The hyper-Zagreb index and some Hamiltonian properties of graphs

Rao Li*
Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801, USA

(Received: 22 January 2019. Received in revised form: 11 April 2019. Accepted: 29 April 2019. Published online: 3 May 2019.)
(c) 2019 the author. This is an open access article under the CC BY (International 4.0) license (https://creativecommons.org/licenses/by/4.0/).

Abstract

Let $G=(V(G), E(G))$ be a finite undirected graph without loops or multiple edges. The hyper-Zagreb index of G, denoted $H Z(G)$, is defined as $\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$, where $d_{G}(u)$ denotes the degree of a vertex $u \in V(G)$. Using the hyper-Zagreb index of the complement of a graph, several sufficient conditions for some Hamiltonian properties of the graph are presented in this paper.

Keywords: topological index; hyper-Zagreb index; Hamiltonian property.
2010 Mathematics Subject Classification: 05C07, 05C38, 05C45.

1. Introduction and statements of the results

In this paper, only finite undirected graphs without loops or multiple edges are considered. Notation and terminology not defined here follow that described in [2]. Let $G=(V(G), E(G))$ be a graph. Denote by n, m, δ, and κ the order, size, minimum degree, and connectivity of G, respectively. The complement of G is denoted by G^{c}. The hyper-Zagreb index of G, denoted $H Z(G)$, is defined as $\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}$ (see [11]). It needs to be mentioned here that the hyper-Zagreb index of G is actually equal to $F(G)+2 M_{2}(G)$, where $F(G)$ is the forgotten topological index of G (see [5]) and $M_{2}(G)$ is the second Zagreb index of G (see [9]). Denote by $\mu_{n}(G)$ the largest eigenvalue of the adjacency matrix of a graph G of order n. For two disjoint graphs G_{1} and G_{2}, the union and join of G_{1} and G_{2} are denoted by $G_{1}+G_{2}$ and $G_{1} \vee G_{2}$, respectively. Denote by $s K_{1}$ the union of s isolated vertices. The concept of closure of a graph G was introduced by Bondy and Chvátal in [1]. The k-closure of a graph G, denoted $c l_{k}(G)$, is a graph obtained from G by recursively joining two nonadjacent vertices such that their degree sum is at least k until no such pair remains. Denote by $C(n, r)$ the number of r-combinations of a set with n distinct elements.

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called traceable if G has a Hamiltonian path. The Hamiltonicity and traceability of graphs have been heavily investigated in last several decades. Lot of results in this direction can be found in the survey papers [6-8].

In 2010, Fiedler and Nikiforov obtained the following spectral conditions for the Hamiltonicity and traceability of graphs.

Theorem 1.1. [4] Let G be a graph of order n.
(a) If $\mu_{n}\left(G^{c}\right) \leq \sqrt{n-1}$, then G contains a Hamiltonian path unless $G \cong K_{n-1}+K_{1}$.
(b) If $\mu_{n}\left(G^{c}\right) \leq \sqrt{n-2}$, then G contains a Hamiltonian cycle unless $G \cong K_{1} \vee\left(K_{1}+K_{n-2}\right)$.

Using the ideas and techniques developed by Fiedler and Nikiforov in [4], we in this note present the following sufficient conditions for the Hamiltonian and traceable graphs. Those conditions involve the hyper-Zagreb index of the complements of the graphs.

Theorem 1.2. Let G be a graph of order n.
(a) If $n \geq 3$ and $H Z\left(G^{c}\right) \leq(n-1)^{2}(n-2)$, then G is Hamiltonian, $G \cong K_{1} \vee\left(K_{1}+K_{n-2}\right)$, or $G \cong K_{2} \vee\left(3 K_{1}\right)$.
(b) If G is 2-connected with $n \geq 12$ and $H Z\left(G^{c}\right) \leq(n-1)^{2}(2 n-7)$, then G is Hamiltonian.

