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dBenemérita Universidad Autónoma de Puebla, Instituto de Fı́sica, Puebla Capital, 3400, México
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Abstract
Although the concept of geometric-arithmetic indices has been introduced in the chemical graph theory recently, these
indices have already been proved to be useful. After the excellent survey [K. C. Das, I. Gutman, B. Furtula, Survey on
geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 595–644] on these indices,
lots of papers have been (and are being) published on the (first) geometric-arithmetic index. The present survey tries
to collect the lower bounds of the geometric-arithmetic index appeared after the publication of the mentioned survey.
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1. Introduction

A single number which represents a chemical structure in graph-theoretical terms via the molecular graph is called a
molecular descriptor; besides, if it correlates with a molecular property, it is called topological index and it is used to
understand physicochemical properties of chemical compounds. The interest of topological indices lies in the fact that
they synthesize some of the properties of a molecule into a single number. With this in mind, hundreds of topological
indices have been introduced and studied so far; it is worth noting the seminal work by Wiener in which he used the
sum of all shortest-path distances of a (molecular) graph in order to model physical properties of alkanes (see [75]).

Topological indices based on end-vertex degrees of edges play a vital role in mathematical chemistry and some of
them are recognized tools in chemical research. Probably, the very first such descriptor is the Platt index [56] and the
best known among such descriptors are the Randić connectivity index and the Zagreb indices.

The first and second Zagreb indices, denoted by M1 and M2, were appeared in [34] and [32] respectively:

M1(G) =
∑

u∈V (G)

d2
u, M2(G) =

∑
uv∈E(G)

dudv,

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the degree of the vertex u.
There is a vast amount of research on the Zagreb indices. For details of their chemical applications and mathe-

matical theory see [27], [28], [30], and the references therein.
The Randić connectivity index is defined in [58] as

R(G) =
∑

uv∈E(G)

1√
dudv

.

Over one thousand papers and a couple of books dealing with this molecular descriptor have been written (for example,
see [29,37,38] and the references cited therein).

In [6], [40], [39], [48], the first and second variable Zagreb indices are defined as

Mα
1 (G) =

∑
u∈V (G)

dαu , Mα
2 (G) =

∑
uv∈E(G)

(dudv)
α,

with α ∈ R.
The concept of variable molecular descriptors was proposed as a new way of characterizing heteroatoms in molecules

(see [57], [59]), but also to assess the structural differences (e.g., the relative role of carbon atoms of acyclic and cyclic
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parts in alkylcycloalkanes [60]). The idea behind the variable molecular descriptors is that the variables are deter-
mined during the regression; this allows to make the standard error of the estimate for a particular property (targeted
in the study) as small as possible (see, e.g., [48]).

Gutman and Tošović [33] tested the correlation abilities of 20 vertex-degree-based topological indices used in the
chemical literature for the case of standard heats of formation and normal boiling points of octane isomers. It is
noteworthy that the second variable Zagreb index Mα

2 with exponent α = −1 (and to a lesser extent with exponent
α = −2) performs significantly better than the Randić index (R = M

−1/2
2 ).

The second variable Zagreb index is used in the structure-boiling point modeling of benzenoid hydrocarbons [52].
Also, variable Zagreb indices exhibit a potential applicability for deriving multi-linear regression models [14]. Various
properties and relations of these indices are discussed in several papers.

Note that M2
1 is the first Zagreb index M1, M−1

1 is the inverse index ID, M3
1 is the forgotten index F , etc.; also,

M
−1/2
2 is the usual Randić index, M1

2 is the second Zagreb index M2, M−1
2 is the modified Zagreb index, etc.

The general sum-connectivity index was defined by Zhou and Trinajstić in [79] as

χα(G) =
∑

uv∈E(G)

(du + dv)
α.

Note that χ
1

is the first Zagreb index M1, 2χ−1
is the harmonic index H, χ−1/2

is the sum-connectivity index χ, etc.
A class of molecular descriptors, named as “geometric-arithmetic indices” (GAgeneral ) are defined (see [20] or [73])

as
GAgeneral(G) =

∑
uv∈E(G)

√
QuQv

1
2 (Qu +Qv)

,

whereQu is some quantity associated with the vertex u ∈ V (G). The name of this class of indices is evident from their
definition. Namely, indices belonging to this group are calculated as the ratio of geometric and arithmetic means of
some properties of adjacent vertices u and v.

The first member of this class is the so-called (first) geometric-arithmetic index defined in [73] as

GA1(G) = GA(G) =
∑

uv∈E(G)

√
dudv

1
2 (du + dv)

.

Although GA was introduced barely a decade ago, there are already many papers dealing with this index (see, e.g.,
[9], [11], [10], [73] and the references therein). The results in [11, p.598] show that the GA index gathers the same
information on the molecule under study as other geometric-arithmetic indices. So, we will focus in this survey on
GA.

The number of possible benzenoid hydrocarbons is huge, although only about 1,000 of them have been identified
so far. As an example, there are as many as 5.85 · 1021 benzenoid hydrocarbons with exactly 35 benzene rings [71].
Therefore, the ability to model their physicochemical properties can be most helpful in order to foresee characteristics
of currently unknown species. The predicting ability of theGA index compared with Randić index is reasonably better
(see [11, Table 1]). The graphic in [11, Fig.7] (from [11, Table 2], [68]) shows that there exists a good linear correlation
between GA and the heat of formation of benzenoid hydrocarbons (the correlation coefficient is equal to 0.972).

Furthermore, in the case of standard enthalpy of vaporization,GA index improves the performance of Randić index
by more than 9%. That is why one can think that GA index should be considered in the research on QSPR/QSAR.

A main topic in the study of topological indices is to find bounds of the indices. After the excellent survey in 2011
on geometric-arithmetic indices (see [11]), lots of papers have been (and are being) published on the (first) geometric-
arithmetic index. This survey try to collect most lower bounds of the GA index since 2011. Furthermore, we have
improved slightly some of them by removing some hypotheses, such as lower bounds on the minimum degree or the
connectedness. Also, we include some new inequalities.

Throughout this survey,G = (V (G), E(G)) denotes a (non-oriented) finite simple (without multiple edges and loops)
graph without isolated vertices (i.e., the minimum degree of G is at least 1). We denote by ∆, δ, n,m the maximum
degree, the minimum degree and the cardinality of the set of vertices and edges of G, respectively. Thus, ∆ ≥ δ ≥ 1,
n ≥ 2 and m ≥ 1.

Recall that a (∆, δ)-biregular graph (or simply a biregular graph) is a bipartite graph for which any vertex in one
side of the given bipartition has degree ∆ and any vertex in the other side of the bipartition has degree δ.

Along this work, if two graphs G1 and G2 are isomorphic, we will write G1
∼= G2.

The outline of this paper is as follows: Section 2 collects some lower bounds of the geometric-arithmetic index
GA(G) in terms of some parameters of the graph G (such as the total number of vertices or edges of G, the minimum
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or maximum degree, the number of pendant or fully-connected vertices, the chromatic number ofG or its hyperbolicity
constant). Section 3 compiles some lower bounds of GA(G) involving some matrices (such as the adjacency matrix,
the GA-adjacency matrix, the GA-Laplace matrix or the sum-connectivity matrix) and their respective eigenvalues
or traces. Section 4 relates some lower bounds of GA(G) with other topological indices; among them, Zagreb, Randić,
harmonic, sum-connectivity, atom-bond connectivity or forgotten indices can be found, as well as some combinations
of them. In Section 5 some lower bounds of GA(G) in terms of subgraphs of G can be found. Finally, Section 6 collects
lower bounds for the line graph L(G) associated with G.

2. Lower bounds of GA(G) in terms of parameters of G

Probably the best known lower bound of GA(G) is

GA(G) ≥ 2m
√

∆δ

∆ + δ
, (1)

where G is a graph with m edges, maximum degree ∆ and minimum degree δ [9]. This inequality is interesting by
itself and, also, it is used in order to obtain other inequalities.

The following inequalities can be found in [73, Theorem 2], [50, Proposition 2], [11, pp. 609–610],

GA(G) ≥ 2(n− 1)3/2

n
, GA(G) ≥ 2m

n
, (2)

where G is a graph with n vertices and m edges. The first inequality requires the graph to be connected.
The next result provides a lower bound of GA(G) depending just on the number of vertices and edges. Besides, it

improves both inequalities in (2).

