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Abstract
Let D be the distance matrix of a connected graph G. The D−eigenvalues µ1, µ2, . . . , . . . , µp of G are the eigenvalues
of D and form the distance spectrum or D−spectrum of G. The subdivision graph S(G) of a graph G is obtained
from G by inserting a new vertex of degree 2 in every edge of G; we denote the set of such new vertices by I(G). The
subdivision-vertex join of two vertex disjoint graphs G1 and G2, denoted by G1∨̇G2, is the graph obtained from S(G1)
and G2 by joining each vertex of V (G1) with every vertex of V (G2). The subdivision-edge join of two vertex disjoint
graphs G1 and G2, denoted by G1∨G2, is the graph obtained from S(G1) and G2 by joining each vertex of I(G1) with
every vertex of V (G2). In this paper, we find the distance spectrum ofG1∨̇G2 andG1∨G2, whenG1 andG2 are regular
graphs. Thus, we add a new class of graphs to the classes of those graphs whose distance spectrum is known.

Keywords: distance matrix; distance spectrum; subdivision-vertex join; subdivision-edge join.

2010 Mathematics Subject Classification: 05C12, 05C50.

1. Introduction

Spectral theory of graphs is an emerging area of algebraic graph theory which covers the spectra of the matrices
associated with graphs. From the fundamental work of Hückel [7] on the eigenvalues of molecular graphs, the study
of several graph polynomials and the associated spectra have been the topic of various papers in the last few years.
The characteristic polynomial of the adjacency matrix and its spectrum have been calculated for a variety of graphs.
On the other hand, the characteristic polynomial of the distance matrix was not studied in depth; even though the
distance matrix reflects the structure of a graph more clearly than the adjacency matrix. A significant result involving
the distance spectrum was appeared in a seminal work of Graham and Pollack [5] in 1971, which is related to the
number of negative eigenvalues of the distance matrix.

Since all the off-diagonal entries of the distance matrix of a connected graph are nonzero, the study of the char-
acteristic polynomial (and consequently the study of the spectrum) seems to be computationally more difficult than
that of the adjacency matrix and, in general, there are no simple analytical or compact solutions except those for a
few trees [4]. This may be a reason which accounts for the detailed study of this spectrum only for trees.

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn} . The distance matrix D = D(G) of G is the
matrix whose (i, j)-entry is equal to the distance dG(vi, vj) , that is, the length of the shortest path [2] between the
vertices vi and vj of G . The eigenvalues ofD(G) are said to be theD-eigenvalues of G and form the distance spectrum
(D-spectrum for short) of G , denoted by specD(G) .

The distance spectrum of cycles were discussed in [6] and that of complete and complete bipartite graphs can be
seen in [17]. The distance spectrum of an n−vertex path Pn and the first eigenvector of the distance matrix were
obtained in [19]. In [21], the authors determined the distance spectrum of the graphs obtained from regular graphs
by applying some join related operations and this result was generalized Stevanović [20]. The D− spectrum of the
cartesian product of two distance regular graphs and also the D− spectrum of the lexicographic product of a graph
with a regular graph were presented in [10]. Construction of a graph, considered in [22], was generalized in [11] and
its distance spectrum were studied there. Further detail about theD− spectrum of graphs can be found in [1,8,12–16].

The subdivision graph S(G) of a graph G is obtained from G by inserting a new vertex of degree 2 in every edge of
G; we denote the set of such new vertices by I(G). In [9], the following graph operations, based on subdivision graph
were introduced.
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Definition 1.1. The subdivision-vertex join of two vertex disjoint graphs G1 and G2, denoted by G1∨̇G2, is the graph
obtained from S(G1) and G2 by joining each vertex of V (G1) with every vertex of V (G2).

Definition 1.2. The subdivision-edge join of two vertex disjoint graphs G1 and G2, denoted by G1∨G2, is the graph
obtained from S(G1) and G2 by joining each vertex of I(G1) with every vertex of V (G2).

