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1Óbuda University, Bécsiút, 96/B, H-1034 Budapest, Hungary
2Knowledge Unit of Science, University of Management and Technology, Sialkot 51310, Pakistan
3Sapientia Hungarian University of Transylvania, 540485 Târgu-Mureş, Op.9., Cp.4, Romania
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Abstract
The neighborhood first Zagreb index (NM1) has been recently introduced for characterizing the topological structure of
molecular graphs. In this study, we present some sharp bounds on the index NM1 and establish its relations with the
first and second Zagreb indices in case of some special graphs. It is verified and demonstrated on examples that in several
cases, the index NM1 outperforms the discriminating performance of the majority of traditional degree-based molecular de-
scriptors (for example, Randić connectivity index, the sum-connectivity index, the harmonic index, the geometric-arithmetic
index, etc.).

Keywords: chemical graph theory; first Zagreb index; second Zagreb index; neighborhood topological indices; neighborhood
first Zagreb index.

2010 Mathematics Subject Classification: 05C07, 05C35, 92E10.

1. Introduction

All the graphs considered in this paper are simple, finite and connected. Notation and terminology that are not defined
here can be found in the standard books [17,35]. For a graph G, V (G) and E(G) denote the set of vertices and edges, and
n and m the numbers of vertices and edges, respectively. An edge of G connecting vertices u and v is denoted by uv, and
the degree d(u) of a vertex u ∈ V (G) is the number of edges incident with u.

The first Zagreb index M1 (firstly appeared in [25]) and the second Zagreb index M2 (introduced in [23]) for a graph G
can be defined as

M1(G) =
∑

v∈V (G)

(d(v))2 =
∑

uv∈E(G)

(d(u) + d(v)) and M2(G) =
∑

uv∈E(G)

d(u)d(v) .

Theory of these Zagreb indices is well established, see for example the papers [2, 20, 21, 24, 25, 28, 29, 31], recent surveys
[2,4,6,22] and related references listed therein.

For a vertex u ∈ V (G), there are several notation for representing the “sum of degrees of the vertices adjacent to u” in
literature - for example, Cao [8] and Yu et al. [41] used the notation t(u) (and called it 2-degree), Abdo et al. [1] used the
notation d2,u and Hagos [26] used S(u) - however, we suggest the notation SG(u) or simply S(u) or Su (due to the obvious
reason, as S stands for sum) for future use. The average-degree [41] (also known as dual degree [14]) of a vertex u ∈ V (G)

is the number S(u)
d(u) and we denote it by a(u). Consider the following two general graph invariants

I1(G) =
∑

u∈V (G)

f1(S(u)) and I2(G) =
∑

uv∈E(G)

f2(S(u), S(v)) .

Some special cases of the above invariants I1 and I2 have already been appeared in mathematical chemistry. For example,
if we take f1(S(u)) = S(u) or 1√

S(u)
then I1 gives the first Zagreb index M1 (see the proof of Lemma 2.4 in [9]) or first

extended zeroth-order connectivity index [5,36,40,42], respectively and if we take f2(S(u), S(v)) = S(u) + S(v), 1√
S(u)S(v)

,√
S(u)+S(v)−2

S(u)S(v) or 2
√

S(u)S(v)

S(u)+S(v) then I2 gives 2M2 (see Lemma 2.6 in [9]), the first extended first-order connectivity index [5],
fourth atom-bond connectivity index [16] or fifth geometric-arithmetic index [18], respectively. On the same lines, it is
natural to consider the following variants of the first and second Zagreb indices:

NM1(G) =
∑

v∈V (G)

(S(v))2 and NM2(G) =
∑

uv∈E(G)

S(u)S(v) .
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T. Réti, A. Ali, P. Varga, E. Bitay / Discrete Math. Lett. 2 (2019) 10–17 11

We refer the invariants NM1 and NM2 as the neighborhood first Zagreb index and neighborhood second Zagreb index. In
this paper, we are concerned with the neighborhood first Zagreb index NM1, which was initially appeared in Refs. [11,30]
and referred as the neighborhood Zagreb index [30]. Clearly, the invariant NM1 can rewritten [11] as

NM1(G) =
∑

v∈V (G)

(d(v)a(v))2 .