Theorem 2.1. [63, Theorem 2.4] Let G be a graph with n vertices and m edges. Then

GA(G) ≥ 2m
√
n− 1

n
,

and the equality is attained if and only if G is a star graph.

Theorem 2.4 of [63] was proved for connected graphs, but the argument in its proof also works ifG is not connected.

The inequality in Theorem 2.1 is a consequence of (1).

Next, we include a lower bound of GA(G) depending just on the number of vertices.

Proposition 2.1. [55, Proposition 2] If G is a graph with n vertices, m edges and maximum degree ∆ such that
∆ ≤ n− 2, then

GA(G) >
2m
√
n− 2

n− 1
≥ 2
√
n− 2 .

The first inequality in Proposition 2.1 is a consequence of (1).

Proposition 2.2. [46, Proposition 5] If G is a graph with n vertices, m edges and minimum degree δ then

GA(G) ≥
2m
√

(n− 1)δ

n+ δ − 1
.

The equality is attained if and only if G is either a complete graph or a star graph.

The inequality in Proposition 2.2 is also a consequence of (1).

The following theorem provides a lower bound of GA(G) for every graph G with minimum degree δ ≥ k, for any
fixed k ≥ 2. This result improves the first inequality in (2).

Theorem 2.2. [63, Theorem 2.5] Consider any graph G with n vertices and minimum degree δ ≥ k ≥ 2.

1. If n ≤ 10, then
GA(G) ≥ nk

2
.

2. If n ≥ 11, then

GA(G) ≥ min

{
nk

2
,

(k + 1)
√
k (n− 1)3/2

n− 1 + k

}
.
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Theorem 2.5 of [63] was proved for connected graphs, but the argument in its proof also works ifG is not connected.

The following theorem provides lower bounds of GA(G) depending just on the minimum and maximum degree of
G. Their proofs use (1) and the lower bounds on the number of edges in terms on the minimum and maximum degree
of G in [44, Proposition 2.5].

Theorem 2.3. [44, Theorem 2.7] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥ ∆(δ + 1)

√
δ∆

δ + ∆

with equality if and only if either δ = 1 and G is a star graph or δ = ∆ and G is a complete graph. Furthermore, if
∆(δ + 1) is odd, then

GA(G) ≥
(
∆(δ + 1) + 1

) √δ∆
δ + ∆

.

Proposition 2.3. [54, Proposition 3] Let G be a graph with m edges, n vertices and maximum degree ∆. Then

GA(G) ≥ 2

∆

m2

n
.

The equality is attained for any regular graph.

The bound in Proposition 2.3 is always better than the one in Proposition 4.4 since δ ≤ n− 1. Also, it improves the
second inequality in (2), since m ≥ ∆.

Next result is a consequence of Proposition 4.4.

Corollary 2.1. [54, Corollary 3] Let G be a graph with n ≥ 3 vertices, m edges, minimum degree δ and maximum
degree ∆. Then

GA(G) ≥ 2δm2

∆(δ + 1)(n− 1)
.

Theorem 2.4. [13, Theorem 1] Let G be a connected graph with n vertices and minimum degree δ. If δ ≥ dδ0e, where
δ0 = q0(n− 1) and q0 ≈ 0.088 is the unique positive root of the equation q√q + q + 3

√
q − 1 = 0, then

GA(G) ≥ δn

2
.

If δ or n are even, this value is attained by any regular graph.

The chromatic number of a graph G, denoted by C(G), is the smallest number of colors needed to color the vertices
of G so that no two adjacent vertices share the same color.

Corollary 2.2. [3, Corollary 2.11] Let G be a connected graph with minimum degree δ ≥ 2. Then

GA(G) ≥ δ

2
C(G),

with equality if and only if G is a complete graph.

Motivated by the above result, some experiments with the help of AutoGraphiX were conducted in [4] that led
the authors to state an analogous result replacing δ by the average degree δ̄ (see [4, Conjecture 3.2]). Some other
conjectures about lower bounds for the geometric-arithmetic index stated in the same article were later disproved
in [7].

Given positive integers δ ≤ ∆, define Gδ,∆ as the set of graphs G with ∆+1 vertices, minimum degree δ, maximum
degree ∆ and such that:

1. G is isomorphic to the complete graph with ∆ + 1 vertices, if δ = ∆,

2. there are ∆ vertices with degree δ, if δ < ∆ and ∆(δ + 1) is even,

3. there are ∆− 1 vertices with degree δ and a vertex with degree δ + 1, if δ < ∆− 1 and ∆(δ + 1) is odd,
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4. there are ∆−1 vertices with degree δ and two vertices with degree ∆, if δ = ∆−1 and ∆ is odd (and thus ∆(δ+1)

is odd).

Remark 2.1. Since every graph G ∈ Gδ,∆ has maximum degree ∆ and |V (G)| = ∆ + 1, it follows that every G ∈ Gδ,∆
is connected.

Theorem 2.5. [44, Theorem 2.12] Let G be a graph with minimum degree δ and maximum degree ∆ ≥ 2. If

2
√
δ∆

δ + ∆
≥ ∆(δ − 1)

∆(δ − 1) + 2
, (3)

then
GA(G) ≥ 2∆

√
δ∆

δ + ∆
+

∆(δ − 1)

2
. (4)

Furthermore, if ∆(δ + 1) is odd,

2
√
δ∆

δ + ∆
≥ ∆(δ − 1)

∆(δ − 1) + 2
and 3

√
δ∆

δ + ∆
+ δ − 1

2
≥

2
√

(δ + 1)∆

δ + 1 + ∆
+

2δ
√
δ(δ + 1)

2δ + 1
, (5)

then
GA(G) ≥ 2(∆− 1)

√
δ∆

δ + ∆
+

2
√

(δ + 1)∆

δ + 1 + ∆
+

2δ
√
δ(δ + 1)

2δ + 1
+

(∆− 2)(δ − 1)− 1

2
. (6)

If ∆ and δ satisfy (3), then the equality in (4) is attained if and only if ∆(δ + 1) is even and G ∈ Gδ,∆. If ∆ and δ

satisfy (5) and ∆(δ + 1) is odd, then the equality in (6) is attained if and only if G ∈ Gδ,∆.

A connected graph with maximum degree at most four is a chemical graph, and it is usually employed to represent
hydrocarbons [70]. Theorem 2.5 allows to obtain sharp inequalities for chemical graphs.

Corollary 2.3. [44, Corollary 2.14] Let G be a chemical graph with minimum degree δ and maximum degree ∆. If
(δ,∆) 6= (2, 3), then

GA(G) ≥ 2∆
√
δ∆

δ + ∆
+

∆(δ − 1)

2
,

with equality if and only if G ∈ Gδ,∆. If (δ,∆) = (2, 3), then

GA(G) ≥ 2(∆− 1)
√
δ∆

δ + ∆
+

2
√

(δ + 1)∆

δ + 1 + ∆
+

2δ
√
δ(δ + 1)

2δ + 1
+

(∆− 2)(δ − 1)− 1

2
=

8
√

6

5
+ 1,

with equality if and only if G ∈ G2,3.

Corollary 2.4. [44, Corollary 2.15] Let G be a graph with minimum degree δ and maximum degree ∆ = δ+ h ≥ 2. If
(16− h2)∆3 + (2h3 + 2h2 − 32h− 16)∆2 + (−h4 − 2h3 + 15h2 + 16h+ 16)∆− 16h ≥ 0, then

GA(G) ≥
2∆
√

∆(∆− h)

2∆− h
+

∆(∆− h− 1)

2
.

Corollary 2.5. [44, Corollary 2.16] Let G be a graph with minimum degree δ and maximum degree ∆ = δ+ h ≥ 2. If
we have

1. h = 0 or h = 1, for every ∆ ≥ 2,

2. h = 2, for every ∆ ≥ 3,

3. h = 3, for every ∆ ≥ 4,

4. h = 4, for every ∆ ≥ 5,

5. h = 5, for every ∆ ∈ {6, 7, 8},

6. h = 6, for every ∆ ∈ {7, 8},

7. h ≥ 7 and ∆ = h+ 1,
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then
GA(G) ≥

2∆
√

∆(∆− h)

2∆− h
+

∆(∆− h− 1)

2
.

