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Abstract

Let G = (V(G), E(Q)) be a finite undirected graph without loops or multiple edges. The hyper-Zagreb index of G,
denoted HZ(G), is defined as 3_ () (da(u) + dc(v))?, where dg(u) denotes the degree of a vertex u € V(G). Using
the hyper-Zagreb index of the complement of a graph, several sufficient conditions for some Hamiltonian properties of
the graph are presented in this paper.
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1. Introduction and statements of the results

In this paper, only finite undirected graphs without loops or multiple edges are considered. Notation and terminology
not defined here follow that described in [2]. Let G = (V(G), E(G)) be a graph. Denote by n, m, §, and « the order,
size, minimum degree, and connectivity of G, respectively. The complement of G is denoted by G¢. The hyper-Zagreb
index of G, denoted HZ(G), is defined as }_,,c p(q)(da(u) + dg(v))? (see [11]). It needs to be mentioned here that
the hyper-Zagreb index of G is actually equal to F(G) + 2M5(G), where F(G) is the forgotten topological index of G
(see [5]) and M>(G) is the second Zagreb index of G (see [9]). Denote by 1, (G) the largest eigenvalue of the adjacency
matrix of a graph G of order n. For two disjoint graphs G; and G,, the union and join of G; and G5 are denoted by
G1 + G4 and G, V G, respectively. Denote by sK; the union of s isolated vertices. The concept of closure of a graph
G was introduced by Bondy and Chvatal in [1]. The k-closure of a graph G, denoted ¢l (G), is a graph obtained from
G by recursively joining two nonadjacent vertices such that their degree sum is at least k& until no such pair remains.
Denote by C(n,r) the number of r-combinations of a set with n distinct elements.

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called
Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains
all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. The Hamiltonicity and traceability
of graphs have been heavily investigated in last several decades. Lot of results in this direction can be found in the
survey papers [6-8].

In 2010, Fiedler and Nikiforov obtained the following spectral conditions for the Hamiltonicity and traceability of
graphs.

Theorem 1.1. [4] Let G be a graph of order n.
(@) If 1, (G°) < /n — 1, then G contains a Hamiltonian path unless G =2 K,,_1 + K;.
(b) If 11, (G°) < v/n — 2, then G contains a Hamiltonian cycle unless G = K, V (K1 + K, _2).

Using the ideas and techniques developed by Fiedler and Nikiforov in [4], we in this note present the following
sufficient conditions for the Hamiltonian and traceable graphs. Those conditions involve the hyper-Zagreb index of
the complements of the graphs.

Theorem 1.2. Let G be a graph of order n.
@) Ifn >3 and HZ(G¢) < (n —1)%(n — 2), then G is Hamiltonian, G = K, V (K1 + K, _»2), or G = Ky V (3K1).

(b) If G is 2-connected with n > 12 and HZ(G¢) < (n — 1)?(2n — 7), then G is Hamiltonian.
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(¢) If G is 3-connected with n > 18 and HZ(G®) < (n — 1)?(3n — 15), then G is Hamiltonian.
d) Ifn>3,k>2and2HZ(G) < (n—1)%(n(n—1)—(n—k—1)(n+k)), then G is Hamiltonian or G = K,V ((k+1)K;).
Theorem 1.3. Let G be a graph of order n.

(@) Ifn>4,6 >1,and HZ(G®) < n*(2n—5), then G is traceable or G belongs to the class {K1V (3K;), KoV (4K1), K3V
(5K1),K4\/ (6K1)}

) If n>2,k>1,and 2HZ(G®) < n%(n(n —1) — (n — k — 2)(n + k + 1)), then G is traceable or G = K, V ((k +2)K1).

2. Previous results

We need the following previous results as lemmas to prove our theorems.
Lemma 2.1. (Lemma 2.1 on Page 112 in [1]) A graph G of order n is Hamiltonian if and only if cl,,(G) is Hamiltonian.
Lemma 2.2. (Lemma 2.4 on Page 113 in [1]) A graph G of order n is traceable if and only if cl,—1(G) is traceable.

Lemma 2.3. (Corollary 4.6 on Page 60 in [2]) Let G be a graph of order n > 3. If m > C(n — 1,2) + 1, then G is
Hamiltonian, G 2 Ky V (K1 + K,,—2), or G 2 K5 V (3K7).

Lemma 2.4. (Theorem 11 on Page 1575 in [3]) Let G be a 2-connected graph of order n > 12. If m > C(n — 2,2) + 4,
then G is Hamiltonian or G = Ky V ((2K1) + Kp—4).

Lemma 2.5. (Theorem 10 on Page 1574 in [3]) let G be a 3-connected graph of order n > 18. If m > C(n — 3,2) + 9,
then G is Hamiltonian or G = K3 V ((3K1) + Ky—¢).

Lemma 2.6. (Theorem 1 in [10]) Let G be a graph of order n > 3, m edges, and connectivity k > 2. If m > (n — k —
1)(n + &)/2, then G is Hamiltonian or G = K, V ((k + 1) K).