The main purpose of the present paper is to establish some properties of NM1.
Now, we recall some notation and definitions which will be used in the remaining paper. Denote by ∆ = ∆(G) and

δ = δ(G) the maximum and the minimum degrees of a graph G. Let A = A(G) be the adjacency matrix of G. We denote by
ρ(G) (or simply ρ) the largest eigenvalue of A(G) and call it the spectral radius of G.

A graph is called r-regular if all its vertices have the degree r. A graph is called irregular if it contains at least two
vertices with different degrees. An irregular graph G is said to be bidegreed graph if δ 6= ∆ and d(u) ∈ {δ,∆} for every
u ∈ V (G). A semiregular graph G is a bipartite bidegreed graph in which every edge of G joins a vertex of degree δ to a
vertex of degree ∆ [41]. For example, the complete bipartite graphs form a subset of semiregular graphs.

A graphG is said to be harmonic (or pseudo-regular) [13] (see also [1,7,32,41]) if every vertex ofG has the same average-
degree. It can be easily observed that the average-degree of any vertex of a harmonic graph must be a positive integer [19].
The spectral radius ρ of a harmonic graph G is equal to the average-degree of any vertex of G. It is obvious that every
regular graph is a harmonic graph. It should be noted that a harmonic graph can be bipartite or non-bipartite. A bipartite
graphG is called pseudo-semiregular [41] if each vertex in the same part of bipartition has the same average-degree. From
these definitions it follows that semiregular graphs form a subset of pseudo-semiregular graphs. If (V1, V2) is a bipartition
of a pseudo-semiregular graph G such that p1 and p2 are the average-degrees of vertices in V1 and V2, respectively, then
the spectral radius of G can be calculated as ρ =

√
p1p2, see [41]. It is worth noting that the 5-vertex path graph P5 is the

smallest pseudo-semiregular graph.

2. Some bounds on the graph invariant NM1

We start with the following obvious but important result concerning NM1:

Lemma 2.1. If G is an n-vertex graph such that uv 6∈ E(G), u 6= v, then

NM1(G+ uv) > NM1(G).

If G is an n-vertex r-regular graph then NM1(G) = nr4. Particularly, NM1(Kn) = n(n − 1)4 where Kn is the n-vertex
complete graph.

Proposition 2.2. For n ≥ 3, if G is a connected graph of order n then

NM1(Pn) ≤ NM1(G) ≤ NM1(Kn)

with left (respectively, right) equality if and only if G is isomorphic to the n-vertex path graph Pn (respectively, complete
graph Kn), where

NM1(Kn) = n(n− 1)4 and NM1(Pn) =


12 if n = 3,
26 if n = 4,
16n− 38 if n ≥ 5.

Proof. From Lemma 2.1, it follows that among all the n-vertex graphs, n ≥ 3, the graph with maximal NM1 value is the
complete graph Kn and the graph with minimal NM1 value must be a tree (obviously path graph P3 if n = 3). In what
follows, we prove the lower bound, that is NM1(Pn) ≤ NM1(G) by assuming that G is an n-vertex tree where n ≥ 4.

For the path P4 we obtain NM1(P4) = 26. If n ≥ 5, there exist two vertices u1 and u2 for which
(
S(u1)

)2
=
(
S(u2)

)2
= 4,

two vertices v1 and v2 for which
(
S(v1)

)2
=
(
S(v2)

)2
= 9 and n − 4 vertices w1, w2, · · · , wn−4 with

(
S(wi)

)2
= 16 for

i = 1, 2, · · · , n − 4. Consequently, for n ≥ 5, it follows that NM1(Pn) = 16n − 38. For n ≥ 4, routine computation gives
NM1(Pn) < NM1(Sn) where Sn is the n-vertex star graph. In the remaining proof, we assume that G 6∼= Sn. We use
induction on n. For n = 5, the desired result can be easily verified. Suppose that the result holds for all trees of order
k − 1, where k ≥ 6. Let T be a k-vertex tree, k ≥ 6, different from Sk and let u0 ∈ V (T ) be a pendant vertex adjacent to
the vertex v. Let d(v) = x and N(v) = {u0, u1, u2, ..., ur−1, ur, ..., ux−1} where dui