Corollary 2.6. [44, Corollary 2.17] Let G be a graph with maximum degree ∆ ≥ 2 and minimum degree δ = ∆ − 1.
Then

GA(G) ≥
2∆
√

∆(∆− 1)

2∆− 1
+

∆(∆− 2)

2
, if ∆ is even,

GA(G) ≥
4(∆− 1)

√
∆(∆− 1)

2∆− 1
+

(∆− 2)2 − 1

2
+ 1, if ∆ is odd,

with equalities if and only if G ∈ G∆−1,∆.

Corollary 2.7. [44, Corollary 2.18] Let G be a graph with minimum degree δ and maximum degree 2 ≤ ∆ ≤ 8. Then

GA(G) ≥ 2∆
√
δ∆

δ + ∆
+

∆(δ − 1)

2
.

Let us denote by Kδ,∆ the complete bipartite graph with a partition K1, K2 with δ and ∆ vertices respectively.
Notice that the vertices in K1 have degree ∆ and the vertices in K2 have degree δ. It has been proved in [65] that
GA(Kδ,∆) = 2δ∆

√
δ∆

δ+∆ .

Theorem 2.6. [44, Theorem 2.21] Let G be a graph with minimum degree 2 and maximum degree ∆ ≥ 28. Then

GA(G) ≥ 4∆
√

2∆

∆ + 2
,

and the equality is attained if and only if G ∼= K2,∆.

Theorem 2.6 shows that inequalities (3) and (5) in Theorem 2.5 do not hold for every graph.

Given any odd integer ∆ ≥ 3, let us defineH∆ as the graph with minimum degree 2, maximum degree ∆, |V (H∆)| =
∆ + 1, and such that there are 2 vertices, x0, x1 with degree ∆ which are adjacent and ∆ − 1 vertices with degree 2:
x2, . . . , x∆. Note that

GA1(H∆) = 2(∆− 1)
2
√

2∆

2 + ∆
+ 1. (7)

The next result shows that the conclusion of Theorem 2.6 does not hold for ∆ < 28.

Proposition 2.4. [44, Proposition 2.22] For any integer 2 ≤ ∆ ≤ 27, if G ∈ G2,∆, then

GA(G) < GA(K2,∆), if ∆ is even,
GA(H∆) < GA(K2,∆), if ∆ is odd.

Let us consider an ordering of the vertices in G where u < v implies that du ≤ dv. Let us assume an orientation
of the edges where uv is always taken with the orientation given by the ordering u < v. Let k = ∆ − δ, let mi be the
number of oriented edges whose tail is a vertex with degree δ + i and m′i the number of oriented edges whose head
is a vertex with degree δ + i for 0 ≤ i ≤ k. Moreover, let ai be the number of edges whose tail is a vertex with degree
δ + i and whose head is a vertex with degree at least δ + i + 1 with 0 ≤ i ≤ k − 1, let bi the number of edges whose
head is a vertex with degree δ + i and whose tail is a vertex with degree at most δ + i − 1 with 1 ≤ i ≤ k, and ci the
number of edges joining two vertices with degree δ + i with 0 ≤ i ≤ k. Notice that mi = ai + ci and m′i = bi + ci for
every 0 ≤ i ≤ k, mk = ck and m′0 = c0.

Define the classes of graphs G1 and G2 as follows. G1 is the set of graphs G such that if uv ∈ E(G), then du = dv or
max{du, dv} = ∆, where ∆ is the maximum degree of G. G2 is the set of graphs G such that if uv ∈ E(G), then du = dv

or min{du, dv} = δ, where δ is the minimum degree of G.

Proposition 2.5. [46, Proposition 2] Let G be a graph with minimum degree δ and maximum degree ∆ > δ. Then

GA(G) ≥
k∑
i=0

ci +

k−1∑
i=0

2ai
√

∆(δ + i)

∆ + δ + i
, (8)

and

GA(G) ≥
k∑
i=0

ci +

k∑
i=1

2bi
√
δ(δ + i)

2δ + i
. (9)

The equality in (8) is attained if and only if G ∈ G1. The equality in (9) is attained if and only if G ∈ G2.
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Define the classes of graphs G0
1 and G0

2 as follows. G0
1 is the set of graphs G such that if uv ∈ E(G), then

max{du, dv} = ∆, where ∆ is the maximum degree of G. G0
2 is the set of graphs G such that if uv ∈ E(G), then

min{du, dv} = δ, where δ is the minimum degree of G. It is clear that G0
1 ⊂ G1 and G0

2 ⊂ G2.

Corollary 2.8. [46, Corollary 2] Let G be a graph with minimum degree δ ≥ 2 and maximum degree ∆ > δ. Then

GA(G) ≥
k∑
i=0

2mi

√
∆(δ + i)

∆ + δ + i
=

k−1∑
i=0

2mi

√
∆(δ + i)

∆ + δ + i
+mk,

and

GA(G) ≥
k∑
i=0

2m′i
√
δ(δ + i)

2δ + i
= m′0 +

k∑
i=1

2m′i
√
δ(δ + i)

2δ + i
.

The first (respectively, second) equality is attained if and only if G ∈ G0
1 (respectively, G ∈ G0

2 ).

Since in a connected graph with at least 3 vertices there are no edges joining two vertices with degree 1, the
following consequence holds.

Corollary 2.9. [46, Corollary 3] LetG be a connected graph with at least 3 vertices, minimum degree 1 and maximum
degree ∆. Then

GA(G) ≥
k∑
i=0

2mi

√
∆(i+ 1)

∆ + i+ 1
.

Given any graph G and uv ∈ E(G), let us define the gradient of the edge uv as ∇uv := |du − dv|.

Proposition 2.6. [46, Proposition 3] Let G be a graph with m edges and minimum degree δ. If D = maxuv∈E(G)∇uv,
then

GA(G) ≥
2m
√
δ(δ +D)

2δ +D
. (10)

The equality is attained if and only if G is either regular or biregular.

Let E0, . . . , Ek (with k = ∆ − δ) be a partition of the edges of G given by the gradient where e ∈ Ei if ∇e = i for
each 0 ≤ i ≤ k. Let ei be the number of edges in Ei.

Proposition 2.7. [46, Proposition 4] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥
k∑
i=0

2ei
√
δ(δ + i)

2δ + i
. (11)

The equality is attained if and only if G ∈ G0
2 .

In [45], the authors define the following class of graphs:
Given integers 0 < i ≤ δ < ∆, let us define Hiδ,∆ as the set of graphs H with minimum degree δ, maximum degree

∆, |V (H)| = ∆ + 1, and such that:

1. there are i vertices with degree ∆ and ∆− i+ 1 vertices with degree δ, if (∆− i+ 1)(δ − i) is even,

2. there are i vertices with degree ∆, ∆−i vertices with degree δ and an additional vertex with degree δ+1 (possibly
∆ if δ = ∆− 1), if (∆− i+ 1)(δ − i) is odd.

In that same paper, it is proved (see [45, Proposition 11]) that Hiδ,∆ 6= ∅.

Definition 2.1. A graph G with minimum degree δ and maximum degree ∆ is minimal for GA if GA(G) ≤ GA(Γ) for
every graph Γ with minimum degree δ and maximum degree ∆.

The following conjecture is presented in that same paper.

Conjecture 2.1. [45, Conjecture 13] Given any integers 1 < δ < ∆, a graph G is minimal for GA1 if and only if
G ∈ Hiδ,∆ for some 1 ≤ i ≤ δ.

Recall that a pendant vertex is a vertex with degree 1 and a pendant edge is an edge with a pendant vertex. Also,
if the vertex set V is the disjoint union of two nonempty sets V1 and V2, such that every vertex in V1 has degree r and
every vertex in V2 has degree s 6= r, then G is said to be (r, s)-semiregular. When r = s then G is a regular graph of
degree r.
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Proposition 2.8. [5, Proposition 2] Let G be a graph with n vertices, m edges, h pendant vertices and such that the
degree sequence of the non-pendant vertices satisfies d1 ≥ d2 ≥ . . . ≥ dn−h. Let ∆1 be the largest degree among vertices
in pendant edges and ∆2 the largest degree among vertices in non-pendant edges. Then

GA(G) ≥ 2√
∆1

hdn−h
1 + dn−h

+
2

∆2

(m− h)2

n− h− h
∆1

.

The equality is attained by the star graph, all (1,∆)-semiregular graphs and all regular graphs.

