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Abstract
Let G = (V (G), E(G)) be a finite undirected graph without loops or multiple edges. The hyper-Zagreb index of G,
denoted HZ(G), is defined as

∑
uv∈E(G)(dG(u)+ dG(v))

2, where dG(u) denotes the degree of a vertex u ∈ V (G). Using
the hyper-Zagreb index of the complement of a graph, several sufficient conditions for some Hamiltonian properties of
the graph are presented in this paper.
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1. Introduction and statements of the results

In this paper, only finite undirected graphs without loops or multiple edges are considered. Notation and terminology
not defined here follow that described in [2]. Let G = (V (G), E(G)) be a graph. Denote by n, m, δ, and κ the order,
size, minimum degree, and connectivity of G, respectively. The complement of G is denoted by Gc. The hyper-Zagreb
index of G, denoted HZ(G), is defined as

∑
uv∈E(G)(dG(u) + dG(v))

2 (see [11]). It needs to be mentioned here that
the hyper-Zagreb index of G is actually equal to F (G) + 2M2(G), where F (G) is the forgotten topological index of G
(see [5]) and M2(G) is the second Zagreb index of G (see [9]). Denote by µn(G) the largest eigenvalue of the adjacency
matrix of a graph G of order n. For two disjoint graphs G1 and G2, the union and join of G1 and G2 are denoted by
G1 + G2 and G1 ∨ G2, respectively. Denote by sK1 the union of s isolated vertices. The concept of closure of a graph
G was introduced by Bondy and Chvátal in [1]. The k-closure of a graph G, denoted clk(G), is a graph obtained from
G by recursively joining two nonadjacent vertices such that their degree sum is at least k until no such pair remains.
Denote by C(n, r) the number of r-combinations of a set with n distinct elements.

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called
Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains
all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. The Hamiltonicity and traceability
of graphs have been heavily investigated in last several decades. Lot of results in this direction can be found in the
survey papers [6–8].

In 2010, Fiedler and Nikiforov obtained the following spectral conditions for the Hamiltonicity and traceability of
graphs.

Theorem 1.1. [4] Let G be a graph of order n.

(a) If µn(Gc) ≤
√
n− 1, then G contains a Hamiltonian path unless G ∼= Kn−1 +K1.

(b) If µn(Gc) ≤
√
n− 2, then G contains a Hamiltonian cycle unless G ∼= K1 ∨ (K1 +Kn−2).

Using the ideas and techniques developed by Fiedler and Nikiforov in [4], we in this note present the following
sufficient conditions for the Hamiltonian and traceable graphs. Those conditions involve the hyper-Zagreb index of
the complements of the graphs.

Theorem 1.2. Let G be a graph of order n.

(a) If n ≥ 3 and HZ(Gc) ≤ (n− 1)2(n− 2), then G is Hamiltonian, G ∼= K1 ∨ (K1 +Kn−2), or G ∼= K2 ∨ (3K1).

(b) If G is 2-connected with n ≥ 12 and HZ(Gc) ≤ (n− 1)2(2n− 7), then G is Hamiltonian.
∗E-mail address: raol@usca.edu



(c) If G is 3-connected with n ≥ 18 and HZ(Gc) ≤ (n− 1)2(3n− 15), then G is Hamiltonian.

(d) If n ≥ 3, κ ≥ 2, and 2HZ(Gc) ≤ (n−1)2(n(n−1)−(n−κ−1)(n+κ)), thenG is Hamiltonian orG ∼= Kκ∨((κ+1)K1).

Theorem 1.3. Let G be a graph of order n.

(a) If n ≥ 4, δ ≥ 1, and HZ(Gc) ≤ n2(2n−5), then G is traceable or G belongs to the class {K1∨ (3K1),K2∨ (4K1),K3∨
(5K1),K4 ∨ (6K1)}.

(b) If n ≥ 2, κ ≥ 1, and 2HZ(Gc) ≤ n2(n(n− 1)− (n− κ− 2)(n+ κ+ 1)), then G is traceable or G ∼= Kκ ∨ ((κ+ 2)K1).

2. Previous results

We need the following previous results as lemmas to prove our theorems.

Lemma 2.1. (Lemma 2.1 on Page 112 in [1] ) A graph G of order n is Hamiltonian if and only if cln(G) is Hamiltonian.

Lemma 2.2. (Lemma 2.4 on Page 113 in [1] ) A graph G of order n is traceable if and only if cln−1(G) is traceable.