= 1 for i = 0, 1, . . . , r − 1 and dui
≥ 2 for

i = r, r + 1, . . . , x − 1 (since N(v) contains at least one non-pendant vertex because T is different from Sk). Let T ∗ be the

11
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tree obtained from T by removing the vertex u0. Bearing in mind the inequalities
∑x−1

i=1 d(ui) ≥ 2 and
∑

w∈N(ui)
d(w) ≥ 4

for i = r, r + 1, . . . , x− 1, we have

NM1(T )−NM1(T ∗) = x2 +

(
x−1∑
i=1

d(ui) + 1

)2

−

(
x−1∑
i=1

d(ui)

)2

+ (r − 1)[x2 − (x− 1)2]

+

x−1∑
i=1


 ∑

w∈N(ui)

d(w)

2

−

 ∑
w∈N(ui)

d(w)− 1

2
 ≥ 16.

By using the induction hypothesis in the above inequality, we get NM1(T ) ≥ 16k − 38 with equality if and only if T is
isomorphic to Pk. This completes the induction and hence the proof.

Lemma 2.3. [9] For a graph G, it holds that

M1(G) =
∑

u∈V (G)

(
d(u)

)2
=

∑
u∈V (G)

d(u)a(u)

and
M2(G) =

∑
uv∈E(G)

d(u)d(v) =
1

2

∑
u∈V (G)

(
d(u)

)2
a(u).

Proposition 2.4. If G is a graph with minimum degree δ and maximum degree ∆ then

2δM2(G) ≤ NM1(G) ≤ 2∆M2(G) . (1)

The equality sign in (1) holds if and only if G is a regular graph.

Proof. By using Lemma 2.3, one obtains

NM1(G) =
∑

u∈V (G)

[d(u)a(u)]
2 ≤ ∆

∑
u∈V (G)

(
d(u)

)2
a(u) = 2∆M2(G)

and similarly
2δM2(G) = δ

∑
u∈V (G)

(
d(u)

)2
a(u) ≤

∑
u∈V (G)

(
d(u)

)2(
a(u)

)2
= NM1(G).

Lemma 2.5. (Cauchy-Schwarz inequality) If x = (x1, x2, . . ., xn) and x = (y1, y2, . . ., yn) are two sequences of real numbers
then  n∑

j=1

xjyj

2

≤

 n∑
j=1

x2j

 n∑
j=1

y2j


with equality if and only if the sequences x and y are proportional, that is, there is a constant c such that xj = cyj for each
j, 1 ≤ j ≤ n.

Proposition 2.6. Let G be a non-trivial n-vertex graph. It holds that

NM1(G) ≥
(
M1(G)

)2
n

(2)

with equality if and only if there exist a positive integer b such that S(u) = b for every vertex u ∈ V (G) (note that equality in
(2) holds for regular graphs and semiregular graphs). Also, it holds that

NM1(G) ≥
4
(
M2(G)

)2
M1(G)

. (3)

with equality if and only if G is a harmonic graph.

Proof. Let V (G) = {u1, u2, . . ., un}, d(uj) = dj and a(uj) = aj for j = 1, 2, . . . , n.
Firstly, we prove (2). If we take xj = 1 and yj = djaj then by using Lemmas 2.3 and 2.5, we obtain

(
M1(G)

)2
=

 n∑
j=1

djaj

2

≤

 n∑
j=1

1

 n∑
j=1

(djaj)
2

= n ·NM1(G),

12
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where the equation
(
M1(G)

)2
= n · NM1(G) holds if and only if there exist a positive integer b such that d1a1 = a2d2 =

· · · = andn = b.
Now, we prove (3). If we take xj = dj and yj = djaj then again by using Lemmas 2.3 and 2.5, we get

4
(
M2(G)

)2
=

 n∑
j=1

(
dj
)2
aj

2

≤

 n∑
j=1

(
dj
)2 n∑

j=1

(djaj)
2

= M1(G) ·NM1(G),

where the equation 4
(
M2(G)

)2
= M1(G) ·NM1(G) holds if and only if there exist a positive number c such that a1 = a2 =

· · · = an = c.

