
Discrete Mathematics Letters
www.dmlett.com

Discrete Math. Lett. 1 (2019) 49–53

On the beta-number and gamma-number of galaxies

Rikio Ichishimaa,∗, Francesc A. Muntaner-Batleb, Akito Oshimab

aDepartment of Sport and Physical Education, Faculty of Physical Education, Kokushikan University, 7-3-1 Nagayama, Tama-shi, Tokyo 206-8515,
Japan
bGraph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built Envi-
ronment, The University of Newcastle, NSW 2308 Australia

(Received: 17 March 2019. Received in revised form: 5 April 2019. Accepted: 6 April 2019. Published online: 10 April 2019.)

c© 2019 the authors. This is an open access article under the CC BY (International 4.0) license (https://creativecommons.org/licenses/by/4.0/).

Abstract

The beta-number of a graph G is the smallest positive integer n for which there exists an injective function f :
V (G) → {0, 1, . . . , n} such that each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge labels is
{c, c+ 1, . . . , c+ |E (G)| − 1} for some positive integer c. The beta-number of G is +∞, otherwise. If c = 1, then
the resulting beta-number is called the strong beta-number of G. The gamma-number γ (G) of a graph G is the small-
est positive integer n for which there exists an injective function f : V (G)→ [0, n] such that each uv ∈ E (G) is labeled
|f (u)− f (v)| and the resulting edge labels are distinct. A galaxy is a forest for which each component is a star. In
this paper, we determine formulas for the (strong) beta-number and gamma-number of galaxies with five components.
As a corollary of these results, we provide formulas for the beta-number and gamma-number of the disjoint union of
multiple copies of the same galaxies if the number of copies is odd. Based on this work, we propose a new conjecture
on the beta-number of galaxies.
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1. Introduction

All graphs considered in this paper are finite and undirected without loops or multiple edges. The vertex set of a graph
G is denoted by V (G), while the edge set is denoted by E (G). The union G1 ∪ G2 of two subgraphs G1 and G2 of a
graph G is the graph with vertex set V (G1) ∪ V (G2) and edge set E (G1) ∪E (G2). The union of any finite number of
subgraphs is defined similarly.

For integers a and b with a ≤ b, we will denote the set {x ∈ Z : a ≤ x ≤ b} by writing [a, b], where Z denotes the set
of all integers. On the other hand, if a > b, then we treat [a, b] as the empty set. If such situation appears in particular
formulas for a given vertex labeling, then we ignore the corresponding portions of the formulas.

As a means of attacking graph decomposition problems, β-valuations were originated by Rosa [11]. For a graph G
of size q, an injective function f : V (G) → [0, q] is called a β-valuation if each uv ∈ E(G) is labeled |f(u) − f(v)| and
the resulting edge labels are distinct. Such a valuation is now commonly known as a graceful labeling (the term was
coined by Golomb [3]) and a graph with a graceful labeling is called graceful. Graceful labelings have been a major
focus of attention for many papers. For recent contributions to this subject and other types of labelings, the authors
refer the reader to the survey by Gallian [2].

The gamma-number γ (G) of a graphGwith V (G) = {vi : i ∈ [1, p]} is the smallest positive integer n for which there
exists an injective function f : V (G)→ [0, n] such that each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting edge
labels are distinct. Such functions always exist, one of which is to label vi by 2i−1 − 1. Hence, every graph G of order
p, γ (G) ≤ 2p−1 − 1, which shows that γ (G) < +∞. If G is a graph of size q with γ (G) = q, then G is graceful. Thus,
the gamma-number of a graph G is a measure of how close G is to being graceful. By definition, it is possible to label
the vertices of a graph G with distinct elements of the set [0, γ (G)] so that the edges of G receive distinct labels. Of
course, some vertex of G must be labeled γ (G); however, it is not known whether an edge of G must then be labeled
γ (G). This concept was introduced by Golomb [3]. At that time and in succeeding years, this concept has been studied
and referred to using different terminology. In fact, the gamma-number γ (G) of a graph G has often been called the
gracefulness of G.