Lemma 2.3. (Corollary 4.6 on Page 60 in [2] ) Let G be a graph of order n ≥ 3. If m ≥ C(n − 1, 2) + 1, then G is
Hamiltonian, G ∼= K1 ∨ (K1 +Kn−2), or G ∼= K2 ∨ (3K1).

Lemma 2.4. (Theorem 11 on Page 1575 in [3] ) Let G be a 2-connected graph of order n ≥ 12. If m ≥ C(n − 2, 2) + 4,
then G is Hamiltonian or G ∼= K2 ∨ ((2K1) +Kn−4).

Lemma 2.5. (Theorem 10 on Page 1574 in [3] ) let G be a 3-connected graph of order n ≥ 18. If m ≥ C(n − 3, 2) + 9,
then G is Hamiltonian or G ∼= K3 ∨ ((3K1) +Kn−6).

Lemma 2.6. (Theorem 1 in [10] ) Let G be a graph of order n ≥ 3, m edges, and connectivity κ ≥ 2. If m ≥ (n − κ −
1)(n+ κ)/2, then G is Hamiltonian or G ∼= Kκ ∨ ((κ+ 1)K1).

Lemma 2.7. (Lemma 4 in [12] ) Let G be a graph of order n ≥ 4, m edges, and δ ≥ 1. If m ≥ C(n− 2, 2) + 2, then G is
traceable or G belongs to the class {K1 ∨ ((2K1) +Kn−3),K1 ∨ (K1 +K1,3),K2,4,K2 ∨ (4K1), (K2 ∨ ((3K1) +K2),K1 ∨
K2,5,K3 ∨ (5K1), (K2 ∨ (K1 +K1,4),K4 ∨ (6K1)}.

Lemma 2.8. (Theorem 2 in [10] ) Let G be a graph of order n ≥ 2, m edges, and connectivity κ ≥ 1. If m ≥ (n − κ −
2)(n+ κ+ 1)/2, then G is traceable or G ∼= Kκ ∨ ((κ+ 2)K1).

3. Proofs

Proof of Theorem 1.2. LetG be a graph satisfying the conditions of part (a), part (b), part (c), or part (d) of Theorem
1.2 and G is not Hamiltonian. Then Lemma 2.1 implies that H := cln(G) is not Hamiltonian and therefore H is not
Kn. Thus there exist two vertices x and y in V (H) such that xy 6∈ E(H) and for any pair of nonadjacent vertices u and
v in V (H) we have dH(u) + dH(v) ≤ n− 1. Hence, for any pair of adjacent vertices u and v in V (Hc), it holds that

dHc(u) + dHc(v) = n− 1− dH(u) + n− 1− dH(v) ≥ n− 1.

Thus,
(dHc(u) + dHc(v))2 ≥ (n− 1)2.

Therefore,
HZ(Hc) =

∑
uv∈E(Hc)

(dHc(u) + dHc(v))2 ≥ (n− 1)2m(Hc).

Notice that dHc(u) ≤ dGc(u) for each vertex u ∈ V (Hc) = V (Gc) and E(Hc) ⊆ E(Gc). We have that

HZ(Gc) ≥ HZ(Hc) ≥ (n− 1)2m(Hc).

(a) Suppose G satisfies conditions of Theorem 1.2(a). Notice that H is not Hamiltonian. Lemma 2.3 implies that

m(H) ≤ C(n− 1, 2),

or
m(H) = C(n− 1, 2) + 1 and H ∼= K1 ∨ (K1 +Kn−2),
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or
m(H) = C(n− 1, 2) + 1 and H ∼= K2 ∨ (3K1).

If m(H) ≤ C(n− 1, 2), then

(n− 1)2(n− 2) ≥ HZ(Gc) ≥ HZ(Hc) ≥ (n− 1)2m(Hc) ≥ (n− 1)2 (C(n, 2)− C(n− 1, 2)) = (n− 1)3,

which is a contradiction.
If H ∼= K1 ∨ (K1 +Kn−2) or H ∼= K2 ∨ (3K1), then

(n− 1)2(n− 2) ≥ HZ(Gc) ≥ HZ(Hc) ≥ (n− 1)2m(Hc) ≥ (n− 1)2 (C(n, 2)− C(n− 1, 2)− 1) = (n− 1)2(n− 2).

Thus dGc(u) = dHc(u) for each u ∈ V (Hc) = V (Gc), dGc(u)dGc(v) = dHc(u)dHc(v) for each uv ∈ E(Hc), and dHc(u) +

dHc(v) = n− 1 for each uv ∈ E(Hc). Therefore G = H.