In literature, there exist many lower and upper bounds on the Zagreb indices M1 and M2. By using Propositions 2.4,
2.6 and some existing bounds on M1 and M2, we can easily establish new bounds on the invariant NM1. For example, by
using the following existing result and Proposition 2.4, we obtain Proposition 2.8.

Theorem 2.7. [10] If G is a graph with order n, size m, minimum degree δ, maximum degree ∆ and second maximum
degree ∆2 then

M2(G) ≥ 2m2 −∆m(n− 1) +
∆− 1

2

(
∆2 +

(2m−∆)2

n− 1
+

2(∆2 − δ)2(n− 2)

(n− 1)2

)
(4)

and
M2(G) ≤ 2m2 − δm(n− 1) +

δ − 1

2

(
m(n+ 1) + ∆(∆− n) +

2(m−∆)2

n− 2

)
(5)

where the equality sign in (4) holds if and only if G is a regular graph and the equality sign in (5) holds if and only if either
G ∼= Kn or G ∼= K∗2,n−2 (that is, a graph obtained from the complete bipartite graph K2,n−2 by adding an edge between the
vertices of degree n− 2).

Proposition 2.8. IfG is a graph with order n, sizem, minimum degree δ, maximum degree ∆ and second maximum degree
∆2 then

NM1(G) ≥ 2δ

(
2m2 −∆m(n− 1) +

∆− 1

2

(
∆2 +

(2m−∆)2

n− 1
+

2(∆2 − δ)2(n− 2)

(n− 1)2

))
(6)

and
NM1(G) ≤ 2∆

(
2m2 − δm(n− 1) +

δ − 1

2

(
m(n+ 1) + ∆(∆− n) +

2(m−∆)2

n− 2

))
(7)

where the equality sign in (6) holds if and only ifG is a regular graph and the equality sign in (7) holds if and only ifG ∼= Kn.

H1 H2

Figure 1: Bidegreed graphs used in Example 2.9.

Example 2.9. In this example, we compare the lower bounds on the invariant NM1 given in (1), (2) and (3). We consider
the bidegreed graphs H1 and H2 depicted in Figure 1. The graph H1, taken from Ref. [27], is a 9-vertex distance-balanced
graph with δ = 3, ∆ = 4, M1(H1) = 102, M2(H1) = 171 and NM1(H1) = 1158. For Inequality (1), we have

1158 = NM1(H1) > 2δM2(H1) = 1026 .

For Inequalities (2) and (3), we obtain

1158 = NM1(H1) >

(
M1(H1)

)2
n

= 1156 ,

1158 = NM1(H1) >
4
(
M2(H1)

)2
M1(H1)

= 1146.7 .

13
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For the 6-vertex bidegreed graph H2, it holds that δ = 3, ∆ = 4, M1(H2) = 60, M2(H2) = 96, NM1(H2) = 624 and hence

624 = NM1(H2) > 2δM2(H2) > 384 ,

624 = NM1(H2) >

(
M1(H2)

)2
n

= 600 ,

624 = NM1(H2) >
4
(
M2(H2)

)2
M1(H2)

= 614.4 .

Therefore, the lower bounds on the invariant NM1 given in (2) and (3) seem to be very good estimates. But, as it is demon-
strated in this example, they are incomparable.

3. Relation between NM1 and Zagreb indices

Proposition 3.1. If G is an n-vertex semiregular graph with size m then

M1(G)

n
=
M2(G)

m
and NM1(G) =

(
M1(G)

)2
n

=
M1(G) ·M2(G)

m
.