This gives the following:

Corollary 2.10. [5, Corollary 1] Let G be a graph with n vertices, m edges, h pendant vertices and such that the
degree sequence of the non-pendant vertices satisfies d1 ≥ d2 ≥ . . . ≥ dn−h. Let ∆1 be the largest degree among vertices
in pendant edges and ∆2 the largest degree among vertices in non-pendant edges. Then

GA(G) ≥ 2√
∆1

hdn−h
1 + dn−h

+
(m− h)dn−h

∆2
.

The equality is attained by the star graph, all (1,∆)-semiregular graphs and all regular graphs.

Remark 2.2. In [5] the authors prove that the bound in Corollary 2.10 is better than the bound in Proposition 2.8 if
and only if

dn−h >
2(m− h)

n− h− h
∆1

.

Also, it is shown that this condition can be satisfied.

Recall that if G is a graph with n vertices, a fully connected vertex is a vertex with degree n− 1.

Proposition 2.9. [5, Proposition 3] Let G be a graph with n vertices and h > 1 fully connected vertices. Denote by
∆3 the largest degree among the not-fully connected vertices and by m′ the cardinal of the set of edges joining not-fully
connected vertices. Then

GA(G) ≥ h(h− 1)

2
+

2(n− h)
√

(n− 1)h3

n− 1 + ∆3
+
hm′

∆3
.

The equality is attained by the complete graph Kn and all (n− 1, h)-semiregular graphs.

The authors make the observation that the bound in Proposition 2.9 performs better than the bound in Proposition
2.3 among graphs with h > 1 fully connected vertices.

The study of Gromov hyperbolic graphs is a subject of increasing interest, both in pure and applied mathematics
(see e.g. [47] and the references cited therein). We say that a graph is t-hyperbolic (t ≥ 0) if any side of every geodesic
triangle is contained in the t-neighborhood of the union of the other two sides. We define the hyperbolicity constant
δ(G) of a graph G as the infimum of the constants t ≥ 0 such that G is t-hyperbolic. For this purpose, every edge is
taken of length 1.

The following inequality relates the geometric-arithmetic index with the hyperbolicity constant δ(G).

Theorem 2.7. [63, Theorem 2.7] For any connected graph G that is not a tree

GA(G) ≥ 2(4δ(G)− 1)3/2

4δ(G)
.

The proof of Theorem 2.7 uses the first inequality in (2) and some estimates of the hyperbolicity constant.

For the next result, some notation will be needed. Recall that Cn is the cycle with n vertices. In will denote the
graph consisting of n individual vertices and no edges and E2n will represent the graph consisting of 2n vertices
and n edges in which no two edges are adjacent. The graph G

∨
H is obtained from the disjoint graphs G and H by

connecting each vertex of G with each vertex of H.

Theorem 2.8. [67, Theorem 1] Let G be a connected graph with n vertices and minimum degree 2. Then,

GA(G) ≥


n , if n ≤ 24,

24.79 , if n = 25,

g(n) , if n ≥ 26,

where
g(n) =

4(n− 2)
√

2(n− 2)

n
.

These values are attained on the Cn for n ≤ 24, I1
∨
E24 for n = 25 and I2

∨
In−2 (which is bipartite graph K2,n−2) for

n = 26.
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3. Lower bounds of GA(G) in terms of matrices

Given a graph G, let us define the GA-adjacency matrix A with entries

auv :=

{
2
√
dudv

du+dv
, if uv ∈ E(G),

0, otherwise.

Let us also define D as the diagonal matrix with entries duu :=
∑
v∼u

2
√
dudv

du+dv
, where v ∼ u means that v is a

neighbor of u, i.e., uv ∈ E(G). Finally, define the GA Laplace matrix L := D −A. Note that L is the classical Laplace
matrix for every regular graph.

Denote by A the classical adjacency matrix of a graph and by tr(A) the trace of the matrix A. Since the adjacency
matrix A, A and L are real symmetric matrices, their eigenvalues are real numbers. Denote by λ1 ≥ · · · ≥ λn,
µ1 ≥ · · · ≥ µn and η1 ≥ · · · ≥ ηn the ordered eigenvalues of A, A and L, respectively. It is well known (see, e.g., [8])
that

∑n
j=1 λ

k
j is equal to the number of closed walks of length k in the graph G.

It is also acknowledged that the second smallest (classical) Laplacian eigenvalue of a graph (its algebraic connec-
tivity) is the most important information about its spectrum. This eigenvalue is related to several important graph
invariants and provides good bounds on the values of several parameters of graphs which otherwise are hard to
compute.

The sum-connectivity matrix S = S(G) of the graph G is defined as the matrix with entries (see [78]):

Suv :=

{
1√

du+dv
, if uv ∈ E(G),

0, otherwise.

Theorem 3.1. [65, Theorem 2.10] For any graph G,

GA(G) ≥ 1

2
tr(A2) .

The equality is attained if and only if G is regular.

[65, Theorem 2.10] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 3.2. [64, Theorem 2.3] Let G be a graph with minimum degree δ. Then

GA(G) ≥ δ tr(S2),

and the equality holds if and only if G is regular.

[64, Theorem 2.3] was proved for connected graphs, but the argument also works if G is not connected.

The following result improves Theorem 3.1.

Theorem 3.3. [65, Theorem 2.13] Let G be a graph with m edges, minimum degree δ and maximum degree ∆. Then

GA(G) ≥

√
1

2
tr(A2) +

4∆δ

(∆ + δ)2
m(m− 1) .

If G is connected, then the equality is attained if and only if G is either regular or biregular.

[65, Theorem 2.13] was proved for connected graphs, but the argument also works if G is not connected.

Given a graph G, denote by N(u) the set of neighbors of the vertex u, and by δ0 and ∆0 the integer numbers

δ0 := min
uv∈E(G)

|N(u) ∩N(v)|, ∆0 := max
uv∈E(G)

|N(u) ∩N(v)|.

It is clear that 0 ≤ δ0 ≤ ∆0 ≤ ∆, where ∆ is the maximum degree of G.

Theorem 3.4. [65, Theorem 2.14] Let G be a graph with minimum degree δ, maximum degree ∆ and ∆0 > 0. Then

GA(G) ≥ δ2 tr(A3)

2 ∆2∆0
.

The equality is attained if and only if G is regular and δ0 = ∆0.

67



[65, Theorem 2.14] was proved for connected graphs, but the argument also works if G is not connected.

Denote by A the adjacency matrix of a graph. Recall that since the adjacency matrix A and A are real symmetric
matrices, their eigenvalues are real numbers. Let us keep the notation λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µn for the ordered
eigenvalues of A and A, respectively.

Theorem 3.5. [64, Theorem 3.4] For any connected graph G with n vertices, the following inequality holds

GA(G) ≥ µ2
1n

2(n− 1)
.

Furthermore, the equality is attained for every complete graph.

Theorem 3.6. [64, Theorem 3.12] For any connected graph G,

GA(G) ≥ 1

2

n∑
j=1

λjµn−j+1.

The next result provides lower bounds of GA involving ηn−1.

Theorem 3.7. [65, Theorem 3.12] For any connected graph G with n vertices the following statements hold.

• The geometric-arithmetic index of G satisfies the inequality GA(G) ≥ 1

2
(n− 1)ηn−1.

• If G is a bipartite graph with parts X,Y, then GA(G) ≥ |X||Y |
n

ηn−1.

The energy of the graph G is defined in [26] as E(G) =
∑n
j=1 |λj |.

The geometric-arithmetic energy (GA energy) of the graph G is defined in an analogue way as

GAE(G) =

n∑
j=1

|µj |.

Proposition 3.1. [65, Proposition 3.14] Let G be a connected graph with m edges, n vertices, minimum degree δ and
maximum degree ∆. Then the following inequalities hold

• GAE(G) ≤
√

2nGA(G) ,

• 1
2n GAE(G)2 + 4∆δ

(∆+δ)2 m(m− 1) ≤ GA(G)2 .

Next, some lower bounds of GA that involve some of the matrices introduced above as well as some Zagreb indices.

Theorem 3.8. [64, Theorem 2.5] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥
2δ
√

∆M2(G) tr(S2)

∆2 + δ2
.

The equality is attained if and only if G is regular.

[64, Theorem 2.5] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 3.9. [64, Theorem 3.14] Let G be a graph with m edges and minimum degree δ. Then

GA(G) ≥ δ2 tr(A3)

∆2
(
M1(G)− 2m

) .
The equality is attained if and only if G is regular.

