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Abstract

In this short note, we show explicitly how to decompose a generalized permutohedron into semi-polytopes.
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1. Introduction

Given a polytope, assume we have disjoint open cells whose closures sum up to be the entire polytope. A question of natu-
rally assigning each of the remaining points (possibly in multiple closures) to a cell has appeared in [1] for studying regular
matroids and zonotopes and in [2] for studying h-vectors and Q-polytopes. In other words, we are trying to determine own-
ership of lattice points on boundaries of multiple polytopes. In this note, we study a more general case of doing the same
for a Generalized permutohedron, a polytope that can be obtained by deforming the usual permutohedron. We will
show explicitly how to construct a semi-polytope decomposition of a trimmed generalized permutohedron.

2. Generalized permutohedron PG and its fine mixed subdivision

Let ∆[n] = ConvexHull(e1, . . . , en) be the standard coordinate simplex in Rn. For a subset I ⊂ [n], let ∆I = ConvexHull(ei|i ∈
I) denote the face of ∆[n]. Let G ⊆ Km,n be a bipartite graph with no isolated vertices. Label the vertices of G by
1, . . . ,m, 1̄, . . . , n̄ and call 1, . . . ,m the left vertices and 1̄, . . . , n̄ the right vertices. We identify the barred indices with
usual non-barred cases when it is clear we are dealing with the right vertices. For example when we write ∆{1̄,3̄} we think
of it as ∆{1,3}. We associate this graph with the collection IG of subsets I1, . . . , Im ⊆ [n] such that j ∈ Ii if and only if (i, j̄)

is an edge of G. Let us define the polytope PG(y1, . . . , ym) as:

PG(y1, . . . , ym) := y1∆I1 + · · ·+ ym∆Im ,

where yi are nonnegative integers. This lies on a hyperplane∑
i∈[n]

xi =
∑
j∈[m]

yj .

An example of a coordinate simplex ∆[3], a bipartite graph G and a generalized permutohedron PG(1, 2, 3) is given in
Figure 1.

Definition 2.1 ( [3], Definition 14.1). Let d be the dimension of the Minkowski sum P1 + · · · + Pm. A Minkowski cell in
this sum is a polytope B1 + · · · + Bm of dimension d where Bi is the convex hull of some subset of vertices of Pi. A mixed
subdivision of the sum is the decomposition into union of Minkowski cells such that intersection of any two cells is their
common face. A mixed subdivision is fine if for all cells B1 + · · ·+ Bm, all Bi are simplices and

∑
dimBi = d.

All mixed subdivisions in our note, unless otherwise stated, will be referring to fine mixed subdivisions. We will use
the word cell to denote the Minkowski cells. Beware that our cells are all closed polytopes.

Fine Minkowski cells can be described by spanning trees of G. When we are looking at a fixed generalized permutohe-
dron PG(y1, . . . , ym), we will use

∏
J to denote y1∆J1

+ · · · + ym∆Jm
where J = (J1, . . . , Jm). We say that J is a tree if the

associated bipartite graph is a tree.
∗Email address: suhooh@txstate.edu
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Figure 1: Example of a generalized permutohedron PG(1, 2, 3).

Lemma 2.1 ( [3], Lemma 14.7). Each fine mixed cell in a mixed subdivision of PG(y1, · · · , ym) has the form
∏

T such that
T is a spanning tree of G.

An example of a fine mixed subdivision of the polytope considered in Figure 1 is given in Figure 2.
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Figure 2: A fine mixed subdivision of PG(1, 2, 3).

We can say a bit more about the lattice points in each
∏

T :

Proposition 2.1 ( [3], Proposition 14.12). Any lattice point of a fine Minkowski cell
∏

T in PG(y1, · · · , ym) is uniquely
expressed (within

∏
T ) as p1 + · · ·+ pm where pi is a lattice point in yi∆Ti .

3. Semi-polytope decomposition

A mixed subdivision of PG divides the polytope into cells. In this section, we show that from a mixed subdivision of PG,
one can obtain a way to decompose the set of lattice points of P−G .

Definition 3.1 ( [3], Definition 11.2). The trimmed generalized permutohedron P−G is defined as:

P−G (y1, . . . , ym) := {x ∈ Rn|x + ∆[n] ⊆ PG}.