[^0](c) If G is 3 -connected with $n \geq 18$ and $H Z\left(G^{c}\right) \leq(n-1)^{2}(3 n-15)$, then G is Hamiltonian.
(d) If $n \geq 3, \kappa \geq 2$, and $2 H Z\left(G^{c}\right) \leq(n-1)^{2}(n(n-1)-(n-\kappa-1)(n+\kappa))$, then G is Hamiltonian or $G \cong K_{\kappa} \vee\left((\kappa+1) K_{1}\right)$.

Theorem 1.3. Let G be a graph of order n.
(a) If $n \geq 4, \delta \geq 1$, and $H Z\left(G^{c}\right) \leq n^{2}(2 n-5)$, then G is traceable or G belongs to the class $\left\{K_{1} \vee\left(3 K_{1}\right), K_{2} \vee\left(4 K_{1}\right), K_{3} \vee\right.$ $\left.\left(5 K_{1}\right), K_{4} \vee\left(6 K_{1}\right)\right\}$.
(b) If $n \geq 2, \kappa \geq 1$, and $2 H Z\left(G^{c}\right) \leq n^{2}(n(n-1)-(n-\kappa-2)(n+\kappa+1))$, then G is traceable or $G \cong K_{\kappa} \vee\left((\kappa+2) K_{1}\right)$.

2. Previous results

We need the following previous results as lemmas to prove our theorems.
Lemma 2.1. (Lemma 2.1 on Page 112 in [1]) A graph G of order n is Hamiltonian if and only if $c l_{n}(G)$ is Hamiltonian.
Lemma 2.2. (Lemma 2.4 on Page 113 in [1]) A graph G of order n is traceable if and only if $l_{n-1}(G)$ is traceable.
Lemma 2.3. (Corollary 4.6 on Page 60 in [2]) Let G be a graph of order $n \geq 3$. If $m \geq C(n-1,2)+1$, then G is Hamiltonian, $G \cong K_{1} \vee\left(K_{1}+K_{n-2}\right)$, or $G \cong K_{2} \vee\left(3 K_{1}\right)$.

Lemma 2.4. (Theorem 11 on Page 1575 in [3]) Let G be a 2-connected graph of order $n \geq 12$. If $m \geq C(n-2,2)+4$, then G is Hamiltonian or $G \cong K_{2} \vee\left(\left(2 K_{1}\right)+K_{n-4}\right)$.

Lemma 2.5. (Theorem 10 on Page 1574 in [3]) let G be a 3 -connected graph of order $n \geq 18$. If $m \geq C(n-3,2)+9$, then G is Hamiltonian or $G \cong K_{3} \vee\left(\left(3 K_{1}\right)+K_{n-6}\right)$.

Lemma 2.6. (Theorem 1 in [10]) Let G be a graph of order $n \geq 3$, m edges, and connectivity $\kappa \geq 2$. If $m \geq(n-\kappa-$ 1) $(n+\kappa) / 2$, then G is Hamiltonian or $G \cong K_{\kappa} \vee\left((\kappa+1) K_{1}\right)$.

Lemma 2.7. (Lemma 4 in [12]) Let G be a graph of order $n \geq 4$, m edges, and $\delta \geq 1$. If $m \geq C(n-2,2)+2$, then G is traceable or G belongs to the class $\left\{K_{1} \vee\left(\left(2 K_{1}\right)+K_{n-3}\right), K_{1} \vee\left(K_{1}+K_{1,3}\right), K_{2,4}, K_{2} \vee\left(4 K_{1}\right),\left(K_{2} \vee\left(\left(3 K_{1}\right)+K_{2}\right), K_{1} \vee\right.\right.$ $K_{2,5}, K_{3} \vee\left(5 K_{1}\right),\left(K_{2} \vee\left(K_{1}+K_{1,4}\right), K_{4} \vee\left(6 K_{1}\right)\right\}$.

Lemma 2.8. (Theorem 2 in [10]) Let G be a graph of order $n \geq 2$, m edges, and connectivity $\kappa \geq 1$. If $m \geq(n-\kappa-$ $2)(n+\kappa+1) / 2$, then G is traceable or $G \cong K_{\kappa} \vee\left((\kappa+2) K_{1}\right)$.

