Semi-polytope decomposition of a generalized permutohedron

Suho Oh*

Texas State University, San Marcos, Texas 78666, USA

(Received: 26 April 2019. Accepted: 27 May 2019. Published online: 1 June 2019.)

© 2019 the author. This is an open access article under the CC BY (International 4.0) license (https://creativecommons.org/licenses/by/4.0/).

Abstract

In this short note, we show explicitly how to decompose a generalized permutohedron into semi-polytopes. **Keywords:** generalized permutohedron; bipartite graphs; spanning trees; semi-polytopes.

2010 Mathematics Subject Classification: 05A15, 05C05, 52B20.

1. Introduction

Given a polytope, assume we have disjoint open cells whose closures sum up to be the entire polytope. A question of naturally assigning each of the remaining points (possibly in multiple closures) to a cell has appeared in [1] for studying regular matroids and zonotopes and in [2] for studying h-vectors and Q-polytopes. In other words, we are trying to determine ownership of lattice points on boundaries of multiple polytopes. In this note, we study a more general case of doing the same for a *Generalized permutohedron*, a polytope that can be obtained by deforming the usual permutohedron. We will show explicitly how to construct a semi-polytope decomposition of a trimmed generalized permutohedron.

2. Generalized permutohedron P_G and its fine mixed subdivision

Let $\Delta_{[n]} = \text{ConvexHull}(e_1, \ldots, e_n)$ be the standard coordinate simplex in \mathbb{R}^n . For a subset $I \subset [n]$, let $\Delta_I = \text{ConvexHull}(e_i | i \in I)$ denote the face of $\Delta_{[n]}$. Let $G \subseteq K_{m,n}$ be a bipartite graph with no isolated vertices. Label the vertices of G by $1, \ldots, m, \overline{1}, \ldots, \overline{n}$ and call $1, \ldots, m$ the *left vertices* and $\overline{1}, \ldots, \overline{n}$ the right vertices. We identify the barred indices with usual non-barred cases when it is clear we are dealing with the right vertices. For example when we write $\Delta_{\{\overline{1},\overline{3}\}}$ we think of it as $\Delta_{\{1,3\}}$. We associate this graph with the collection \mathcal{I}_G of subsets $I_1, \ldots, I_m \subseteq [n]$ such that $j \in I_i$ if and only if (i, \overline{j}) is an edge of G. Let us define the polytope $P_G(y_1, \ldots, y_m)$ as:

$$P_G(y_1,\ldots,y_m):=y_1\Delta_{I_1}+\cdots+y_m\Delta_{I_m},$$

where y_i are nonnegative integers. This lies on a hyperplane

$$\sum_{i \in [n]} x_i = \sum_{j \in [m]} y_j$$

An example of a coordinate simplex $\Delta_{[3]}$, a bipartite graph G and a generalized permutohedron $P_G(1,2,3)$ is given in Figure 1.

Definition 2.1 ([3], Definition 14.1). Let d be the dimension of the Minkowski sum $P_1 + \cdots + P_m$. A Minkowski cell in this sum is a polytope $B_1 + \cdots + B_m$ of dimension d where B_i is the convex hull of some subset of vertices of P_i . A mixed subdivision of the sum is the decomposition into union of Minkowski cells such that intersection of any two cells is their common face. A mixed subdivision is fine if for all cells $B_1 + \cdots + B_m$, all B_i are simplices and $\sum \dim B_i = d$.

All mixed subdivisions in our note, unless otherwise stated, will be referring to fine mixed subdivisions. We will use the word *cell* to denote the Minkowski cells. Beware that our cells are all closed polytopes.

Fine Minkowski cells can be described by spanning trees of G. When we are looking at a fixed generalized permutohedron $P_G(y_1, \ldots, y_m)$, we will use \prod_J to denote $y_1 \Delta_{J_1} + \cdots + y_m \Delta_{J_m}$ where $J = (J_1, \ldots, J_m)$. We say that J is a tree if the associated bipartite graph is a tree.