[64, Theorem 3.14] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 3.10. [65, Theorem 2.15] Let G be a graph with m edges and maximum degree ∆. Then

GA(G) ≥ 1

2∆
tr(A4)− 1

2

(
M1(G)− 2m

)
.

If G is connected, then the equality is attained if and only if G is isomorphic to the complete bipartite graph K∆,∆.

[65, Theorem 2.15] was proved for connected graphs, but the argument also works if G is not connected.
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4. Lower bounds of GA(G) involving other topological indices

Next, some lower bounds of GA involving the first and second Zagreb indices, and their variable versions.

Theorem 4.1. [63, Theorem 3.7] Let G be a graph with m edges and minimum degree δ. Then

GA(G) ≥ 2δm2

M1(G)
.

The equality is attained if and only if G is regular.

[63, Theorem 3.7] was proved for connected graphs, but the argument also works if G is not connected.

Note that Theorem 4.1 is a consequence of Proposition 4.2.

Theorem 4.2. [66, Theorem 2] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥ 2δM1(G)

(∆ + δ)2
.

The equality is attained if and only if G is regular.

[66, Theorem 2] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.2 is improved by the following result.

Theorem 4.3. [25, Theorem 2.1] If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≥ 1

2∆
M1(G), if δ/∆ ≥ t0,

GA(G) ≥ 2
√

∆δ

(∆ + δ)2
M1(G), if δ/∆ < t0,

(12)

where t0 is the unique solution of the equation t3 + 5t2 + 11t− 1 = 0 in the interval (0, 1). The equality in the first bound
is attained if and only if G is regular; the equality in the second bound is attained if and only if G is a biregular graph.

Theorem 4.4. [62, Theorem 2.4] Let G be a graph with m edges and minimum degree δ. Then

GA(G) ≥ 2m− M1(G)

2δ
.

The equality is attained if and only if G is regular.

[62, Theorem 2.4] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.5. [55, Theorem 9] If G is a graph with m edges and minimum degree δ, then

GA(G) ≥ 2 δ1/2m2

M
3/2
1 (G)

,

and the equality is attained if and only if G is regular.

Theorem 4.6. [25, Theorem 2.7] If p ≥ 2 and G is a graph with m edges and minimum degree δ, then

GA(G) ≥ 2 δ1/2mpM
(2p−1)/(2p−2)
1 (G)1−p.

Corollary 4.1. [46, Corollary 5] We have for any graph G with minimum degree δ, maximum degree ∆ and m edges

GA(G) ≥ δ3m2

∆M2(G)
,

and the inequality is attained if and only if G is regular.

69



Theorem 4.7. [63, Theorem 3.10] Let G be a graph with m edges, minimum degree δ and maximum degree ∆. Then

GA(G) ≥ 2

∆ + δ

√
δmM2(G)

∆
.

The equality is attained if and only if G is a regular graph.

[63, Theorem 3.10] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.7 can be obtained by using (1).

Theorem 4.8. [46, Theorem 3] Let G be a graph with m edges and minimum degree δ. Then

GA(G) ≥ δ2m2

M2(G)
.

The equality is attained if and only if G is regular.

Note that Theorem 4.8 is a consequence of Corollary 4.3.

Theorem 4.9. [66, Theorem 1] Let G be a graph with m edges, minimum degree δ and maximum degree ∆. Then

GA(G) ≥
2
√

2
√

∆δ(∆ + δ)mM2(G)

∆(
√

∆ +
√
δ )2

.

The equality is attained if and only if G is a regular graph.

[66, Theorem 1] was proved for connected graphs, but the argument also works if G is not connected.

The previous result improves the bound given in Theorem 4.7, since, as the author shows in the same paper,

Remark 4.1. For any 0 < δ ≤ ∆ we have √
2
√

∆δ(∆ + δ)

∆(
√

∆ +
√
δ )2

≥ 1

∆ + δ

√
δ

∆
.

Theorem 4.10. [62, Theorem 2.3] Let G be a graph with m edges, minimum degree δ and maximum degree ∆. Then

GA(G) ≥
√

(∆ + δ)2M2(G) + 4∆3δ m(m− 1)

∆(∆ + δ)
.

The equality holds if and only if G is regular.

[62, Theorem 2.3] was proved for connected graphs, but the argument also works if G is not connected.

Proposition 4.1. [64, Proposition 3.11] Let G be a graph with m edges, n vertices and maximum degree ∆. Then

GA(G) ≥
√
n2M2(G) + 4∆2(n− 1)m(m− 1)

n∆
.

[64, Theorem 3.11] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.11. [63, Theorem 3.8] Let G be a graph with m edges, minimum degree δ and maximum degree ∆. Then

GA(G) ≥ 2δm

∆2 + δ2

√
2∆M2(G)

M1(G)
.

The equality is attained if and only if G is a regular graph.

[63, Theorem 3.8] was proved for connected graphs, but the argument also works if G is not connected.

Note that Theorem 4.11 is a consequence of Corollary 4.9.

In [43], the authors provide correct versions of two statements which had previously appeared in [42]. Both results
use the concept of bidegreed graph, i.e., a graph whose vertex degree is either ∆ or δ with ∆ > δ ≥ 1.
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Theorem 4.12. [43, Theorem 2.4] Let G be a connected graph of order n with m edges and let p,∆ and δ1 denote the
number of pendant vertices, maximum vertex degree and minimum nonpendant vertex degree of G, respectively. Then,

GA(G) ≥ 2p
√
δ1

∆ + 1
+

2δ1
(∆2 + δ2

1)

√
(m− p)(M2(G)− p∆) .

The equality holds if and only if G is regular or a bidegreed graph with one vertex set of degree one.

Corollary 4.2. [43, Corollary 2.5] Let T be a tree of order n and with the assumptions in Theorem 4.12. The following
inequality holds

GA(T ) ≥ 2p
√
δ1

∆ + 1
+

2δ1
(∆2 + δ2

1)

√
(n− 1− p)(M2(T )− p∆) .

The equality holds if and only if T is a bidegreed tree.

The following results give lower bounds for GA involving Zagreb indices M1(G), M2(G) and M−1
2 (G).

Theorem 4.13. [3, Theorem 2.12] If G is a graph, then

GA(G) ≥M−1
2 (G).

The equality is attained if and only if each connected component of G is isomorphic to P2.

Although the authors proved [3, Theorem 2.12] for connected graphs, it can be easily checked that the conclusion
is also true when that hypothesis is removed. In order to do it, it suffices to apply the theorem to each of the connected
components.

Corollary 4.3. [3, Corollary 2.13] If G is a graph with minimum degree δ, then

GA(G) ≥ δ2M−1
2 (G).

The equality is attained if and only if G is a regular graph.

Although the authors proved [3, Corollary 2.13] for connected graphs, it can be easily checked that the conclusion
is also true when that hypothesis is removed. In order to do it, it suffices to apply the corollary to each of the connected
components.

In [3, Corollary 2.13] appears the additional hypothesis δ ≥ 2, but Theorem 4.13 shows that the inequality also
holds if δ = 1. Note that Corollary 4.3 improves Theorem 4.13 when δ ≥ 2.

Theorem 4.14. [66, Theorem 4] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥
2δ2
√
M2(G)M−1

2 (G)

∆2 + δ2
.

The equality is attained if and only if G is a regular graph.

[66, Theorem 4] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.14 is improved by the following result.

Corollary 4.4. [62, Corollary 2.13] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥ 2δ

∆2 + δ2

√
δ∆M2(G)M−1

2 (G) .

The equality is attained if and only if G is a regular graph.

[62, Corollary 2.13] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.15. [66, Theorem 3] Let G be a graph with m edges and maximum degree ∆. Then

GA(G) ≥

√
m3

∆2M−1
2 (G)

.

The equality is attained if and only if G is regular.
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[66, Theorem 3] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.16. [62, Theorem 2.10] Let G be a graph with m edges, minimum degree δ and maximum degree ∆. Then

GA(G) ≥ 2∆δ2

∆2 + δ2

√
mM−1

2 (G) .

The equality is attained if and only if G is a regular graph.

[62, Theorem 2.10] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.17. [62, Theorem 2.11] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥
4∆2δ2

√
2δM1(G)M−1

2 (G)

(∆2 + δ2)(δ + ∆)2
.