The adjacency spectrum of the graphs G1∨̇G2 and G1∨G2 were obtained in [9,18], whereas the distance spectrum
of these two graphs have not yet been studied. In this paper, we obtain the distance spectrum of the graphs G1∨̇G2

and G1∨G2 when G1 and G2 are regular graphs.
All the graphs considered in this paper are simple. We follow [3] for the spectral graph theoretic terminology.
The discussions in the subsequent sections are based upon the following lemmas:

Lemma 1.1. [3] Let G be an r−regular graph with an adjacency matrix A and an incidence matrix R. Let L(G) be
the line graph of G. Then RRT = A+ rI ,RTR = A(L(G))+2I. Also, if J is an all-one matrix of appropriate order then
JR = 2J = RTJ and JRT = rJ = RJ

Lemma 1.2. [3] Let G be an r−regular (p, q) graph with spec(G) = {r, λ2, . . . , λp}. Then

spec(L(G)) =

(
2r − 2 λ2 + r − 2 ... λp + r − 2 −2

1 1 ... 1 q − p

)
.

Also, Z is an eigenvector corresponding to the eigenvalue −2 if and only if RZ = 0 where R is the incidence matrix of G.

2. The distance spectrum of G1∨̇G2

In this section, we obtain the distance spectrum of G1∨̇G2 when G1 and G2 are two regular graphs.

Theorem 2.1. Let Gi be an ri regular graph on pi vertices and qi edges with the adjacency matrix Ai and adja-
cency spectrum {ri, λi2, λi3, ..., λipi} , i = 1, 2. Then, the distance spectrum of G1∨̇G2 consists of the following numbers:
−2 (λ1j + r1 + 1) , j = 2, 3, ...., p1; 0 of multiplicity q1 − 1;− (λ2j + 2) , j = 2, 3, ...., p2 , along with the three roots of the
equation

x3 − (2p1 + 2p2 + 4q1 − 4r1 − r2 − 4)x2 + (4p1 + 4p2 − 3p1p2 + 4q1 + p1q1 − 4p2q1 − 8r1 + 2p1r1 + 8p2r1 − 2r2

+2p1r2 + 4q1r2 − 4r1r2 − 4)x+ 2p1r1r2 + p1q1r2 − 4q1r2 − 4p1p2r1 + 4p1r1 − 2p1p2q1 + 8p2q1 + 2p1q1 − 8q1 = 0 .

Proof. Given that G1 and G2 are regular graphs with regularity r1 and r2 respectively. Let R be the incidence matrix
ofG1 and B be the adjacency matrix of L(G1). Then, by a proper ordering of the vertices ofG1∨̇G2, its distance matrix
D can be written as

D =

 2(J − I) 3J − 2R J
3J − 2RT 4(J − I)− 2B 2J

J 2J 2(J − I)−A2


where J and I denote the all-one matrix and identity matrix, respectively, of appropriate orders. Thus, D is a square
matrix of order p1 + q1 + p2.

Let λ 6= r1 be an eigenvalue ofA1 with an eigenvectorX. Then, by the theorem of Perron-Frobenius,X is orthogonal
to the all-one matrix J and A1X = λX. Now, by Lemma 1.1, we have

RRT = A1 + r1I

RRTX = (A1 + r1I)X

= (λ+ r1)X

B = RTR− 2I

BRTX =
(
RTR− 2I

)
RTX

= RT (A1 + r1I)X − 2RTX

= (λ+ r1 − 2)RTX .

Therefore, RTX is an eigenvector of B with an eigenvalue λ+ r1 − 2, which is different from its regularity as λ 6= r1.
Then, again by the theorem of Perron-Frobenius, RTX is orthogonal to the all-one vector. Now,

ϕ =

 X
RTX
0


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is an eigenvector of D with an eigenvalue −2(λ+ r1 + 1). This is because

Dϕ =

 2(J − I) 3J − 2R J
3J − 2RT 4(J − I)− 2B 2J

J 2J 2(J − I)−A2

 X
RTX
0


=

 −2X − 2(λ+ r1)X
−2RTX − 4RTX − 2(λ+ r1 − 2)RTX

0


=

 −2 (λ+ r1 + 1)X
−2 (λ+ r1 + 1)RTX

0


= −2 (λ+ r1 + 1)ϕ .