Lemma 2.7. (Lemma 4 in [12]) Let G be a graph of order n > 4, m edges, and 6 > 1. If m > C(n — 2,2) + 2, then G is
traceable or G belongs to the class {K1 V ((2K1) + K,—3), K1 V (K1 + K1,3), K24, Ko V (4K4), (K2 V ((3K1) + K2), K1 V
Ko 5, K3V (5K1), (K2 V (K1 + K1,4), K4V (6K1)}.

Lemma 2.8. (Theorem 2 in [10]) Let G be a graph of order n > 2, m edges, and connectivity k > 1. If m > (n — k —
2)(n+ k+1)/2, then G is traceable or G = K, V ((k + 2)K7).

3. Proofs

Proof of Theorem 1.2. Let G be a graph satisfying the conditions of part (a), part (b), part (c), or part (d) of Theorem
1.2 and G is not Hamiltonian. Then Lemma 2.1 implies that H := ¢l,,(G) is not Hamiltonian and therefore H is not
K,,. Thus there exist two vertices x and y in V(H) such that zy ¢ E(H) and for any pair of nonadjacent vertices u and
vin V(H) we have dy(u) + di(v) < n — 1. Hence, for any pair of adjacent vertices v and v in V/(H¢), it holds that

dpge(u) +dge(v) =n—1—dg(u)+n—-1—dygv) >n—1.

Thus,
(dpe(u) + dge(v)? > (n —1)%

Therefore,
HZH®) = Y (dge(w) +dye(v))* > (n — 1)*m(H").
weE(H®)

Notice that dg-(u) < dg-(u) for each vertex u € V(H¢) = V(G°) and E(H¢) C E(G¢). We have that
HZ(G) = HZ(H) > (n— 1)*m(H"),
(a) Suppose G satisfies conditions of Theorem 1.2(a). Notice that H is not Hamiltonian. Lemma 2.3 implies that
m(H) < C(n-1,2),

or
m(H):C’(nfl,2)+1 and HgKl\/(K1+Kn_2),
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or
m(H):C(n—1,2)+1 and HgKQ\/(gKl)

If m(H) < C(n — 1,2), then
(n—1)%(n—2) > HZ(G®) > HZ(HS) > (n — 1*m(H®) > (n — 1)2(C(n,2) — C(n—1,2)) = (n — 1)3,

which is a contradiction.
IfH =~ KV (Kl + Kn—Q) or H= Ky V (3K1), then

(n—12(n—2)>HZ(G) > HZ(H®) > (n — 1)*m(H®) > (n — 1)*(C(n,2) — C(n —1,2) = 1) = (n — 1)*(n — 2).

Thus dg-(u) = dye(u) for each u € V(H®) = V(G°), dge(u)dge(v) = dge(u)dg-(v) for each wv € E(H®), and dg-(u) +
dge(v) = n — 1 for each uv € E(H€). Therefore G = H.

(b) Suppose G satisfies conditions of Theorem 1.2(b). Notice that H is not Hamiltonian. Lemma 2.4 implies that
m(H)<C(n—2,2)+3

or
m(H)=C(n—-2,2)+4 and H=Ky,V (2K; + K, _4).

If m(H) < C(n —2,2) + 3, then
(n—1202n—7)>HZ(G%) > HZ(H®) > (n — 1)*m(H®) > (n — 1)* (C(n,2) — C(n —2,2) — 3) = (n — 1)*(2n — 6),

that is a contradiction.
IfH=KyV (2K1 + Kn74), then

(n—1202n—17)>HZ(G%) > HZ(H®) > (n — 1)*m(H®) > (n — 1)* (C(n,2) — C(n —2,2) —4) = (n — 1)*(2n — 7).

Thus dge(u) = dge(u) for each v € V(H®) = V(G°), dge(u)dge(v) = dge(u)dge(v) for each uv € E(H®), and dge(u) +
dpe(v) =n — 1 for each uv € E(H®). Therefore, G = H = K, V (3K}). Since n > 12, a contradiction is obtained.

(¢) Suppose G satisfies conditions of Theorem 1.2(c). Notice that H is not Hamiltonian. Lemma 2.5 implies that
m(H)<C(n—-3,2)+8o0rm(H)=C(n—-3,2)+9and H = K3V (3K; + K,—¢)-
If m(H) < C(n—-3,2)+ 8, then

(n—1)2%(3n—15) > HZ(G) > HZ(H®) > (n — 1)*m(H) > (n —1)*(C(n,2) — C(n —3,2) — 8) = (n — 1)*(3n — 14),

a contradiction.
IfH= K3V (3K1 + ane)), then

(n—1)2%(3n—15) > HZ(G®) > HZ(H) > (n —1)*m(H®) > (n — 1)*(C(n,2) — C(n —3,2) — 9) = (n — 1)*(3n — 15).
Thus dge(u) = dge(u) for each v € V(H®) = V(G°), dge(u)dge(v) = dge(u)dge(v) for each uv € E(H®), and dge(u) +
dpe(v) =n — 1 for each uv € E(H¢). Therefore G = H = K3V (4K). Since n > 18, we reach at a contradiction.