The equality is attained if and only if G is a regular graph.

[62, Theorem 2.11] was proved for connected graphs, but the argument also works if G is not connected.

Next, some lower bounds of GA involving other variable Zagreb indices.

Theorem 4.18. [46, Theorem 1] LetG be a graph withm edges, minimum degree δ, maximum degree ∆ and let α ∈ R.
Then

GA(G) ≥ cαm
2

Mα
2 (G)

,

with
cα :=

{
δ2α+1∆−1, if α ≥ −1/2,
∆2α, if α ≤ −1/2.

The equality is attained for some fixed α if and only if G is regular.

Theorem 4.19. [62, Theorem 2.6] Let G be a graph with minimum degree δ, maximum degree ∆ and α ∈ R \ {0}.
Then the following statements hold.

(a) If α ≤ −1/2, then GA(G) ≥ δ−2αMα
2 (G).

(b) If α ≥ −1/2, then GA(G) ≥ δ∆−2α−1Mα
2 (G).

Both equalities are attained if and only if G is a regular graph.

[62, Theorem 2.6] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.20. [62, Theorem 2.8] Let G be a graph with minimum degree δ, maximum degree ∆ and α ∈ R \ {0}.
Then the following statements hold.

(a) If α ≤ 1/2, then GA(G) ≥ δ−2α+1∆−1Mα
2 (G).

(b) If α ≥ 1/2, then GA(G) ≥ ∆−2αMα
2 (G).

Both equalities are attained if and only if G is a regular graph.

[62, Theorem 2.8] was proved for connected graphs, but the argument also works if G is not connected.

The following result improves Theorems 4.13, 4.19 and 4.20, and generalizes Corollary 4.3.

Theorem 4.21. [25, Theorem 2.9] Let G be a graph with maximum degree ∆ and minimum degree δ, and α ∈ R.
Then

GA(G) ≥ δ−2αMα
2 (G), if α ≤ −1/2,

GA(G) ≥ min
{
δ−2α,

2

(∆δ)α−1/2(∆ + δ)

}
Mα

2 (G), if − 1/2 < α ≤ 0,

GA(G) ≥ min
{

∆−2α,
2

(∆δ)α−1/2(∆ + δ)

}
Mα

2 (G), if 0 < α < 1/2,

GA(G) ≥ ∆−2αMα
2 (G), if α ≥ 1/2.

Every equality is attained for every regular graph G. Furthermore, the equalities in the first and fourth cases are
attained if and only if G is regular.
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Corollary 4.4 is generalized by the following result.

Theorem 4.22. [62, Theorem 2.12] Let G be a graph with minimum degree δ and maximum degree ∆, and let α > 0.
Then

GA(G) ≥ kα
√
Mα

2 (G)M−α2 (G) ,

with

kα :=


2∆1/2δ3/2

∆2+δ2 , if 0 < α ≤ 1,

2∆α−1/2δα+1/2

∆2α+δ2α , if α ≥ 1.

The equality is attained if and only if G is a regular graph.

[62, Theorem 2.12] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.23. [25, Theorem 2.4] If G is a graph with m edges and minimum degree δ, then

GA(G) ≥ m− M1(G)− 2M
1/2
2 (G)

2δ
,

and the equality is attained if and only if G is regular.

Multiplicative versions of Zagreb indices were introduced in [69] and defined as

Π1(G) =
∏

u∈V (G)

d2
u and Π2(G) =

∏
uv∈E(G)

dudv.

One year later, the multiplicative sum Zagreb index, Π∗1, was introduced in [15] and defined as

Π∗1(G) =
∏

uv∈E(G)

(du + dv).

Corollary 4.5. [49, Corollary 1] Let G be a connected graph with m edges. Then

GA(G) ≥

√
1

2
tr(A2) +m(m− 1)

4(Π2)1/m

(Π∗1)2/m
.

Next, some lower bounds of GA involving the Randić index.

Theorem 4.24. [63, Theorem 3.4] Let G be a graph with m edges and maximum degree ∆. Then

GA(G) ≥ m2

∆R(G)
,

and the equality holds if and only if G is regular.

[63, Theorem 3.4] was proved for connected graphs, but the argument also works if G is not connected.

Corollary 4.6. [3, Corollary 2.5] If G is a connected graph with n ≥ 3 vertices, then

GA(G) ≥
√

4/3R(G).

The equality is attained if and only if G ∼= P3.

The following result improves Corollary 4.6 when δ ≥ 2.

Theorem 4.25. [66, Theorem 6] Let G be a graph with minimum degree δ. Then

GA(G) ≥ δR(G),

and the equality holds if and only if G is regular.
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Although the authors proved [66, Theorem 6] for connected graphs, it can be easily checked that the conclusion is
also true when that hypothesis is removed. In order to do it, it suffices to apply the theorem to each of the connected
components.

Theorem 4.26. [62, Theorem 2.4] Let G be a graph with m edges and maximum degree ∆. Then

GA(G) ≥ 2m−∆R(G),

and the equality holds if and only if G is regular.

[62, Theorem 2.4] was proved for connected graphs, but the argument also works if G is not connected.

In 1987 [18], Fajtlowicz introduced the harmonic index H(G) of a graph G, defined as

H(G) =
∑

uv∈E(G)

2

du + dv
.

Although this quantity was first mentioned in a mathematical paper in 1987, it did not attract the attention of scholars
until quite recently. In the last few years, a remarkably large number of studies of the properties of the harmonic
index have appeared (see, e.g., [12,41,76,77,80]). The chemical applicability of the harmonic index was also recently
investigated [23,33]. The harmonic index has reasonably good correlation abilities; in fact, it gives similar correlations
with physical and chemical properties compared with the well-known Randić index.

Proposition 4.2. [63, Proposition 3.9], [3, Corollary 2.7] For any graph G with minimum degree δ

GA(G) ≥ δH(G),

and the equality is attained if and only if G is regular.

Although the authors proved this proposition for connected graphs, it can be easily checked that the conclusion is
also true when that hypothesis is removed. In order to do it, it suffices to apply the proposition to each of the connected
components.

Note that Proposition 4.2 can be deduced from Theorem 3.2, since tr(S2) = H(G).

Theorem 4.27. [25, Theorem 2.3] If G is a graph with m edges, maximum degree ∆ and minimum degree δ, then

GA(G) ≥ m2

∆H(G)
, if δ/∆ ≥ t0,

GA(G) ≥ 4
√

∆δ m2

(∆ + δ)2H(G)
, if δ/∆ < t0,

(13)

where t0 is the unique solution of the equation t3 + 5t2 + 11t− 1 = 0 in the interval (0, 1). The equality in the first bound
is attained if and only if G is regular; the equality in the second bound is attained if and only if G is a biregular graph.

In what follows, and for the sake of simplicity in the notation, we will follow the usual convention and denote by
χ(G) the sum-connectivity index, i.e., χ−1/2

(G).

Theorem 4.28. [63, Theorem 3.11] Let G be a graph with m edges and minimum degree δ. Then

GA(G) ≥ 2δ χ(G)2

m

and the equality holds if and only if G is regular.

[63, Theorem 3.11] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.29. [3, Theorem 2.1] If G is a graph, then

GA(G) ≥
√

2 χ(G).

The bound is attained if and only if each connected component of G is isomorphic to P2.
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Although the authors proved [3, Theorem 2.1] for connected graphs, it can be easily checked that the conclusion is
also true when that hypothesis is removed. In order to do it, it suffices to apply the theorem to each of the connected
components.

If the minimum degree of G is at least 2, then the bound in Theorem 4.29 can be improved:

Corollary 4.7. [3, Corollary 2.2] If G is a graph with minimum degree δ, then

GA(G) ≥
√

2δ χ(G)

with equality if and only if G is a δ-regular graph.

Although the authors proved [3, Corollary 2.2] for connected graphs, it can be easily checked that the conclusion is
also true when that hypothesis is removed. In order to do it, it suffices to apply the corollary to each of the connected
components.

In [3, Corollary 2.2] appears the additional hypothesis δ ≥ 2, but Theorem 4.29 shows that the inequality also
holds if δ = 1.

Theorem 4.30. [25, Theorem 2.6] If α > 0 and G is a graph with m edges and minimum degree δ, then

GA(G) ≥ 2δm(α+1)/αχ
α

(G)−1/α,

and the equality is attained if and only if G is regular.