This is a more general class of polytopes than generalized permutohedra PG(y1, . . . , ym). With a slight abuse of notation,
we will let I \ j stand for I \ {j}.

Definition 3.2 ( [3], Theorem 11.3). The coordinate semi-simplices are defined as

∆∗I,j = ∆I \∆I\j

for j ∈ I ⊆ [n].
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For each cell
∏

T , we are going to turn it into a semi-polytope of the form y1∆∗J1,j1
+ · · ·+ ym∆∗Jm,jm

. This will involve
deciding which cell takes ownership of the lattice points on several cells at the same time.

We denote the point ((m − 1)c +
∑

i yi,−c, . . . ,−c) for c sufficiently large as ∞1. For a facet of a polytope, we say that
it is negative if the defining hyperplane of the facet (inside the space

∑
i∈[n] xi =

∑
j∈[m] yj which the polytope lies in)

separates the point∞1 and the interior of the polytope. Otherwise, we say that it is positive. We will say that a point of
a polytope is good if it is not on any of the positive facets of the polytope.

Lemma 3.1. Fix T , a spanning tree of G ⊆ Km,n. Let Ti be the set of neighbors of left vertex i. There exists a unique element
ti in Ti such that there exists a path to 1̄ not passing through i.

Proof. There exists such an element since T is a spanning tree of T . There cannot be more than one such element since
otherwise, we get a cycle in T .

In particular when 1̄ ∈ Ti, we have ti = 1̄.

Lemma 3.2. Let
∏

T be a fine mixed cell. Removing the positive facets gives us
∑

i ∆∗Ti,ti
.

To prove this, we first introduce a tool that will be useful for identifying which hyperplanes the facets lie on. Let
∏

T be
a fine mixed cell so T is a spanning tree. For any edge e of T that is not connected to a leaf on the left side, T \ e has two
components. Let Ie denote the set of right vertices of a component that contains 1̄. Let ce be the sum of yi’s for left vertices
contained in that component. Notice that Ie cannot be [n] since otherwise e would have a leaf as its left endpoint.

Lemma 3.3. Let
∏

T be a fine mixed cell. For any edge e of T that is not connected to a leaf on the left side,
∏

T\e is a facet
of

∏
T that lies on

∑
j∈Ie xj = ce. If the right endpoint of e is in Ie, then

∏
T lies in half-space

∑
j∈Ie xj ≥ ce. Otherwise it

lies in
∑

j∈Ie xj ≤ ce

Proof. The dimension difference between
∏

T and
∏

T\e is at most one, and all endpoints of
∏

T\e lie on
∑

j∈Ie xj = ce. If
the right endpoint of e is in Ie, that means we can find a point x ∈

∏
T using e so that

∑
j∈Ie xj > ce. If not, that means we

can find a point x ∈
∏

T using e so that
∑

j∈Ie xj < ce.

Proof of Lemma 3.2. If
∏

T\e is a positive facet of
∏

T , then Lemma 3.3 tells us that the right endpoint of e = (i, j̄) is in Ie.
From definition of ti, we have j̄ = ti. In other words we are removing sets of form ∆T1

+ · · · + ∆Ti\ti + · · · + ∆Tm
. At the

end we end up with
∑

i(∆Ti \∆Ti\ti).
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Figure 3: A semi-polytope decomposition of P−G (1, 2, 3).

Let
∏

T and
∏′

T be two cells inside a mixed subdivision of PG that share a facet F . The sign of F in
∏

T and the sign
of F in

∏′
T has to be different, since ∞1 can be on exactly one side of the defining hyperplane of F . This implies that all

lattice points of PG are good in at most one cell of PG.
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Lemma 3.4. p ∈ P−G ∩ Zn if and only if p + e1 is a good point of PG.

Proof. Having p ∈ P−G ∩Zn implies from definition that p+ ei ∈ PG for each i ∈ [n]. Assume for sake of contradiction p+ e1

is on some positive facet
∑

i∈I xi = cI with 1 ∈ I. Any p + ei is either on that facet or is on the same side as ∞1. Hence
I = [n] and we get a contradiction.