Now, let Y be an eigenvector of A(L(G1)) corresponding to the eigenvalue λ + r1 − 2, different from the regularity of
L(G1). Then, Y is orthogonal to J . Now, using Lemma 1.1, we can show that

φ =

 RY
−Y
0


is an eigenvector of D with an eigenvalue 0. This is because

Dφ =

 2(J − I) 3J − 2R J
3J − 2RT 4(J − I)−A (L (G1)) 2J

J 2J 2(J − I)−A(G2)

 RY
−Y
0


=

 −2RY + 2RY
−2RTRY + 4Y + 2(RTR− 2I)Y

0

 =

 0
0
0


= 0φ

Now, −2 is an eigenvalue of A(L(G1)) with multiplicity q1 − p1 times. Let Z be an eigenvector of A(L(G1))with eigen-
value −2. Then, by Lemma 1.2, RZ = 0. Now,

χ =

 0
Z
0


is an eigenvector of D with an eigenvalue 0. This is because

Dχ =

 2(J − I) 3J − 2R J
3J − 2RT 4(J − I)−A (L (G1)) 2J

J 2J 2(J − I)−A(G2)

 0
Z
0


=

 0
0
0


= 0χ

Now, let µ 6= r2 be an eigenvalue of G2 with an eigenvector W . Then,

η =

 0
0
W


is an eigenvector of D with an eigenvalue −(µ+ 2). This is because

Dη =

 2(J − I) 3J − 2R J
3J − 2RT 4(J − I)−A (L (G1)) 2J

J 2J 2(J − I)−A(G2)

 0
0
W


=

 0
0

(−2− µ)W

 = − (µ+ 2)) η

Thus, we have obtained p1−1+p1−1+ q1−p1+p2−1, that is, p1+ q1+p2−3 eigenvalues and now we will determine
the remaining three eigenvalues. We note that all the eigenvectors constructed so far, are orthogonal to J

0
0

 ,
 0
J
0

 and

 0
0
J

 .
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Also, sinceD is symmetric, Rp1+p2+q1 has an orthogonal basis consisting of eigenvectors ofD and hence the remaining
three eigenvectors are spanned by these three vectors and is of the form

ρ =

 αJ
βJ
γJ


for some (α, β, γ) 6= (0, 0, 0). Thus, if σ is an eigenvalue of D with an eigenvector ρ then from Dρ = σρ, we can see that
the remaining three are the eigenvalues of the matrix 2(p1 − 1) 3q1 − 2r1 p2

3p1 − 4 4 (q1 − r1) 2p2
p1 2q1 2p2 − 2− r2


whose characteristic equation is

x3 − (2p1 + 2p2 + 4q1 − 4r1 − r2 − 4)x2 + (4p1 + 4p2 − 3p1p2 + 4q1 + p1q1 − 4p2q1 − 8r1 + 2p1r1 + 8p2r1 − 2r2

+2p1r2 + 4q1r2 − 4r1r2 − 4)x+ 2p1r1r2 + p1q1r2 − 4q1r2 − 4p1p2r1 + 4p1r1 − 2p1p2q1 + 8p2q1 + 2p1q1 − 8q1 = 0 .

This completes the proof.

3. The distance spectrum of G1∨G2

In this section, we obtain the distance spectrum of G1∨G2 for two regular graphs G1 and G2.