The atom-bond connectivity index of a graph G, abbreviated as ABC(G), was introduced in [17] and defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

The ABC index provides a good model for the stability of linear and branched alkanes as well as the strain energy
of cycloalkanes (see [16,17]).

Recall that a chemical graph is a connected graph with maximum degree at most four and that the line graph
L(G) of G is a graph whose vertices are the edges of G, and such that two vertices are incident if and only if they have
a common end vertex in G.

Theorem 4.31. [61, Theorem 2] Let G be a graph which is the line of a chemical graph with at least 3 vertices. Then

GA(G) > ABC(G).

Theorem 4.32. [61, Theorem 3] Let G be a graph with maximum degree ∆ and minimum degree δ ≥ 2. If ∆ − δ ≤
(2δ − 1)2, then

GA(G) > ABC(G).

Although the authors proved [61, Theorem 3] for connected graphs, it can be easily checked that the conclusion is
also true when that hypothesis is removed. In order to do it, it suffices to apply the theorem to each of the connected
components.

Theorem 4.33. [61, Theorem 4] Let G be a graph with minimum degree δ ≥ 2 and |du − dv| ≤ (2δ − 1)2 for all edges
uv ∈ E(G). Then

GA(G) > ABC(G).

Although the authors proved [61, Theorem 4] for connected graphs, it can be easily checked that the conclusion is
also true when that hypothesis is removed. In order to do it, it suffices to apply the theorem to each of the connected
components.

Theorem 4.34. [61, Theorem 5] Let G be a graph with minimum degree δ ≥ 2 and |du − dv| ≤ (2k − 1)2 for all edges
uv ∈ E(G) where k = min{du, dv}. Then

GA(G) > ABC(G).
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Although the authors proved [61, Theorem 5] for connected graphs, it can be easily checked that the conclusion is
also true when that hypothesis is removed. In order to do it, it suffices to apply the theorem to each of the connected
components.

Theorem 4.35. [3, Theorem 2.8] If G is a connected graph having n ≥ 3 vertices with minimum degree δ ≥ 2, then

GA(G) ≥ 4
√
n− 1

n+ 1
ABC(G).

The bound is attained if and only if G ∼= C3.

In the same paper, where Zagreb indices were introduced, the forgotten topological index (or F-index) is defined as

F (G) =
∑

u∈V (G)

d3
u =

∑
uv∈E(G)

(d2
u + d2

v).

Both the forgotten topological index and the first Zagreb index were employed in the formulas for total π-electron
energy in [34], as a measure of branching extent of the carbon-atom skeleton of the underlying molecule. However,
this index never got attention except recently, when Furtula and Gutman in [22] established some basic properties of
the F-index and showed that its predictive ability is almost similar to that of first Zagreb index and for the entropy and
acetic factor, both of them yield correlation coefficients greater than 0.95. Besides, [22] pointed out the importance
of the F-index: it can be used to obtain a high accuracy of the prediction of logarithm of the octanol-water partition
coefficient (see also [1]).

Theorem 4.36. [46, Theorem 5] Let G be a graph with minimum degree δ and m edges. Then

GA(G) ≥ 2m− F (G)

2δ2

and the equality is attained if and only if G is regular.

Note that Theorem 4.36 is a consequence of Theorem 4.4.

The modified Narumi-Katayama index

NK∗(G) =
∏

u∈V (G)

dduu =
∏

uv∈E(G)

dudv

was introduced in [24], inspired in the Narumi-Katayama index defined in [51]. Note that NK∗(G) = Π2(G).

Theorem 4.37. [63, Theorem 3.13] Let G be a graph with m edges and maximum degree ∆. Then

GA(G) ≥ m

∆
NK∗(G)1/(2m),

and the equality is attained if and only if G is regular.

[63, Theorem 3.13] was proved for connected graphs, but the argument also works if G is not connected.

Corollary 4.8. [62, Corollary 2.15] Let G be a graph with m edges, minimum degree δ and maximum degree ∆ and
let α ∈ R \ {0}

GA(G) ≥ δ−2αmNK∗(G)α/m, if α ≤ −1/2,

GA(G) ≥ δ∆−2α−1mNK∗(G)α/m, if α ≥ −1/2,

and the equalities are attained if and only if G is regular.

[62, Corollary 2.15] was proved for connected graphs, but the argument also works if G is not connected.

In [62, Theorem 2.14] appears the inequalityMα
2 (G) ≥ mNK∗(G)α/m, with equality for every regular graph; it was

proved just for connected graphs, but the argument also works if G is not connected. Using this result and Theorem
4.21, we can obtain the following new inequalities that improve Corollary 4.8 and generalize Theorem 4.37.
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Proposition 4.3. Let G be a graph with maximum degree ∆ and minimum degree δ, and α ∈ R. Then

GA(G) ≥ δ−2αmNK∗(G)α/m, if α ≤ −1/2,

GA(G) ≥ min
{
δ−2α,

2

(∆δ)α−1/2(∆ + δ)

}
mNK∗(G)α/m, if − 1/2 < α ≤ 0,

GA(G) ≥ min
{

∆−2α,
2

(∆δ)α−1/2(∆ + δ)

}
mNK∗(G)α/m, if 0 < α < 1/2,

GA(G) ≥ ∆−2αmNK∗(G)α/m, if α ≥ 1/2.

Every equality is attained for every regular graph G. Furthermore, the equalities in the first and fourth cases are
attained if and only if G is regular.

A family of degree-based structure-descriptors, named Adriatic indices, was put forward in [72, 74]. Twenty of
them were selected as significant predictors. Among them, the inverse sum indeg index, ISI, was singled out in [72]
as a significant indicator of total surface area of octane isomers. This index is defined as

ISI(G) =
∑

uv∈E(G)

du dv
du + dv

=
∑

uv∈E(G)

1
1
du

+ 1
dv

.

Theorem 4.38. [31, Theorem 1] Let G be a graph with maximum degree ∆. Then

GA(G) ≥ 2

∆
ISI(G) ,

and the equality is attained if and only if G is regular.

The Albertson index is defined in [2] as

Alb(G) =
∑

uv∈E(G)

|du − dv| .

This index is also known as third Zagreb index (see [19]) and misbalance deg index (see [72, 74]). It is a significant
predictor of standard enthalpy of vaporization for octane isomers (see [74]) and it is widely used as a measure of
non-regularity of a graph.

Theorem 4.39. [25, Theorem 2.10] If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≥ 2
√

∆δ

∆2 − δ2
Alb(G) ,

and the equality is attained if and only if G is a regular or biregular graph.

The global cyclicity index was introduced in [36] and defined as

C(G) =
∑

uv∈E(G)

1

Ruv
−m,

wherem is the number of edges of G and Ruv denotes the effective resistance between the vertices u and v, that is, the
voltage drop between vertices u and v when a battery is installed between those two vertices such that a unit current
flows between them.

Proposition 4.4. [54, Proposition 2] Let G be a graph with m edges, minimum degree δ and maximum degree ∆.
Then

GA(G) ≥ 2δ

∆(δ + 1)
(C(G) +m).

Next, some lower bounds of GA that involve more than one topological index.

Corollary 4.9. [64, Corollary 2.6] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥
2δ
√

∆M2(G)H(G)

∆2 + δ2
.

The equality is attained if and only if G is regular.
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[64, Corollary 2.6] was proved for connected graphs, but the argument also works if G is not connected.

Corollary 4.9 can be deduced from Theorem 3.8, since tr(S2) = H(G).

Theorem 4.40. [46, Theorem 2] Let G be a graph with minimum degree δ and maximum degree ∆. Then

GA(G) ≥
4 ∆δ

√
M2(G)χ−2

(G)

∆2 + δ2
.

The equality is attained if and only if G is regular.

Theorem 4.41. [46, Theorem 4] For any graph G

GA(G) ≥ H(G)2

M−1
2 (G)

,

and the equality is attained if and only if G is regular.

Theorem 4.42. [63, Theorem 3.12] For any graph G,

GA(G) ≥ 2 χ(G)2

R(G)
.

If G is connected, then the equality is attained if and only if G is regular or biregular.

[63, Theorem 3.12] was proved for connected graphs, but the argument also works if G is not connected.