(d) Suppose G satisfies conditions of Theorem 1.2(d). Note that H is not Hamiltonian. Lemma 2.6 implies that
2m(H) < (n—rk—1)(n+k) —1

or
2m(H)=(n—rk—1)(n+k) and H2 K,V ((k+1)Ky).
Ifom(H) < (n—x—1)(n+ k) — 1, then
(n—1)>%*nn—1)—(n—r—1)(n+r)) >2HZ(G) > 2HZ(H®) > 2(n — 1)*m(H®)
>(n—-1)2%02Cn,2) —(n—k—1)(n+r)+1)

=(n-1D%*nn-1)—n-r—-1)(n+rk)+1),

which is a contradiction.
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IfH=K,V(k+1)K;), then
(n—1>%*nn—-1)—(n—k—1)(n+r)) >2HZ(G) > 2HZ(H®) > 2(n — 1)*m(H®)
> (n—1)2(20(n,2) — (n— &k —1)(n+K))
=(n-1D%*nn-1)—(n—r—1)(n+k)).

Thus dge(u) = dge(u) for each v € V(H®) = V(G°), dge(u)dge(v) = dge(u)dge(v) for each uv € E(H®), and dge(u) +
dpe(v) =n — 1 for each uv € E(H®). Therefore G = H.

Proof of Theorem 1.3. Let G be a graph satisfying the conditions of part (a) or part (b) of Theorem 1.3 and G is not
traceable. Then Lemma 2.2 implies that H := cl,,—1(G) is not traceable and therefore H is not K,,. Thus there exist
two vertices z and y in V' (H) such that zy ¢ E(H) and for any pair of nonadjacent vertices v and v in V(H) we have

dy(u) +dg(v) <n-—2.

Hence, for any pair of adjacent vertices v and v in V(H¢), we have that
dge(u) +dge(v) =n—1—dy(u)+n—-1—dg(v) >n.

Thus,

(dHr‘(u) + dHc (’U))2 > n2.
Therefore,

HZH®) = Y (dye(u)+dge(v))® > n*m(H°).
wvEFE(H®)

Notice that dpe(u) < dge(u) for each u € V(H¢) = V(G*) and E(H®) C E(G°). We have that

HZ(G®) > HZ(H®) > n*m(H®).

(a) Suppose G satisfies conditions of Theorem 1.3(a). Notice that H is not traceable. Lemma 2.7 implies that m(H) <
C(n—2,2)+1orm(H) =C(n—2,2)+2 and H belongs to the class {K; V ((2K1) + K,,—3), K1 V (K1 + K13), Ko 4, Ko V
(4K1), (Kg \Y ((3K1) =+ K2)7K1 V K275, KsVv (5K1), (KQ V (Kl + K174),K4 V (6K1)}
If m(H) < C(n — 2,2) + 1, then it holds that

n?(2n —5) > HZ(G®) > HZ(H®) > n*m(H¢) > n* (C(n,2) — C(n —2,2) — 1) = n?(2n — 4),
which is a contradiction.
IftH belongs to the class {Kl vV ((2K1) + Kn_g), K1 vV (Kl + K1,3),K2,4, K2 vV (4K1), (K2 vV ((3K1) + Kg),Kl vV K2,5, Kg V
(5K1), (K2 \Y (Kl + K174), K4 \Y (6K1)}, then

n?(2n —5) > HZ(G) > HZ(H®) > n*m(H¢) > n* (C(n,2) — C(n —2,2) — 2) = n*(2n — 5).
Thus dge(u) = dge(u) for each v € V(H®) = V(G°), dge(u)dge(v) = dge(u)dge(v) for each uv € E(H®), and dge(u) +
dge(v) = nfor each uv € E(H¢). Therefore G = H and H belongs to the class { K7V (3K1), KoV (4K1), K3V (5K1), K4 V
(6K71)}.

(b) Suppose G satisfies conditions of Theorem 1.3(b). Notice that H is not traceable. Lemma 2.8 implies that
2m(H) < (n—k—2)(n+x+1)—1
or
2m(H)=n—-rk—-2)(n+krk+1) and H=ZK,V((k+2)K1).
Ifom(H) < (n—k—-2)(n+x+1) —1, then
n?(nin—1)—(n—k—2)(n+k+1)) > 2HZ(G®) > 2HZ(H®) > 2n*m(H®) > n* (2C(n,2) — (n — Kk —2)(n + K+ 1) + 1)
=n*tnin—1)—n—r—-2)(n+r+1)+1),

a contradiction.
IfH > K,V ((k+2)K,), then

n*(nin—1)—(n—r=2)(n+rk+1)) >2HZ(G) > 2HZ(H) > 2n*m(H) > n* (2C(n,2) — (n — Kk —2)(n + Kk + 1))
=n?(n(n—1)—(n—k—2)(n+r+1)).

Thus, it holds that dg.(u) = dg-(u) for each vertex u € V(H®) = V(G°), dge(u)dge(v) = dge(u)dg-(v) for each edge
wv € E(H®), and dg-(u) + dye(v) = n for each edge uwv € E(H®). Therefore, G = H.
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