Proof. Let δ and ∆ be the minimum and maximum degrees of G. From the assumption that G is a semiregular graph, it
follows that S(u) = ∆δ for every vertex u ∈ V (G) and d(u)d(v) = ∆δ for every edge uv ∈ E(G), which imply the desired
result.

Lemma 3.2. [33] Let G be an n-vertex irregular harmonic graph with sizem and spectral radius ρ. Then a(u) = ρ for every
vertex u ∈ V (G), M1(G) = 2mρ and M2(G) = mρ2.

Proposition 3.3. If G is an irregular harmonic graph then

NM1(G) =
M1(G) ·M2(G)

m
=

4
(
M2(G)

)2
M1(G)

.

Proof. By using the definition of NM1 and bearing in mind Lemma 3.2, we have

NM1(G) =
∑

u∈V (G)

[d(u)a(u)]
2

= ρ2
∑

u∈V (G)

(
d(u)

)2
= ρ2 ·M1(G) =

M1(G) ·M2(G)

m

=
2mρ(mρ2)

m
=

2m2ρ4

ρm
=

4
(
M2(G)

)2
2ρm

=
4
(
M2(G)

)2
M1(G)

.

Lemma 3.4. [1] If G is a pseudo-semiregular graph with size m and spectral radius ρ then M2(G) = mρ2.

Lemma 3.5. [41] If G is a pseudo-semiregular graph with spectral radius ρ then

NM1(G) =
∑

u∈V (G)

(
S(u)

)2
= M1(G) · ρ2.

Proposition 3.6. If G is a pseudo-semiregular graph then

NM1(G) =
M1(G) ·M2(G)

m
.

Proof. The result directly follows from Lemmas 3.4 and 3.5.

4. The discriminating performance of NM1

Denote by mr,s(G) (or mr,s, when there is no confusion) the number of edges in G with end-vertex degrees r and s. Two
graphs G1 and G2 satisfying mr,s(G1) = mr,s(G2) for all r and s with 1 ≤ r ≤ s ≤ ∆, are called edge-equivalent graphs.
A topological index TI satisfying TI(G1) = TI(G2) for every pair of edge-equivalent graphs G1 and G2, is called edge-
equivalent topological index. We remark that the bond incident degree indices [38, 39] (BID indices for short [3]) are
edge-equivalent topological indices – general form of the BID indices is

BID(G) =
∑

uv∈E(G)

f(d(u), d(v)) =
∑
r≤s

mr,sf(r, s) (8)

14
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where f(r, s) is a bivariate symmetric function. It should be emphasized that the majority of degree-based topological
indices used in mathematical chemistry are BID indices. These indices can be generated from (8) depending on the choice
of f(r, s). Well-known examples [20, 24, 29, 38, 39] are the first Zagreb index, second Zagreb index, Randić/connectivity
index, atom-bond connectivity index, sum-connectivity index, harmonic index, augmented Zagreb index and geometric-
arithmetic index.

For investigating the discriminatory performance of the topological index NM1, we consider the 8-vertex trees repre-
senting the octane isomers. These 18 molecular graphs of octane isomers are depicted in Figure 2.

O1 O2 O3 O4 O5

O6 O7 O8 O9 O10 O11

O12 O13 O14 O15 O16 O17 O18

Figure 2: Molecular graphs of 18 octane isomers.

From Figure 2, it can be easily seen that the trees O3 and O4 are edge-equivalent, but their corresponding neigh-
borhood first Zagreb indices are different: NM1(O3) = 108 and NM1(O4) = 110. Similarly, the trees O11 and O12 are
edge-equivalent graphs possessing different neighborhood first Zagreb indices: NM1(O11) = 130 and NM1(O12) = 132.
Thus, the topological index NM1 does not belong to the class of edge-equivalent topological indices. Consequently, we
can conclude that the topological index NM1 is characterized by a better discriminatory power than the traditional BID
indices. This observation has been confirmed in [30]. Particularly, Mondal et al. [30] proved that all the molecular graphs
of 18 octane isomers have different NM1 values.

JA JB JC

Figure 3: Three small 6-vertex edge-equivalent graphs.