(b) Suppose G satisfies conditions of Theorem 1.2(b). Notice that H is not Hamiltonian. Lemma 2.4 implies that

m(H) ≤ C(n− 2, 2) + 3

or
m(H) = C(n− 2, 2) + 4 and H ∼= K2 ∨ (2K1 +Kn−4).

If m(H) ≤ C(n− 2, 2) + 3, then

(n− 1)2(2n− 7) ≥ HZ(Gc) ≥ HZ(Hc) ≥ (n− 1)2m(Hc) ≥ (n− 1)2 (C(n, 2)− C(n− 2, 2)− 3) = (n− 1)2(2n− 6),

that is a contradiction.
If H ∼= K2 ∨ (2K1 +Kn−4), then

(n− 1)2(2n− 7) ≥ HZ(Gc) ≥ HZ(Hc) ≥ (n− 1)2m(Hc) ≥ (n− 1)2 (C(n, 2)− C(n− 2, 2)− 4) = (n− 1)2(2n− 7).

Thus dGc(u) = dHc(u) for each u ∈ V (Hc) = V (Gc), dGc(u)dGc(v) = dHc(u)dHc(v) for each uv ∈ E(Hc), and dHc(u) +

dHc(v) = n− 1 for each uv ∈ E(Hc). Therefore, G = H ∼= K2 ∨ (3K1). Since n ≥ 12, a contradiction is obtained.

(c) Suppose G satisfies conditions of Theorem 1.2(c). Notice that H is not Hamiltonian. Lemma 2.5 implies that
m(H) ≤ C(n− 3, 2) + 8 or m(H) = C(n− 3, 2) + 9 and H ∼= K3 ∨ (3K1 +Kn−6).
If m(H) ≤ C(n− 3, 2) + 8, then

(n− 1)2(3n− 15) ≥ HZ(Gc) ≥ HZ(Hc) ≥ (n− 1)2m(Hc) ≥ (n− 1)2 (C(n, 2)− C(n− 3, 2)− 8) = (n− 1)2(3n− 14),

a contradiction.
If H ∼= K3 ∨ (3K1 +Kn−6)), then

(n− 1)2(3n− 15) ≥ HZ(Gc) ≥ HZ(Hc) ≥ (n− 1)2m(Hc) ≥ (n− 1)2 (C(n, 2)− C(n− 3, 2)− 9) = (n− 1)2(3n− 15).

Thus dGc(u) = dHc(u) for each u ∈ V (Hc) = V (Gc), dGc(u)dGc(v) = dHc(u)dHc(v) for each uv ∈ E(Hc), and dHc(u) +

dHc(v) = n− 1 for each uv ∈ E(Hc). Therefore G = H ∼= K3 ∨ (4K1). Since n ≥ 18, we reach at a contradiction.

(d) Suppose G satisfies conditions of Theorem 1.2(d). Note that H is not Hamiltonian. Lemma 2.6 implies that

2m(H) ≤ (n− κ− 1)(n+ κ)− 1

or
2m(H) = (n− κ− 1)(n+ κ) and H ∼= Kκ ∨ ((κ+ 1)K1).

If 2m(H) ≤ (n− κ− 1)(n+ κ)− 1, then

(n− 1)2(n(n− 1)− (n− κ− 1)(n+ κ)) ≥ 2HZ(Gc) ≥ 2HZ(Hc) ≥ 2(n− 1)2m(Hc)

≥ (n− 1)2 (2C(n, 2)− (n− κ− 1)(n+ κ) + 1)

= (n− 1)2(n(n− 1)− (n− κ− 1)(n+ κ) + 1),

which is a contradiction.
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If H ∼= Kκ ∨ ((κ+ 1)K1), then

(n− 1)2(n(n− 1)− (n− κ− 1)(n+ κ)) ≥ 2HZ(Gc) ≥ 2HZ(Hc) ≥ 2(n− 1)2m(Hc)

≥ (n− 1)2 (2C(n, 2)− (n− κ− 1)(n+ κ))

= (n− 1)2(n(n− 1)− (n− κ− 1)(n+ κ)).

Thus dGc(u) = dHc(u) for each u ∈ V (Hc) = V (Gc), dGc(u)dGc(v) = dHc(u)dHc(v) for each uv ∈ E(Hc), and dHc(u) +

dHc(v) = n− 1 for each uv ∈ E(Hc). Therefore G = H.