Now look at the case when p + e1 is a good point of PG. Assume for the sake of contradiction that p + ej is not in PG for
some j ∈ [n]. Then p + e1 is on a facet of PG, whose corresponding hyperplane is given by

∑
i∈I xi = cI where 1 ∈ I and

j 6∈ I. This hyperplane separates the interior of PG with p + ej . Since j 6∈ I, the point ∞1 has to be on opposite side of
p + ej . This is a positive facet and we get a contradiction.

Combining what we have so far, we state the main result of our note on how to do the semi-polytope decomposition with
an explicit way to obtain each of the semi-polytopes:

Theorem 3.1. Identify the lattice points of P−G with lattice points not lying on any of the positive facets of PG via the map
p→ p+e1 (as in Lemma 3.4). Pick any full mixed subdivision of PG. For each cell

∏
T , construct a semi-polytope by

∑
i ∆∗Ti,ti

(where ti is chosen as in Lemma 3.1). Then the (disjoint) union of the semi-polytopes is exactly PG minus the positive facets.
Each lattice point of P−G with the above identification is contained in exactly one semi-polytope.

An example of a semi-polytope decomposition of the generalized permutohedron considered in Figure 1 and in Figure 2
is given in Figure 3.

4. Application to Erhart theory

In this section we show how the semi-polytope decomposition can be used in Erhart theory as guided in [3]. Given any
subgraph T in G, define the left degree vector ld(T ) = (d1 − 1, · · · , dn − 1) and the right degree vector rd(T ) = (d′1 −
1, · · · , d′m − 1) where di and d′j are the degree of the vertex i and j̄ respectively. The raising powers are defined as (y)a :=

y(y + 1) · · · (y + a− 1) for a ≥ 1 and (y)0 := 1.

Corollary 4.1. Fix a fine mixed subdivision of PG(y1, . . . , ym) where yi’s are nonnegative integers. The number of lattice
points in the trimmed generalized permutohedron P−G (y1, . . . , ym) equals

∑
(a1,...,am)

∏
i

(yi)ai

ai!

where the sum is over all left-degree vectors of fine mixed cells inside the subdivision.

Proof. Obtain a semi-polytope decomposition as in Theorem 3.1. Then each lattice point of P−G (y1, . . . , ym) is in exactly one
semi-polytope. The claim follows since the number of lattice points of a semi-polytope y1∆∗T1,t1

+ · · ·+ ym∆∗Tm,tm
(thanks to

Proposition 2.1, different sum gives a different point) is given by∏
i

(yi)|Ti|−1

(|Ti| − 1)!
.

The expression in Corollary 4.1 is called the Generalized Erhart polynomial of P−G (y1, . . . , ym) by [3]. As foretold
in [3], Theorem 3.1 gives us a pure counting proof of Theorem 11.3 of [3].

Definition 4.1 ( [3], Definition 9.2). Let us say that a sequence of nonnegative integers (a1, · · · , am) is a G-draconian
sequence if

∑
ai = n− 1 and, for any subset {i1 < · · · < ik} ⊆ [m], we have |Ii1 ∪ · · · ∪ Iik | ≥ ai1 + · · ·+ aik + 1.

Theorem 4.1 ( [3], Theorem 11.3). For nonnegative integers y1, . . . , ym, the number of lattice points in the trimmed gener-
alized permutohedron P−G (y1, . . . , ym) equals ∑

(a1,...,am)

∏
i

(yi)ai

ai!
,

where the sum is over all G-draconian sequences (a1, . . . , am).

4
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Proof. Thanks to Corollary 4.1, all we need to do is show that the set of G-draconian sequences is exactly the set of left-
degree vectors of the cells inside a fine mixed subdivision of PG. Lemma 14.9 of [3] tells us that the right degree vectors
of the fine cells is exactly the set of lattice points of P−G∗(1, . . . , 1) where G∗ is obtained from G by switching left and right
vertices. Then Lemma 11.7 of [3] tells us that the set of G-draconian sequences is exactly the set of lattice points of
P−G∗(1, . . . , 1).

This approach has an advantage that the generalized Erhart polynomial is obtained from a direct counting method,
without using any comparison of formulas.
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