). Thus, n = 4k + 3 for some positive integer k. Again, we construct an n× n symmetric

matrix Mn. For a = n−1
2 , let C =


0 2a 2a 4a
2a 0 4a 2a
2a 4a 0 2a
4a 2a 2a 0

. First, we define, recursively, a sequence C1, C2, . . . , Ck of symmetric

matrices, where C1 is a 7× 7 matrix and Ci is a 4× 4 matrix for 2 ≤ i ≤ k. Define

C1 =



0 1 1 1 1 1 1
1 0 1 1 1 1 2a + 1
1 1 0 1 1 2a + 1 2a + 1
1 1 1 0 2a + 1 2a + 1 2a + 1
1 1 1 2a + 1 0 3a + 1 3a + 1
1 1 2a + 1 2a + 1 3a + 1 0 3a + 1
1 2a + 1 2a + 1 2a + 1 3a + 1 3a + 1 0


and C2 =


0 3a 5a 6a
3a 0 6a 7a
5a 6a 0 7a
6a 7a 7a 0

.

For 3 ≤ i ≤ k, define Ci = Ci−1 + C = C2 + (i − 2)C. To describe the n × n matrix Mn, we begin with a k × k matrix
A = [ai,j ] and then replace the entry ai,i on the main diagonal of A by the matrix Ci for 1 ≤ i ≤ k and each entry off the
main diagonal of A by the matrix J , each of whose entries is 1. That is, Mn = [Mi,j ] is an n× n matrix, where

Mi,j =

{
Ci if 1 ≤ i = j ≤ k

J if 1 ≤ i 6= j ≤ k.
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Thus, M7 = C1 where a = 3, M11 =

[
C1 J
J C2

]
, where a = 5, and M15 =

 C1 J J
J C2 J
J J C3

 where a = 7. We now define a

rainbow mean coloring c : E(Kn) → N by c(vivj) = mi,j for each pair i, j of integers with 1 ≤ i ≤ j ≤ n and i 6= j. Since
rm(c) = n, it follows that rm(Kn) = n for each integer n ≥ 7 with n ≡ 3 (mod 4).

The rainbow mean index of each remaining complete graph of order n ≥ 6 is n + 1.

Theorem 4.2. For an integer n ≥ 6 with n ≡ 2 (mod 4), rm(Kn) = n + 1.

Proof. By Corollary 2.1, it suffices to show that there is a rainbow mean coloring cn of Kn with rm(cn) = n + 1. In order
to do this, we construct an n × n symmetric matrix Mn by constructing a sequence A1, A2, . . . , Ak of symmetric matrices,

where A1 is a 6× 6 matrix and Ai is a 4× 4 matrix for 2 ≤ i ≤ k. For a = n− 1, let B =


0 a a 2a
a 0 2a a
a 2a 0 a
2a a a 0

. Define

A1 =


0 1 1 1 1 1
1 0 a + 1 1 1 1
1 a + 1 0 1 1 a + 1
1 1 1 0 a + 1 2a + 1
1 1 1 a + 1 0 3a + 1
1 1 a + 1 2a + 1 3a + 1 0

 and A2 =


0 a 3a 3a
a 0 3a 4a
3a 3a 0 3a
3a 4a 3a 0

.

For 3 ≤ i ≤ k, define Ai = Ai−1 + B = A2 + (i− 2)B.
To describe the n × n matrix Mn, we begin with a k × k matrix A = [ai,j ] and then replace the entry ai,i on the main

diagonal of A by the matrix Ai for 1 ≤ i ≤ k and each entry off the main diagonal of A by the matrix J , each of whose
entries is 1. Thus, a1,1 is replaced by the 6× 6 matrix A1 and ai,i for 2 ≤ i ≤ k is replaced by the 4× 4 matrix Ai. That is,
Mn = [Mi,j ] is an n× n matrix where

Mi,j =

{
Ai if 1 ≤ i = j ≤ k

J if 1 ≤ i 6= j ≤ k.

Thus, M6 = A1, M10 =

[
A1 J
J A2

]
and M14 =

 A1 J J
J A2 J
J J A3

. We now define a rainbow mean coloring c : E(Kn) → N

by c(vivj) = mi,j for each pair i, j of integers with 1 ≤ i ≤ j ≤ n and i 6= j. Since rm(c) = n+1, it follows that rm(Kn) = n+1

for each integer n ≥ 6 with n ≡ 2 (mod 4).

From Theorems 4.1 and 4.2, we then have the following result.

Corollary 4.1. For an integer n ≥ 3,

rm(Kn) =

{
n if n ≥ 4 and n ≡ 0, 1, 3 (mod 4)

n + 1 if n = 3 or n ≡ 2 (mod 4).