^{*}Email address: suhooh@txstate.edu

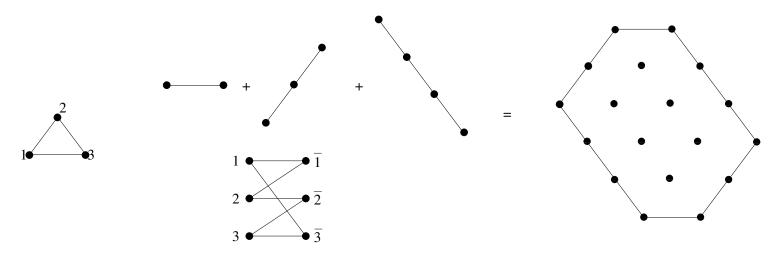


Figure 1: Example of a generalized permutohedron $P_G(1, 2, 3)$.

Lemma 2.1 ([3], Lemma 14.7). Each fine mixed cell in a mixed subdivision of $P_G(y_1, \dots, y_m)$ has the form \prod_T such that T is a spanning tree of G.

An example of a fine mixed subdivision of the polytope considered in Figure 1 is given in Figure 2.

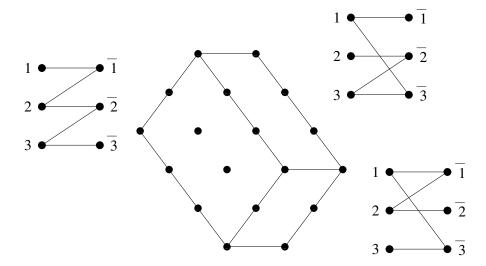


Figure 2: A fine mixed subdivision of $P_G(1, 2, 3)$.

We can say a bit more about the lattice points in each \prod_T :

Proposition 2.1 ([3], Proposition 14.12). Any lattice point of a fine Minkowski cell \prod_T in $P_G(y_1, \dots, y_m)$ is uniquely expressed (within \prod_T) as $p_1 + \dots + p_m$ where p_i is a lattice point in $y_i \Delta_{T_i}$.

3. Semi-polytope decomposition

A mixed subdivision of P_G divides the polytope into cells. In this section, we show that from a mixed subdivision of P_G , one can obtain a way to decompose the set of lattice points of P_G^- .

Definition 3.1 ([3], Definition 11.2). The trimmed generalized permutohedron P_G^- is defined as:

$$P_G^-(y_1,\ldots,y_m) := \{ x \in \mathbb{R}^n | x + \Delta_{[n]} \subseteq P_G \}.$$

This is a more general class of polytopes than generalized permutohedra $P_G(y_1, \ldots, y_m)$. With a slight abuse of notation, we will let $I \setminus j$ stand for $I \setminus \{j\}$.

Definition 3.2 ([3], Theorem 11.3). The coordinate semi-simplices are defined as

$$\Delta_{I,j}^* = \Delta_I \setminus \Delta_{I\setminus j}$$

for $j \in I \subseteq [n]$.

For each cell \prod_T , we are going to turn it into a *semi-polytope* of the form $y_1 \Delta^*_{J_1, j_1} + \cdots + y_m \Delta^*_{J_m, j_m}$. This will involve deciding which cell takes ownership of the lattice points on several cells at the same time.

We denote the point $((m-1)c + \sum_i y_i, -c, ..., -c)$ for c sufficiently large as ∞_1 . For a facet of a polytope, we say that it is **negative** if the defining hyperplane of the facet (inside the space $\sum_{i \in [n]} x_i = \sum_{j \in [m]} y_j$ which the polytope lies in) separates the point ∞_1 and the interior of the polytope. Otherwise, we say that it is **positive**. We will say that a point of a polytope is **good** if it is not on any of the positive facets of the polytope.

Lemma 3.1. Fix T, a spanning tree of $G \subseteq K_{m,n}$. Let T_i be the set of neighbors of left vertex *i*. There exists a unique element t_i in T_i such that there exists a path to $\overline{1}$ not passing through *i*.

Proof. There exists such an element since T is a spanning tree of T. There cannot be more than one such element since otherwise, we get a cycle in T.

In particular when $\overline{1} \in T_i$, we have $t_i = \overline{1}$.

Lemma 3.2. Let \prod_T be a fine mixed cell. Removing the positive facets gives us $\sum_i \Delta^*_{T_i,t_i}$.

To prove this, we first introduce a tool that will be useful for identifying which hyperplanes the facets lie on. Let \prod_T be a fine mixed cell so T is a spanning tree. For any edge e of T that is not connected to a leaf on the left side, $T \setminus e$ has two components. Let I_e denote the set of right vertices of a component that contains $\overline{1}$. Let c_e be the sum of y_i 's for left vertices contained in that component. Notice that I_e cannot be [n] since otherwise e would have a leaf as its left endpoint.