3. Proofs

Proof of Theorem 1.2. Let G be a graph satisfying the conditions of part (a), part (b), part (c), or part (d) of Theorem 1.2 and G is not Hamiltonian. Then Lemma 2.1 implies that $H:=c l_{n}(G)$ is not Hamiltonian and therefore H is not K_{n}. Thus there exist two vertices x and y in $V(H)$ such that $x y \notin E(H)$ and for any pair of nonadjacent vertices u and v in $V(H)$ we have $d_{H}(u)+d_{H}(v) \leq n-1$. Hence, for any pair of adjacent vertices u and v in $V\left(H^{c}\right)$, it holds that

$$
d_{H^{c}}(u)+d_{H^{c}}(v)=n-1-d_{H}(u)+n-1-d_{H}(v) \geq n-1 .
$$

Thus,

$$
\left(d_{H^{c}}(u)+d_{H^{c}}(v)\right)^{2} \geq(n-1)^{2}
$$

Therefore,

$$
H Z\left(H^{c}\right)=\sum_{u v \in E\left(H^{c}\right)}\left(d_{H^{c}}(u)+d_{H^{c}}(v)\right)^{2} \geq(n-1)^{2} m\left(H^{c}\right)
$$

Notice that $d_{H^{c}}(u) \leq d_{G^{c}}(u)$ for each vertex $u \in V\left(H^{c}\right)=V\left(G^{c}\right)$ and $E\left(H^{c}\right) \subseteq E\left(G^{c}\right)$. We have that

$$
H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq(n-1)^{2} m\left(H^{c}\right)
$$

(a) Suppose G satisfies conditions of Theorem 1.2(a). Notice that H is not Hamiltonian. Lemma 2.3 implies that

$$
m(H) \leq C(n-1,2),
$$

or

$$
m(H)=C(n-1,2)+1 \quad \text { and } \quad H \cong K_{1} \vee\left(K_{1}+K_{n-2}\right)
$$

or

$$
m(H)=C(n-1,2)+1 \quad \text { and } \quad H \cong K_{2} \vee\left(3 K_{1}\right)
$$

If $m(H) \leq C(n-1,2)$, then

$$
(n-1)^{2}(n-2) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq(n-1)^{2} m\left(H^{c}\right) \geq(n-1)^{2}(C(n, 2)-C(n-1,2))=(n-1)^{3},
$$

which is a contradiction.
If $H \cong K_{1} \vee\left(K_{1}+K_{n-2}\right)$ or $H \cong K_{2} \vee\left(3 K_{1}\right)$, then

$$
(n-1)^{2}(n-2) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq(n-1)^{2} m\left(H^{c}\right) \geq(n-1)^{2}(C(n, 2)-C(n-1,2)-1)=(n-1)^{2}(n-2)
$$

Thus $d_{G^{c}}(u)=d_{H^{c}}(u)$ for each $u \in V\left(H^{c}\right)=V\left(G^{c}\right), d_{G^{c}}(u) d_{G^{c}}(v)=d_{H^{c}}(u) d_{H^{c}}(v)$ for each $u v \in E\left(H^{c}\right)$, and $d_{H^{c}}(u)+$ $d_{H^{c}}(v)=n-1$ for each $u v \in E\left(H^{c}\right)$. Therefore $G=H$.
(b) Suppose G satisfies conditions of Theorem 1.2(b). Notice that H is not Hamiltonian. Lemma 2.4 implies that

$$
m(H) \leq C(n-2,2)+3
$$

or

$$
m(H)=C(n-2,2)+4 \quad \text { and } \quad H \cong K_{2} \vee\left(2 K_{1}+K_{n-4}\right)
$$

If $m(H) \leq C(n-2,2)+3$, then

$$
(n-1)^{2}(2 n-7) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq(n-1)^{2} m\left(H^{c}\right) \geq(n-1)^{2}(C(n, 2)-C(n-2,2)-3)=(n-1)^{2}(2 n-6)
$$

that is a contradiction.
If $H \cong K_{2} \vee\left(2 K_{1}+K_{n-4}\right)$, then

$$
(n-1)^{2}(2 n-7) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq(n-1)^{2} m\left(H^{c}\right) \geq(n-1)^{2}(C(n, 2)-C(n-2,2)-4)=(n-1)^{2}(2 n-7)
$$