A number of authors have invented analogues of gamma-number. For instance, the beta-number and strong beta-
number introduced in [10] are such type of parameters. The beta-number β (G) of a graph G with q edges is the

∗Corresponding author (ichishim@kokushikan.ac.jp)



smallest positive integer n for which there exists an injective function f : V (G) → [0, n] such that each uv ∈ E (G) is
labeled |f (u)− f (v)| and the resulting set of edge labels is [c, c+ q − 1] for some positive integer c. The beta-number
of G is +∞ if there exists no such integer n. If c = 1, then the resulting beta-number is called the strong beta-number
of G and is denoted by βs (G).

The following lemma taken from [10] describes how the parameters discussed so far are related.

Lemma 1.1. For every graph G of order p and size q,

max {p− 1, q} ≤ γ (G) ≤ β (G) ≤ βs (G) .

At this point, it is convenient to introduce some additional concepts and notation. The star with n + 1 vertices is
denoted by Sn. A galaxy is a forest for which each component is a star. For the sake of notational convenience, we will
denote the galaxy Sn1 ∪ Sn2 ∪ · · · ∪ Snk

by simply writing S (n1, n2, . . . , nk), where k ≥ 2.
In [10], it was determined the exact values of the (strong) beta-number of several classes of graphs including

galaxies with two components, and proved that every nontrivial tree and forest has finite strong beta-number. In [4]
the (strong) beta-number for forests with isomorphic components was studied and conjectured that the (strong) beta-
number and gamma-number of a forest of order p are either p − 1 or p. In [5] formulas for the (strong) beta-number
of galaxies with three and four components were found, and the following lower bound for the strong beta-number of
galaxies was established.

Theorem 1.1. Let G ∼= S (n1, n2, . . . , nk), where n1n2 · · ·nk is odd, and k ≡ 2 or 3 (mod 4). Then

βs (G) ≥ σk + k,

where σk = n1 + n2 + · · ·+ nk.

In this paper, we determine formulas for the (strong) beta-number and gamma-number of galaxies with five com-
ponents. As a corollary of these results, we provide formulas for the beta-number and gamma-number of the disjoint
union of multiple copies of the same galaxies if the number of copies is odd. These results add credence to the men-
tioned conjectures, and lead us to propose a new conjecture on the beta-number of galaxies.

There are other kinds of parameters that measure how close a graph is to being graceful. For further knowledge
on the (strong) beta-number of graphs and related concepts, the authors suggest that the reader consults the results
contained in [1, 5, 7–9, 12]. For the most recent advances on the mentioned conjectures on forests, the authors also
direct the reader to the papers [4,6,8].

To end this introduction, we state a result found in [4], which will prove to be useful later.

Theorem 1.2. If F is a forest of order p such that β (F ) = p− 1, then

β (mF ) = mp− 1

when m is odd.

2. Results on galaxies with five components

In this section, we present formulas for the (strong) beta-number of galaxies with five components and related results.
We start with the following theorem.

Theorem 2.1. Let G ∼= S (n1, n2, n3, n4, n5), where n1, n2, n3, n4 and n5 are positive integers with σ5 = n1 + n2 + n3 +

n4 + n5. Then
βs (G) = σ5 + 4.

Proof. Define the galaxy G with

V (G) = {xi : i ∈ [1, 5]} ∪

(
5⋃

i=1

{
yji : j ∈ [1, ni]

})

and

E (G) =

5⋃
i=1

{
xiy

j
i : j ∈ [1, ni]

}
.

In light of Lemma 1.1, it suffices to show that βs (G) ≤ σ5 + 4. Thus, consider the following four cases for the vertex
labeling f : V (G)→ [0, σ5 + 4].
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Case 1. For n1 = 2k1, n2 = 2k2, n3 = 2k3, n4 = 2k4 and n5 = 2k5, where ki is a positive integer for each i ∈ [1, 5], let