Lemma 3.3. Let \prod_T be a fine mixed cell. For any edge e of T that is not connected to a leaf on the left side, $\prod_{T \setminus e}$ is a facet of \prod_T that lies on $\sum_{j \in I_e} x_j = c_e$. If the right endpoint of e is in I_e , then \prod_T lies in half-space $\sum_{j \in I_e} x_j \ge c_e$. Otherwise it lies in $\sum_{j \in I_e} x_j \le c_e$

Proof. The dimension difference between \prod_T and $\prod_{T \setminus e}$ is at most one, and all endpoints of $\prod_{T \setminus e}$ lie on $\sum_{j \in I_e} x_j = c_e$. If the right endpoint of e is in I_e , that means we can find a point $x \in \prod_T$ using e so that $\sum_{j \in I_e} x_j > c_e$. If not, that means we can find a point $x \in \prod_T$ using e so that $\sum_{j \in I_e} x_j < c_e$. \Box

Proof of Lemma 3.2. If $\prod_{T \setminus e}$ is a positive facet of \prod_T , then Lemma 3.3 tells us that the right endpoint of $e = (i, \overline{j})$ is in I_e . From definition of t_i , we have $\overline{j} = t_i$. In other words we are removing sets of form $\Delta_{T_1} + \cdots + \Delta_{T_i \setminus t_i} + \cdots + \Delta_{T_m}$. At the end we end up with $\sum_i (\Delta_{T_i} \setminus \Delta_{T_i \setminus t_i})$.

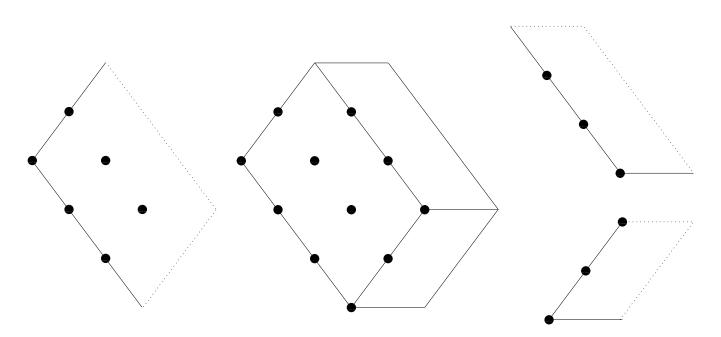


Figure 3: A semi-polytope decomposition of $P_G^-(1, 2, 3)$.

Let \prod_T and \prod'_T be two cells inside a mixed subdivision of P_G that share a facet F. The sign of F in \prod_T and the sign of F in \prod'_T has to be different, since ∞_1 can be on exactly one side of the defining hyperplane of F. This implies that all lattice points of P_G are good in at most one cell of P_G .

Lemma 3.4. $p \in P_G^- \cap \mathbb{Z}^n$ if and only if $p + e_1$ is a good point of P_G .

Proof. Having $p \in P_G^- \cap \mathbb{Z}^n$ implies from definition that $p + e_i \in P_G$ for each $i \in [n]$. Assume for sake of contradiction $p + e_1$ is on some positive facet $\sum_{i \in I} x_i = c_I$ with $1 \in I$. Any $p + e_i$ is either on that facet or is on the same side as ∞_1 . Hence I = [n] and we get a contradiction.

Now look at the case when $p + e_1$ is a good point of P_G . Assume for the sake of contradiction that $p + e_j$ is not in P_G for some $j \in [n]$. Then $p + e_1$ is on a facet of P_G , whose corresponding hyperplane is given by $\sum_{i \in I} x_i = c_I$ where $1 \in I$ and $j \notin I$. This hyperplane separates the interior of P_G with $p + e_j$. Since $j \notin I$, the point ∞_1 has to be on opposite side of $p + e_j$. This is a positive facet and we get a contradiction.