Thus $d_{G^{c}}(u)=d_{H^{c}}(u)$ for each $u \in V\left(H^{c}\right)=V\left(G^{c}\right), d_{G^{c}}(u) d_{G^{c}}(v)=d_{H^{c}}(u) d_{H^{c}}(v)$ for each $u v \in E\left(H^{c}\right)$, and $d_{H^{c}}(u)+$ $d_{H^{c}}(v)=n-1$ for each $u v \in E\left(H^{c}\right)$. Therefore, $G=H \cong K_{2} \vee\left(3 K_{1}\right)$. Since $n \geq 12$, a contradiction is obtained.
(c) Suppose G satisfies conditions of Theorem $1.2(\mathrm{c})$. Notice that H is not Hamiltonian. Lemma 2.5 implies that $m(H) \leq C(n-3,2)+8$ or $m(H)=C(n-3,2)+9$ and $H \cong K_{3} \vee\left(3 K_{1}+K_{n-6}\right)$.
If $m(H) \leq C(n-3,2)+8$, then

$$
(n-1)^{2}(3 n-15) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq(n-1)^{2} m\left(H^{c}\right) \geq(n-1)^{2}(C(n, 2)-C(n-3,2)-8)=(n-1)^{2}(3 n-14)
$$

a contradiction.
If $\left.H \cong K_{3} \vee\left(3 K_{1}+K_{n-6}\right)\right)$, then

$$
(n-1)^{2}(3 n-15) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq(n-1)^{2} m\left(H^{c}\right) \geq(n-1)^{2}(C(n, 2)-C(n-3,2)-9)=(n-1)^{2}(3 n-15)
$$

Thus $d_{G^{c}}(u)=d_{H^{c}}(u)$ for each $u \in V\left(H^{c}\right)=V\left(G^{c}\right), d_{G^{c}}(u) d_{G^{c}}(v)=d_{H^{c}}(u) d_{H^{c}}(v)$ for each $u v \in E\left(H^{c}\right)$, and $d_{H^{c}}(u)+$ $d_{H^{c}}(v)=n-1$ for each $u v \in E\left(H^{c}\right)$. Therefore $G=H \cong K_{3} \vee\left(4 K_{1}\right)$. Since $n \geq 18$, we reach at a contradiction.
(d) Suppose G satisfies conditions of Theorem 1.2(d). Note that H is not Hamiltonian. Lemma 2.6 implies that

$$
2 m(H) \leq(n-\kappa-1)(n+\kappa)-1
$$

or

$$
2 m(H)=(n-\kappa-1)(n+\kappa) \quad \text { and } \quad H \cong K_{\kappa} \vee\left((\kappa+1) K_{1}\right)
$$

If $2 m(H) \leq(n-\kappa-1)(n+\kappa)-1$, then

$$
\begin{aligned}
(n-1)^{2}(n(n-1)-(n-\kappa-1)(n+\kappa)) & \geq 2 H Z\left(G^{c}\right) \geq 2 H Z\left(H^{c}\right) \geq 2(n-1)^{2} m\left(H^{c}\right) \\
& \geq(n-1)^{2}(2 C(n, 2)-(n-\kappa-1)(n+\kappa)+1) \\
& =(n-1)^{2}(n(n-1)-(n-\kappa-1)(n+\kappa)+1)
\end{aligned}
$$

which is a contradiction.

If $H \cong K_{\kappa} \vee\left((\kappa+1) K_{1}\right)$, then

$$
\begin{aligned}
(n-1)^{2}(n(n-1)-(n-\kappa-1)(n+\kappa)) & \geq 2 H Z\left(G^{c}\right) \geq 2 H Z\left(H^{c}\right) \geq 2(n-1)^{2} m\left(H^{c}\right) \\
& \geq(n-1)^{2}(2 C(n, 2)-(n-\kappa-1)(n+\kappa)) \\
& =(n-1)^{2}(n(n-1)-(n-\kappa-1)(n+\kappa)) .
\end{aligned}
$$

Thus $d_{G^{c}}(u)=d_{H^{c}}(u)$ for each $u \in V\left(H^{c}\right)=V\left(G^{c}\right), d_{G^{c}}(u) d_{G^{c}}(v)=d_{H^{c}}(u) d_{H^{c}}(v)$ for each $u v \in E\left(H^{c}\right)$, and $d_{H^{c}}(u)+$ $d_{H^{c}}(v)=n-1$ for each $u v \in E\left(H^{c}\right)$. Therefore $G=H$.