It should be noted that in some particular cases, the discrimination ability of NM1 is limited but always better than
that of the BID indices. This phenomenon can be explained by considering the edge-equivalent graphs depicted in Figure
3: we have NM1(JA) = 330, but NM1(JB) = NM1(JC) = 328 (needless to say that all these three graphs have the same
value of any arbitrary BID index; that is, using an arbitrary BID index, it is impossible to discriminate between the graphs
JA, JB and JC).

5. Final remarks

There exists a broad class of irregular graphs called 2-walk linear graphs for which the neighborhood first Zagreb index
can be easily computed. An irregular graph G is called 2-walk linear (more precisely, 2-walk (a, b)-linear) if there exists a
unique integer pair (a, b) such that

S(u) = d(u)a(u) = ad(u) + b

holds for every vertex u of G, see [26]. As it is known, for a 2-walk (a, b) linear graph G, the corresponding spectral radius
ρ can be calculated as

ρ =
a+
√
a2 + 4b

2
.

It is important to note that semiregular and irregular harmonic graphs form subsets of 2-walk linear graphs, and in
these particular cases, a = 0 for semiregular graphs, while b = 0 for irregular harmonic graphs. Based on the previous

15
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considerations, the neighborhood first Zagreb index of a 2-walk linear graph G is calculated as

NM1(G) =
∑

u∈V (G)

[ad(u) + b]
2

= a2M1(G) + 4abm+ nb2. (9)

GraphsH1 andH2 depicted in Figure 1 are 2-walk linear graphs with parameters a = 1, b = 8 and a = 2, b = 4, respectively.
Using Equation (9), it is easy to check that NM1(H1) = 1158 and NM1(H2) = 624.

We close this paper by mentioning the following graph invariants which depend on the average degrees of a graph’s
vertices.

I3(G) =
∑

u∈V (G)

f3(S(u), d(u)) and I4(G) =
∑

uv∈E(G)

f4(a(u), a(v)) .

It is noted that the invariants I∗3 (G) =
∑

u∈V (G) f
∗
3 (a(u)) and I∗∗3 (G) =

∑
u∈V (G) f

∗∗
3 (d(u), a(u)) are special cases of I3.

Initial observation on the invariants I3 and I4 gives us a hope that some choices of the functions f3 and f4 may correspond
to some good predictors of certain properties of chemical compounds. It needs to be mentioned here that some special cases
of I3 and I4 have already been appeared in literature: for example, if f3(a(u)) = 1

a(u) , a(u) or a(u)
n then I3 gives the inverse

dual degree [15, 34], symmetric division deg index [12, 37], average neighbor degree number [12, 33], where n is order of
the graph under consideration, and if f4(a(u), a(v)) = a(u) + a(v) then I4 is the first Zagreb index M1 because∑

u∈V (G)

h(u) =
∑

uv∈E(G)

(
h(u)

d(u)
+
h(v)

d(v)

)
(see [12])

and hence
M1(G) =

∑
u∈V (G)

S(u) =
∑

u∈V (G)

d(u)a(u) =
∑

uv∈E(G)

[a(u) + a(v)].
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[29] I. Ž. Milovanović, V. M. Ćirić, I. Z. Milentijević, E. I. Milovanović. On some spectral, vertex and edge degree-based graph invariants, MATCH

Commun. Math. Comput. Chem. 77 (2017) 177–188.
[30] S. Mondal, N. De, A. Pal, On neighbourhood Zagreb index of product graphs, arXiv:1805.05273v1 [math.CO] (2018).
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[39] D. Vukičević, J. Durdević, Bond additive modelling 10. Upper and lower bounds of bond incident degree indices of catacondensed flouranthenes,

Chem. Phys. Lett. 515 (2011) 186–189.
[40] S. Wang, B. Zhou, On the first extended zeroth-order connectivity index of trees, Iran. J. Sci. Tech. A 38 (2014) 213–219.
[41] A. Yu, M. Lu, F. Tian, On the spectral radius of graphs, Linear Algebra Appl. 387 (2004) 41–49.
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