f (xi) =

{
i− 1 if i ∈ [1, 3] ,

2k1 + 2k2 + 2k3 + 2k4 + 2k5 + i− 1 if i ∈ [4, 5] ,

f
(
yj1

)
=


k2 + k3 + 3 if j = 1,

k2 + k3 + k5 + j + 2 if j ∈ [2, k1] ,

k2 + k3 + 2k4 + k5 + j if j ∈ [k1 + 1, 2k1] ,

f
(
yj2

)
=

{
k3 + j + 2 if j ∈ [1, k2] ,

2k1 + k3 + 2k4 + 2k5 + j + 1 if j ∈ [k2 + 1, 2k2] ,

f
(
yj3

)
=

{
j + 2 if j ∈ [1, k3] ,

2k1 + 2k2 + 2k4 + 2k5 + j + 2 if j ∈ [k3 + 1, 2k3] ,

f
(
yj4

)
=


k1 + k2 + k3 + k5 + j + 2 if j ∈ [1, 2k4 − 2] ,

2k1 + k2 + k3 + 2k4 + 2k5 + 1 if j = 2k4 − 1,

2k1 + 2k2 + k3 + 2k4 + 2k5 + 2 if j = 2k4,

f
(
yj5

)
=

{
k2 + k3 + j + 3 if j ∈ [1, k5] ,

2k1 + k2 + k3 + 2k4 + j if j ∈ [k5 + 1, 2k5] .

Case 2. For n1 = 2k1 − 1, n2 = 2k2, n3 = 2k3, n4 = 2k4 and n5 = k5, where ki is a positive integer for each i ∈ [1, 5], let

f (xi) =

{
i− 1 if i ∈ [1, 3] ,

2k1 + 2k2 + 2k3 + 2k4 + k5 + i− 2 if i ∈ [4, 5] ,

f
(
yj1

)
=

{
k2 + k3 + k4 + j + 1 if j ∈ [1, k1] ,

k2 + k3 + k4 + k5 + j + 1 if j ∈ [k1 + 1, 2k1 − 1] ,

f
(
yj2

)
=

{
k3 + j + 2 if j ∈ [1, k2] ,

2k1 + k3 + 2k4 + k5 + j if j ∈ [k2 + 1, 2k2] ,

f
(
yj3

)
=

{
j + 2 if j ∈ [1, k3] ,

2k1 + 2k2 + 2k4 + k5 + j + 1 if j ∈ [k3 + 1, 2k3] ,

f
(
yj4

)
=


k2 + k3 + j + 2 if j ∈ [1, k4 − 1] ,

2k1 + k2 + k3 + k5 + j + 1 if j ∈ [k4, 2k4 − 1] ,

2k1 + 2k2 + k3 + 2k4 + k5 + 1 if j = 2k4,

f
(
yj5

)
= k1 + k2 + k3 + k4 + j + 1 if j ∈ [1, k5] .

Case 3. For n1 = 2k1 − 1, n2 = 2k2 − 1, n3 = 2k3, n4 = k4 and n5 = 2k5 − 1, where ki is a positive integer for each
i ∈ [1, 5], let

f (xi) =

{
i− 1 if i ∈ [1, 3] ,

2k1 + 2k2 + 2k3 + k4 + 2k5 + i− 4 if i ∈ [4, 5] ,

f
(
yj1

)
=

{
k2 + k3 + k5 + j + 1 if j ∈ [1, k1 − 1] ,

k2 + k3 + k4 + k5 + j if j ∈ [k1, 2k1 − 1] ,
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f
(
yj2

)
=

{
k3 + j + 2 if j ∈ [1, k2] ,

2k1 + k3 + k4 + 2k5 + j − 1 if j ∈ [k2 + 1, 2k2 − 1] ,

f
(
yj3

)
=

{
j + 2 if j ∈ [1, k3] ,

2k1 + 2k2 + k4 + 2k5 + j − 1 if j ∈ [k3 + 1, 2k3] ,

f
(
yj4

)
=

{
k1 + k2 + k3 + k5 + j if j ∈ [1, k4 − 1] ,

2k1 + 2k2 + k3 + k4 + 2k5 − 1 if j = k4,

f
(
yj5

)
=

{
k2 + k3 + j + 2 if j ∈ [1, k5 − 1] ,

2k1 + k2 + k3 + k4 + j if j ∈ [k5, 2k5 − 1] .