Proof of Theorem 1.3. Let G be a graph satisfying the conditions of part (a) or part (b) of Theorem 1.3 and G is not traceable. Then Lemma 2.2 implies that $H:=c l_{n-1}(G)$ is not traceable and therefore H is not K_{n}. Thus there exist two vertices x and y in $V(H)$ such that $x y \notin E(H)$ and for any pair of nonadjacent vertices u and v in $V(H)$ we have

$$
d_{H}(u)+d_{H}(v) \leq n-2
$$

Hence, for any pair of adjacent vertices u and v in $V\left(H^{c}\right)$, we have that

$$
d_{H^{c}}(u)+d_{H^{c}}(v)=n-1-d_{H}(u)+n-1-d_{H}(v) \geq n .
$$

Thus,

$$
\left(d_{H^{c}}(u)+d_{H^{c}}(v)\right)^{2} \geq n^{2}
$$

Therefore,

$$
H Z\left(H^{c}\right)=\sum_{u v \in E\left(H^{c}\right)}\left(d_{H^{c}}(u)+d_{H^{c}}(v)\right)^{2} \geq n^{2} m\left(H^{c}\right)
$$

Notice that $d_{H^{c}}(u) \leq d_{G^{c}}(u)$ for each $u \in V\left(H^{c}\right)=V\left(G^{c}\right)$ and $E\left(H^{c}\right) \subseteq E\left(G^{c}\right)$. We have that

$$
H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq n^{2} m\left(H^{c}\right)
$$

(a) Suppose G satisfies conditions of Theorem 1.3(a). Notice that H is not traceable. Lemma 2.7 implies that $m(H) \leq$ $C(n-2,2)+1$ or $m(H)=C(n-2,2)+2$ and H belongs to the class $\left\{K_{1} \vee\left(\left(2 K_{1}\right)+K_{n-3}\right), K_{1} \vee\left(K_{1}+K_{1,3}\right), K_{2,4}, K_{2} \vee\right.$ $\left(4 K_{1}\right),\left(K_{2} \vee\left(\left(3 K_{1}\right)+K_{2}\right), K_{1} \vee K_{2,5}, K_{3} \vee\left(5 K_{1}\right),\left(K_{2} \vee\left(K_{1}+K_{1,4}\right), K_{4} \vee\left(6 K_{1}\right)\right\}\right.$.
If $m(H) \leq C(n-2,2)+1$, then it holds that

$$
n^{2}(2 n-5) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq n^{2} m\left(H^{c}\right) \geq n^{2}(C(n, 2)-C(n-2,2)-1)=n^{2}(2 n-4)
$$

which is a contradiction.
If H belongs to the class $\left\{K_{1} \vee\left(\left(2 K_{1}\right)+K_{n-3}\right), K_{1} \vee\left(K_{1}+K_{1,3}\right), K_{2,4}, K_{2} \vee\left(4 K_{1}\right),\left(K_{2} \vee\left(\left(3 K_{1}\right)+K_{2}\right), K_{1} \vee K_{2,5}, K_{3} \vee\right.\right.$ $\left(5 K_{1}\right),\left(K_{2} \vee\left(K_{1}+K_{1,4}\right), K_{4} \vee\left(6 K_{1}\right)\right\}$, then

$$
n^{2}(2 n-5) \geq H Z\left(G^{c}\right) \geq H Z\left(H^{c}\right) \geq n^{2} m\left(H^{c}\right) \geq n^{2}(C(n, 2)-C(n-2,2)-2)=n^{2}(2 n-5) .
$$