5. The rainbow mean index of stars

In a rainbow mean coloring of a connected graph G of order at least 3, each edge of G is colored with a positive integer
in a manner so that each vertex is assigned a positive integer color that is the average of the colors of its incident edges
and no two vertices of G have the same color. Therefore, as we saw, if the order of G is n ≥ 3, then the number of vertex
colors must therefore be at least n. With all the conditions required for a graph to have such an edge coloring, one might
anticipate that for some graphs at least, the largest vertex color may exceed the order of the graph by a large degree.
However, for each connected graph G of order n ≥ 3 that we have considered thus far, we have seen that either rm(G) = n

or rm(G) = n + 1. While this observation may suggest a conjecture, the following result dealing with the stars K1,n−1 of
order n ≥ 3 indicates that the value of rm(G) for a connected graph G of order n ≥ 3 can be one of at least three integers
rather than only one of two integers.

Theorem 5.1. If G is a star of order n ≥ 3, then

rm(G) =

{
n if n is odd
n + 2 if n is even.
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Proof. Let G = K1,n−1 where V (G) = {v, v1, v2, . . . , vn−1} and deg v = n− 1. First, suppose that n is odd. Thus, n = 2t + 1

for some positive integer t. Define the coloring c : E(G)→ [n] by c(vvi) = i for 1 ≤ i ≤ t and c(vvi) = i + 1 for t + 1 ≤ i ≤ 2t.
Since cm(v) = 1

2t

[∑2t+1
i=1 i− (t + 1)

]
= t + 1 and cm(vi) = c(vvi) for 1 ≤ i ≤ 2t, it follows that c is a rainbow mean coloring

with rm(c) = n. Therefore, rm(G) = n if n is odd.
Next, suppose that n ≥ 4 is even. Then n = 2t for some integer t ≥ 2. First, we show that there is a rainbow mean

coloring c of G with rm(c) = n + 2. Define c : E(G) → N such that {c(vvi) : 1 ≤ i ≤ 2t− 1} = [2t + 2]− {t + 1, t + 2, 2t + 1}.
Since

cm(v) =
1

2t− 1

2t−1∑
i=1

c(vvi) =
1

2t− 1

[(
2t + 3

2

)
− (t + 1)− (t + 2)− (2t + 1)

]
=

1

2t− 1
[(2t + 3)(t + 1)− (4t + 4)] = t + 1

and cm(vi) = c(vvi) for 1 ≤ i ≤ 2t − 1, it follows that c is a rainbow mean coloring of G with rm(c) = 2t + 2. Therefore,
rm(G) ≤ n + 2.

It remains to show that rm(G) ≥ n + 2 = 2t + 2. Assume, to the contrary, that there is a rainbow mean coloring c of G
such that rm(c) ∈ {2t, 2t + 1}. We consider two cases, according to whether rm(c) = 2t or rm(c) = 2t + 1.

Case 1. rm(c) = 2t. If t is odd, then n ≡ 2 (mod 4) and all vertices of G are odd. By Corollary 2.1, no such rainbow mean
coloring c exists. We show that no such rainbow mean coloring c exists regardless of the parity of t. Then {cm(u) : u ∈
V (G)} = [2t]. Since cm(vi) = c(vvi) for 1 ≤ i ≤ 2t − 1, it follows that {c(vvi) : 1 ≤ i ≤ 2t − 1} = [2t] − {a} for some integer
a ∈ [2t]. Thus,

cm(v) =
1

2t− 1

[(
2t + 1

2

)
− a

]
=

1

2t− 1
[t(2t + 1)− a] =

1

2t− 1
(2t2 + t− a).

If a = 1, then cm(v) = t + 1; while if a = 2t, then cm(v) = t. In either case, cm(v) = cm(vi) for some integer i with
1 ≤ i ≤ 2t− 1, which is impossible. On the other hand, if 1 < a < 2t, then cm(v) is not an integer, which is also impossible.

Case 2. rm(c) = 2t + 1. Then {cm(u) : u ∈ V (G)} ⊆ [2t + 1]. Since cm(vi) = c(vvi) for 1 ≤ i ≤ 2t − 1, it follows that
{c(vvi) : 1 ≤ i ≤ 2t− 1} = [2t + 1]− {a, b} for some a, b ∈ [2t + 1] and a 6= b. Thus,

cm(v) =
1

2t− 1

[(
2t + 2

2

)
− (a + b)

]
=

1

2t− 1
[(t + 1)(2t + 1)− (a + b)]

=
1

2t− 1
[(2t2 + 3t + 1)− (a + b)].

? If a = 1 and b = 2, then cm(v) = t + 2;

? If a = 2t and b = 2t + 1, then cm(v) = t;

? If cm(v) = t + 1, then a + b = 2t + 2, where 1 ≤ a < t + 1 < b ≤ 2t + 1.

In any of these situations, cm(v) = cm(vi) for some integer i with 1 ≤ i ≤ 2t− 1, which is impossible. For any other choice
of a and b, it follows that cm(v) is not an integer, which is also impossible.

We then close with the following conjecture.

Conjecture 5.1. For every connected graph G of order n ≥ 3,

n ≤ rm(G) ≤ n + 2.
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