Case 4. For n1 = 2k1 − 1, n2 = 2k2 − 1, n3 = 2k3 − 1, n4 = 2k4 − 1 and n5 = 2k5 − 1, where ki is a positive integer for
each i ∈ [1, 5], let

f (xi) =

{
i− 1 if i ∈ [1, 3] ,

2k1 + 2k2 + 2k3 + 2k4 + 2k5 + i− 6 if i ∈ [4, 5] ,

f
(
yj1

)
=

{
k2 + k3 + k4 + j if j ∈ [1, k1] ,

k2 + k3 + k4 + 2k5 + j − 2 if j ∈ [k1 + 1, 2k1 − 1] ,

f
(
yj2

)
=

{
k3 + j + 2 if j ∈ [1, k2 − 1] ,

2k1 + k3 + 2k4 + 2k5 + j − 2 if j ∈ [k2, 2k2 − 1] ,

f
(
yj3

)
=

{
j + 2 if j ∈ [1, k3] ,

2k1 + 2k2 + 2k4 + 2k5 + j − 2 if j ∈ [k3 + 1, 2k3 − 1] ,

f
(
yj4

)
=

{
k2 + k3 + j + 1 if j ∈ [1, k4 − 1] ,

2k1 + k2 + k3 + 2k5 + j − 2 if j ∈ [k4, 2k4 − 1] ,

f
(
yj5

)
=

{
k1 + k2 + k3 + k4 + j if j ∈ [1, 2k5 − 2] ,

2k1 + 2k2 + k3 + 2k4 + 2k5 − 2 if j = 2k5 − 1.

Therefore, f satisfies the necessary requirements for βs (G), which implies that βs (G) ≤ σ5 + 4.

As a simple consequence of Lemma 1.1 and Theorem 2.1, we have the following result.

Corollary 2.1. Let G ∼= S (n1, n2, n3, n4, n5), where n1, n2, n3, n4 and n5 are positive integers with σ5 = n1 + n2 + n3 +

n4 + n5. Then
β (G) = γ (G) = σ5 + 4.

Applying Theorem 1.2 with Corollary 2.1, we obtain the following result.

Corollary 2.2. Let G ∼= S (n1, n2, n3, n4, n5), where m is odd and n1, n2, n3, n4, n5 are positive integers with σ5 =

n1 + n2 + n3 + n4 + n5. Then
β (m (G)) = γ (m (G)) = m (σ5 + 5)− 1.

3. Conclusion

It was determined in [4] that βs (S (n1, n2, n3)) = σ3 + 2 if n1n2n3 is even, βs (S (n1, n2, n3)) = σ3 + 2 if n1n2n3 is odd
and βs (S (n1, n2, n3, n4)) = σ4 + 3 for positive integers n1, n2, n3 and n4, and proposed the following conjecture.

Conjecture 3.1. Let G ∼= S (n1, n2, . . . , nk), where n1, n2, . . . , nk are positive integers with σk = n1+n2+ · · ·+nk. Then

βs (G) =

{
σk + k if n1n2 · · ·nk is even, or k ≡ 0 or 1 (mod 4),

σk + k − 1 if n1n2 · · ·nk is odd, and k ≡ 2 or 3 (mod 4).
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To put forth a conjecture for the beta-number of galaxies, we now make some remarks. It is known from [6]
that β (S (n1, n2)) = σ2 + 1 if n1n2 is even, and β (S (n1, n2)) = σ2 + 2 if n1n2 is odd. It is also known from [5] that
β (S (n1, n2, n3)) = σ3 + 2 and β (S (n1, n2, n3, n4)) = σ4 + 3 for positive integers n1, n2, n3 and n4. Therefore, all these
facts together with the results in this paper lead us to propose the following conjecture.

Conjecture 3.2. Let G ∼= S (n1, n2, . . . , nk), where n1, n2, . . . , nk are positive integers with σk = n1+n2+ · · ·+nk. Then

β (G) =

{
σk + k if n1n2 · · ·nk is odd and k ≡ 2 (mod 4),

σk + k − 1 otherwise.
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