Theorem 3.1. Let Gi be an ri−regular graph on pi vertices and qi edges with the adjacency matrix Ai and adjacency
spectrum {ri, λi2, λi3, ..., λipi

} , i = 1, 2. Then, the distance spectrum of G1∨G2 consists of the following numbers:

−
(
λ1j + 3±

√
(λ1j + 1)

2
+ 4 (λ1j + r1)

)
, j = 2, 3, ..., p1;−2 of multiplicity q1 − p1;− (λ2j + 2) ; j = 2, 3, ..., p2 ,

together with the three eigenvalues of 4 (p1 − 1)− 2r1 3q1 − 2r1 2p2
3p1 − 4 2 (q1 − 1) p2
2p1 q1 2 (p2 − 1)− r2

 .
Proof. Given that G1 and G2 are regular graphs with regularity r1 and r2 respectively. Let R be the incidence matrix
of G1. Then, by a proper ordering of the vertices of G1∨G2 , its distance matrix D can be written as

D =

 2A1 + 4A1 3J − 2R 2J
3J − 2RT 2(J − I) J

2J J A2 + 2A2


=

 4(J − I)− 2A1 3J − 2R 2J
3J − 2RT 2(J − I) J

2J J 2(J − I)−A2

 .
Let λ 6= r be an eigenvalue of A1 with an eigenvector X. Then, by Perron-Frobenius theorem X is orthogonal to the
all-one matrix J and A1X = λX. Now, we investigate the condition under which

φ =

 tX
RTX
0


is an eigenvector of D. If µ is an eigenvalue of D with φ as eigenvector, then from the equation Dφ = µφ, we get

(−4− 2λ)t− 2(λ+ r1) = µt

−2t− 2 = µ

t2 − t(λ+ 1)− (λ+ r1) = 0

so that t has two values

t1 =
λ+ 1 +

√
(λ+ 1)

2
+ 4 (λ+ r1)

2
,

t2 =
λ+ 1−

√
(λ+ 1)

2
+ 4 (λ+ r1)

2
.
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Thus, corresponding to each eigenvalue λ 6= r1 of G1, we get two eigenvalues −2(t1 + 1) and −2(t2 + 1) and get 2p1 − 2

eigenvalues in total.
Now, let Z be an eigenvector of L(G1) with the eigenvalue −2. Then, by Lemma 1.2, RZ = 0. Now,

ψ =

 0
Z
0


is an eigenvector of D with an eigenvalue −2. This is because

Dψ =

 4(J − I)− 2A1 3J − 2R 2J
3J − 2RT 2(J − I) J

2J J 2(J − I)−A2

 0
Z
0

 =

 0
−2Z
0

 = −2ψ

Now, let µ be an eigenvalue of G2, other than its regularity, with an eigenvector w. Then, it is easy to see that

χ =

 0
0
w


is an eigenvector of D with an eigenvalue −(µ+ 2). Thus, we get 2(p1 − 1) + q1 − p1 + p2 − 1, that is, p1 + p2 + q1 − 3

eigenvalues of D. Clearly, all the corresponding eigenvectors are orthogonal to J
0
0

 ,
 0
J
0

 and

 0
0
J

 .
Also, sinceD is symmetric, Rp1+p2+q1 has an orthogonal basis consisting of eigenvectors ofD. So, the remaining three
eigenvectors are spanned by these three vectors and is of the form

ν =

 αJ
βJ
γJ


for some (α, β, γ) 6= (0, 0, 0). Therefore, if υ is an eigenvalue of D with an eigenvector ν then from Dν = δν we can see
that the remaining three are the eigenvalues of the matrix 4(p1 − 1)− 2r1 3q1 − 2r1 2p2

3p1 − 4 2 (q1 − 1) p2
2p1 q1 2(p2 − 1)− r2

 .
This completes the proof.

Acknowledgment

The authors are indebted to the anonymous referees for their valuable comments and suggestions which led to an
improved presentation of the results.

References
[1] F. Atik, P. Panigrahi, Families of graphs having few distinct distance eigenvalueswith arbitrary diameter, Electron. J. Linear Algebra 29

(2016) 194–205.
[2] F. Buckley, F. Harary, Distance in Graphs, Addison Wesley, Redwood, CA, 1990.
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