Proof of Theorem 1.3. Let G be a graph satisfying the conditions of part (a) or part (b) of Theorem 1.3 and G is not
traceable. Then Lemma 2.2 implies that H := cln−1(G) is not traceable and therefore H is not Kn. Thus there exist
two vertices x and y in V (H) such that xy 6∈ E(H) and for any pair of nonadjacent vertices u and v in V (H) we have

dH(u) + dH(v) ≤ n− 2.

Hence, for any pair of adjacent vertices u and v in V (Hc), we have that

dHc(u) + dHc(v) = n− 1− dH(u) + n− 1− dH(v) ≥ n.

Thus,
(dHc(u) + dHc(v))2 ≥ n2.

Therefore,
HZ(Hc) =

∑
uv∈E(Hc)

(dHc(u) + dHc(v))2 ≥ n2m(Hc).

Notice that dHc(u) ≤ dGc(u) for each u ∈ V (Hc) = V (Gc) and E(Hc) ⊆ E(Gc). We have that

HZ(Gc) ≥ HZ(Hc) ≥ n2m(Hc).

(a) Suppose G satisfies conditions of Theorem 1.3(a). Notice that H is not traceable. Lemma 2.7 implies that m(H) ≤
C(n− 2, 2) + 1 or m(H) = C(n− 2, 2) + 2 and H belongs to the class {K1 ∨ ((2K1) +Kn−3),K1 ∨ (K1 +K1,3),K2,4,K2 ∨
(4K1), (K2 ∨ ((3K1) +K2),K1 ∨K2,5,K3 ∨ (5K1), (K2 ∨ (K1 +K1,4),K4 ∨ (6K1)}.
If m(H) ≤ C(n− 2, 2) + 1, then it holds that

n2(2n− 5) ≥ HZ(Gc) ≥ HZ(Hc) ≥ n2m(Hc) ≥ n2 (C(n, 2)− C(n− 2, 2)− 1) = n2(2n− 4),

which is a contradiction.
If H belongs to the class {K1 ∨ ((2K1) +Kn−3),K1 ∨ (K1 +K1,3),K2,4,K2 ∨ (4K1), (K2 ∨ ((3K1) +K2),K1 ∨K2,5,K3 ∨
(5K1), (K2 ∨ (K1 +K1,4),K4 ∨ (6K1)}, then

n2(2n− 5) ≥ HZ(Gc) ≥ HZ(Hc) ≥ n2m(Hc) ≥ n2 (C(n, 2)− C(n− 2, 2)− 2) = n2(2n− 5).

Thus dGc(u) = dHc(u) for each u ∈ V (Hc) = V (Gc), dGc(u)dGc(v) = dHc(u)dHc(v) for each uv ∈ E(Hc), and dHc(u) +

dHc(v) = n for each uv ∈ E(Hc). Therefore G = H and H belongs to the class {K1∨ (3K1),K2∨ (4K1),K3∨ (5K1),K4∨
(6K1)}.

(b) Suppose G satisfies conditions of Theorem 1.3(b). Notice that H is not traceable. Lemma 2.8 implies that

2m(H) ≤ (n− κ− 2)(n+ κ+ 1)− 1

or
2m(H) = (n− κ− 2)(n+ κ+ 1) and H ∼= Kκ ∨ ((κ+ 2)K1).

If 2m(H) ≤ (n− κ− 2)(n+ κ+ 1)− 1, then

n2(n(n− 1)− (n− κ− 2)(n+ κ+ 1)) ≥ 2HZ(Gc) ≥ 2HZ(Hc) ≥ 2n2m(Hc) ≥ n2 (2C(n, 2)− (n− κ− 2)(n+ κ+ 1) + 1)

= n2(n(n− 1)− (n− κ− 2)(n+ κ+ 1) + 1),

a contradiction.
If H ∼= Kκ ∨ ((κ+ 2)K1), then

n2(n(n− 1)− (n− κ− 2)(n+ κ+ 1)) ≥ 2HZ(Gc) ≥ 2HZ(Hc) ≥ 2n2m(Hc) ≥ n2 (2C(n, 2)− (n− κ− 2)(n+ κ+ 1))

= n2(n(n− 1)− (n− κ− 2)(n+ κ+ 1)).

Thus, it holds that dGc(u) = dHc(u) for each vertex u ∈ V (Hc) = V (Gc), dGc(u)dGc(v) = dHc(u)dHc(v) for each edge
uv ∈ E(Hc), and dHc(u) + dHc(v) = n for each edge uv ∈ E(Hc). Therefore, G = H.
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[9] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox Jr., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975)

3399–3405.
[10] R. Li, New sufficient conditions for Hamiltonian and traceable graphs, Amer. Res. J. Math. 3 (2017) Article# 3.
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