Theorem 4.43. [25, Theorem 2.13] If G is a graph with maximum degree ∆ and minimum degree δ, then

GA(G) ≥
4∆2δ2

√(
F (G) + 2M2(G)

)
M−1

2 (G)

(∆ + δ)2(∆2 + δ2)
,

and the equality is attained if and only if G is regular.

In [21], the symmetric division deg index is defined as

SDD(G) =
∑

uv∈E(G)

(
du
dv

+
dv
du

)

It turns out to be useful predicting some physico-chemical properties of molecules (in particular, for PCB’s); besides,
the authors think that this definition fills the gap among vertex-degree-based indices corresponding to the fourth basic
arithmetic operation: division. They think that this fact could stimulate the mathematically oriented researchers to
pay some attention to this graph invariant.

Theorem 4.44. [21, Theorem 7] Let G be a graph of order n with m edges. Then,

GA(G) ≥ 2m2

SDD(G)

with equality holding if and only if each connected component of G is a regular graph.

Next, some lower bounds of GA in the form of chains of inequalities among different indices of a graph.

Corollary 4.10. [3, Corollary 2.9] If G is a connected graph with n vertices and minimum degree δ ≥ 2, then

H(G) ≤ R(G) ≤ χ(G) < ABC(G) ≤ n+ 1

4
√
n− 1

GA(G),

with the first equality if and only if G is a regular graph, the second equality if and only if G is a cycle and last equality
if and only if G ∼= C3.

Denote by T ∗ the tree with eight vertices, obtained by joining the central vertices of two copies of the star graph
K1,3 by an edge.

78



Corollary 4.11. [3, Corollary 2.10] If G is a connected graph with minimum degree δ and maximum degree ∆ satis-
fying at least one of the following properties:

i) G is a chemical graph such that G � K1,4, T
∗,

ii) ∆− δ ≤ 3 and G � K1,4, T
∗,

iii) δ ≥ 2 and ∆− δ ≤ (2δ − 1)2, then

H(G) ≤ R(G) ≤ χ(G) < ABC(G) < GA(G).

5. Lower bounds of GA(G) in terms of subgraphs of G

We say that a family of subgraphs {G1, . . . , Gr} of G is a decomposition of G if G1 ∪ · · · ∪Gr = G and Gi ∩Gj is either
empty or a vertex for every i, j ∈ {1, . . . , r} , i 6= j. The subgraphs G1, . . . , Gr are usually called primary subgraphs of
the decomposition.

If v ∈ V (G), then denote by NG(v) or N(v) the set of neighbors of v, i.e.,

NG(v) = N(v) =
{
u ∈ V (G) | uv ∈ E(G)

}
.

Given a decomposition {G1, . . . , Gr} of G, denote byW the set of vertices v in G belonging at least to two different
Gi’s. Given a vertex v ∈ W, denote by Gi1 , . . . , Gik the set of primary subgraphs containing v and by dij the number
of neighbors of v in Gij (then dv = di1 + · · ·+ dik ). If v ∈ W, then define W (v) as

W (v) =
∑

u∈NG(v)\W

√
dudv

1
2 (du + dv)

−
k∑
j=1

∑
u∈NGij (v)\W

√
dudij

1
2 (du + dij )

.

Denote by Z the set of edges in G with both endpoints inW. If e = uv ∈ Z, then e ∈ Gi for some i, and we denote
by d∗u, d∗v the degrees of u, v in Gi. If e = uv ∈ Z, then define Z(e) as

Z(e) =

√
dudv

1
2 (du + dv)

−
√
d∗ud
∗
v

1
2 (d∗u + d∗v)

.

Proposition 5.1. [35, Proposition 2.6] Let {G1, . . . , Gr} be a decomposition of the connected graph G. If dv ≤ du for
every v ∈ W and u ∈ NG(v) \W, then

GA(G) ≥
r∑
i=1

GA(Gi)− cardZ.

Furthermore, if every edge in Z is maximal, then

GA(G) ≥
r∑
i=1

GA(Gi).

Corollary 5.1. [35, Corollary 2.7] Let {G1, . . . , Gr} be a decomposition of the connected graph G, whose minimum
degree is δ. If dv = δ for every v ∈ W, then

GA(G) ≥
r∑
i=1

GA(Gi)− cardZ.

Furthermore, if every edge in Z is maximal, then

GA(G) ≥
r∑
i=1

GA(Gi).

In [7] the authors find lower bounds for the geometric-arithmetic index in terms of this same graph invariant of
the subgraph obtained when one edge (with certain properties) is removed.

Theorem 5.1. [7, Theorem 3.4] For an edge e = vivj of a graph, let dr = max{dk | vivk ∈ E(G)} and ds = max{dl | vjvl ∈
E(G)}. If one of the following conditions is satisfied,

(i) max{di/dr, dj/ds} ≤ 1 or
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(ii) max{di/dj , dj/di} ≤ min{di/dr, dj/ds},

then GA(G) > GA(G− e).

Let e = uv be an edge of a graphG. We define the weight of e = uv as w(e) = 2
√
dudv

du+dv
, and we say that e is an edge of

maximum weight if w(e) ≥ w(f) for any f ∈ E(G). DefineN(e) = {f ∈ E(G) | f is adjacent to e} andN [e] = N(e)∪{e}.

Corollary 5.2. [7, Corollary 3.5] For an edge e of G with maximum weight in N [e],

GA(G) > GA(G− e).

Corollary 5.3. [7, Corollary 3.6] For an edge e of G with maximum weight in G,

GA(G) > GA(G− e).

6. Lower bounds of GA(G) for line graphs

Recall that the line graph L(G) of G is a graph whose vertices are the edges of G and such that two vertices are
incident if and only if they have a common end vertex in G.

Along this section, by a non-trivial graph we mean a graph such that each connected connected component has at
least two edges.

The proof of the following result uses (1).

Proposition 6.1. [55, Proposition 6] If G is a non-trivial graph with m edges, maximum degree ∆ and minimum
degree δ, then

GA(L(G)) ≥
(M1(G)− 2m)

√
(∆− 1)(δ − 1)

∆ + δ − 2
.

The equality is attained if and only if G is regular.

In 1956, Nordhaus and Gaddum [53] gave bounds involving the sum of the chromatic number of a graph and its
complement. Motivated by these results, Das obtains in [9] analogous conclusions for the geometric-arithmetic index
of a graph and its complement. The next theorem is also a Nordhaus-Gaddum-type result for the geometric-arithmetic
index of a graph and its line graph.

Corollary 6.1. [55, Corollary 2] If G is a non-trivial graph with maximum degree ∆ and minimum degree δ, then

GA(G) +GA(L(G)) ≥
M1(G)

√
(∆− 1)(δ − 1)

∆ + δ − 2
,

and the equality is attained if and only if G is regular.

Theorem 6.1. [55, Theorem 3] If G is a non-trivial graph with maximum degree ∆ and minimum degree δ, then

GA(L(G)) ≥ min
{ 3

4
√

2
,

2
√

(2∆− 2) max{2δ − 2, 1}
2∆− 2 + max{2δ − 2, 1}

}
GA(G).

The equality is attained for the path graph P3.

Next, the bound in Theorem 6.1 is improved for a special class of graphs.

Theorem 6.2. [55, Theorem 4] Let G be a non-trivial graph such that each connected component of G is regular or
biregular and it is not isomorphic to P3. Then GA(L(G)) ≥ GA(G), and the equality is attained for every union of cycle
graphs.

The following result is a consequence of the first inequality in (2).

Corollary 6.2. [55, Corollary 4] If G is a non-trivial connected graph with m edges, then

GA(L(G)) ≥ 2(m− 1)3/2

m
.

Theorem 6.3. [55, Theorem 6] Let G be a non-trivial graph with m edges such that each connected component of G
is not isomorphic to a path graph Pn with n ≤ 6. Then

GA(L(G)) ≥ 2
√
m− 1 .
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[6] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
[7] Y. Chen, B. Wu, On the geometric-arithmetic index of a graph, Discrete Appl. Math. 254 (2019) 268–273.
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Art# 180.
[43] T. Mansour, M. A. Rostami, S. Elumalai, B. A. Xavier, Correcting a paper on the Randić and geometric-arithmetic indices, Turk. J. Math. 41
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[74] D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010) 243–260.
[75] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17–20.
[76] R. Wu, Z. Tang, H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27 (2013) 51–55.
[77] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25(3) (2012) 561–566.
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