Thus $d_{G^{c}}(u)=d_{H^{c}}(u)$ for each $u \in V\left(H^{c}\right)=V\left(G^{c}\right), d_{G^{c}}(u) d_{G^{c}}(v)=d_{H^{c}}(u) d_{H^{c}}(v)$ for each $u v \in E\left(H^{c}\right)$, and $d_{H^{c}}(u)+$ $d_{H^{c}}(v)=n$ for each $u v \in E\left(H^{c}\right)$. Therefore $G=H$ and H belongs to the class $\left\{K_{1} \vee\left(3 K_{1}\right), K_{2} \vee\left(4 K_{1}\right), K_{3} \vee\left(5 K_{1}\right), K_{4} \vee\right.$ $\left.\left(6 K_{1}\right)\right\}$.
(b) Suppose G satisfies conditions of Theorem 1.3(b). Notice that H is not traceable. Lemma 2.8 implies that

$$
2 m(H) \leq(n-\kappa-2)(n+\kappa+1)-1
$$

or

$$
2 m(H)=(n-\kappa-2)(n+\kappa+1) \quad \text { and } \quad H \cong K_{\kappa} \vee\left((\kappa+2) K_{1}\right)
$$

If $2 m(H) \leq(n-\kappa-2)(n+\kappa+1)-1$, then

$$
\begin{aligned}
n^{2}(n(n-1)-(n-\kappa-2)(n+\kappa+1)) & \geq 2 H Z\left(G^{c}\right) \geq 2 H Z\left(H^{c}\right) \geq 2 n^{2} m\left(H^{c}\right) \geq n^{2}(2 C(n, 2)-(n-\kappa-2)(n+\kappa+1)+1) \\
& =n^{2}(n(n-1)-(n-\kappa-2)(n+\kappa+1)+1)
\end{aligned}
$$

a contradiction.
If $H \cong K_{\kappa} \vee\left((\kappa+2) K_{1}\right)$, then

$$
\begin{aligned}
n^{2}(n(n-1)-(n-\kappa-2)(n+\kappa+1)) & \geq 2 H Z\left(G^{c}\right) \geq 2 H Z\left(H^{c}\right) \geq 2 n^{2} m\left(H^{c}\right) \geq n^{2}(2 C(n, 2)-(n-\kappa-2)(n+\kappa+1)) \\
& =n^{2}(n(n-1)-(n-\kappa-2)(n+\kappa+1)) .
\end{aligned}
$$

Thus, it holds that $d_{G^{c}}(u)=d_{H^{c}}(u)$ for each vertex $u \in V\left(H^{c}\right)=V\left(G^{c}\right), d_{G^{c}}(u) d_{G^{c}}(v)=d_{H^{c}}(u) d_{H^{c}}(v)$ for each edge $u v \in E\left(H^{c}\right)$, and $d_{H^{c}}(u)+d_{H^{c}}(v)=n$ for each edge $u v \in E\left(H^{c}\right)$. Therefore, $G=H$.

Acknowledgment

The author would like to thank the anonymous referees for their suggestions and comments which improved the original version of this paper.

References

[1] J. A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
[3] W. Byer, D. Smeltzer, Edge bounds in nonhamiltonian k-connected graphs, Discrete Math. 307 (2007) 1572-1579.
[4] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170-2173.
[5] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[6] R. J. Gould, Updating the Hamiltonian problem - a survey, J. Graph Theory 15 (1991) 121-157.
[7] R. J. Gould, Advances on the Hamiltonian problem - a survey, Graphs Combin. 19 (2003) 7-52.
[8] R. J. Gould, Recent advances on the Hamiltonian problem: survey III, Graphs Combin. 30 (2014) 1-46.
[9] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox Jr., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[10] R. Li, New sufficient conditions for Hamiltonian and traceable graphs, Amer. Res. J. Math. 3 (2017) Article\# 3.
[11] E. Milovanović, M. Matejić, I. Milovanović, Some new upper bounds for the hyper-Zagreb index, Discrete Math. Lett. 1 (2019) 30-35.
[12] B. Ning, J. Ge, Spectral radius and Hamiltonian properties of graphs, Linear Multilinear Algebra 63 (2015) 1520-1530.

[^0]: *E-mail address: raol@usca.edu