Combining what we have so far, we state the main result of our note on how to do the semi-polytope decomposition with an explicit way to obtain each of the semi-polytopes:

Theorem 3.1. Identify the lattice points of P_G^- with lattice points not lying on any of the positive facets of P_G via the map $p \to p + e_1$ (as in Lemma 3.4). Pick any full mixed subdivision of P_G . For each cell \prod_T , construct a semi-polytope by $\sum_i \Delta^*_{T_i,t_i}$ (where t_i is chosen as in Lemma 3.1). Then the (disjoint) union of the semi-polytopes is exactly P_G minus the positive facets. Each lattice point of P_G^- with the above identification is contained in exactly one semi-polytope.

An example of a semi-polytope decomposition of the generalized permutohedron considered in Figure 1 and in Figure 2 is given in Figure 3.

4. Application to Erhart theory

In this section we show how the semi-polytope decomposition can be used in Erhart theory as guided in [3]. Given any subgraph T in G, define the *left degree vector* $ld(T) = (d_1 - 1, \dots, d_n - 1)$ and the *right degree vector* $rd(T) = (d'_1 - 1, \dots, d'_m - 1)$ where d_i and d'_j are the degree of the vertex i and \overline{j} respectively. The raising powers are defined as $(y)_a := y(y+1)\cdots(y+a-1)$ for $a \ge 1$ and $(y)_0 := 1$.

Corollary 4.1. Fix a fine mixed subdivision of $P_G(y_1, \ldots, y_m)$ where y_i 's are nonnegative integers. The number of lattice points in the trimmed generalized permutohedron $P_G^-(y_1, \ldots, y_m)$ equals

$$\sum_{(a_1,\dots,a_m)} \prod_i \frac{(y_i)_{a_i}}{a_i!}$$

where the sum is over all left-degree vectors of fine mixed cells inside the subdivision.

Proof. Obtain a semi-polytope decomposition as in Theorem 3.1. Then each lattice point of $P_G^-(y_1, \ldots, y_m)$ is in exactly one semi-polytope. The claim follows since the number of lattice points of a semi-polytope $y_1\Delta_{T_1,t_1}^* + \cdots + y_m\Delta_{T_m,t_m}^*$ (thanks to Proposition 2.1, different sum gives a different point) is given by

$$\prod_{i} \frac{(y_i)_{|T_i|-1}}{(|T_i|-1)!}$$

The expression in Corollary 4.1 is called the *Generalized Erhart polynomial* of $P_G^-(y_1, \ldots, y_m)$ by [3]. As foretold in [3], Theorem 3.1 gives us a pure counting proof of Theorem 11.3 of [3].

Definition 4.1 ([3], Definition 9.2). Let us say that a sequence of nonnegative integers (a_1, \dots, a_m) is a G-draconian sequence if $\sum a_i = n - 1$ and, for any subset $\{i_1 < \dots < i_k\} \subseteq [m]$, we have $|I_{i_1} \cup \dots \cup I_{i_k}| \ge a_{i_1} + \dots + a_{i_k} + 1$.

Theorem 4.1 ([3], Theorem 11.3). For nonnegative integers y_1, \ldots, y_m , the number of lattice points in the trimmed generalized permutohedron $P_G^-(y_1, \ldots, y_m)$ equals

$$\sum_{(a_1,\ldots,a_m)} \prod_i \frac{(y_i)_{a_i}}{a_i!},$$

where the sum is over all G-draconian sequences (a_1, \ldots, a_m) .

Proof. Thanks to Corollary 4.1, all we need to do is show that the set of *G*-draconian sequences is exactly the set of leftdegree vectors of the cells inside a fine mixed subdivision of P_G . Lemma 14.9 of [3] tells us that the right degree vectors of the fine cells is exactly the set of lattice points of $P_{G^*}^-(1, \ldots, 1)$ where G^* is obtained from *G* by switching left and right vertices. Then Lemma 11.7 of [3] tells us that the set of *G*-draconian sequences is exactly the set of lattice points of $P_{G^*}^-(1, \ldots, 1)$.

This approach has an advantage that the generalized Erhart polynomial is obtained from a direct counting method, without using any comparison of formulas.

References

- S. Backman, M. Baker, C. Yuen, Geometric bijections for regular matroids, zonotopes, and Ehrhart theory, Sém. Lothar. Combin. 80B (2018) Art# 94.
- [2] S. Oh. Generalized permutohedra, h-vectors of cotransversal matroids and pure o-sequences, Electron. J. Combin. 20(3) (2013) Art# P14.
- [3] A. Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Notices 2009(6) (2009) 1026–1106.