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Abstract

The variable sum exdeg index of a graph G is defined as SEIa(G) =
∑

uv∈E(G)(a
d(u) + ad(v)), where d(u) is the degree

of a vertex u and a 6= 1 is a positive real number. In [1], maximal trees, unicyclic and bicyclic graphs (i.e., graphs with
cyclomatic number 0, 1 and 2) and minimal trees and unicyclic graphs (i.e., graphs with cyclomatic number 0 and 1)
with respect to variable sum exdeg index for a > 1 were determined. Here, we extend those results in two directions.
Firstly, for a > 1, we characterize the extremal graphs with a cyclomatic number k ≤ n− 2, where n is the order of G.
Secondly, for 0 < a < 1/e2 ≈ 0.135335, we characterize the extremal graphs with k ≤ n − 2, and for 0 < a < 1/3, we
characterize the trees, unicyclic, bicyclic, tricyclic and tetracyclic graphs having maximal SEIa value.
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1. Introduction and preliminaries

Chemical graphs have long been used to study molecules and macromolecules such as organic compounds, nucleic
acids, and proteins. Vertices in a chemical graph correspond to the atoms while edges represent the covalent bonds
between atoms [4, 10]. In theoretical chemistry, the physicochemical properties of chemical compounds are often
modeled by the topological indices [3,9]. Topological indices are numerical quantities of molecular graph, which are
invariant under graph isomorphism [3]. In 2011, Vukičević [11] proposed the following topological index (and named it
as the variable sum exdeg index) for predicting the octanol-water partition coefficient of certain chemical compounds:

SEIa(G) =
∑

uv∈E(G)

(ad(u) + ad(v)),

where a 6= 1 is a positive real number, E(G) is the edge set of the molecular graph G, d(u) is degree of the vertex u.
Among the set of 102 topological indices [8] proposed by the International Academy of Mathematical Chemistry [5]
(respectively, among the discrete Adriatic indices [13]), the best topological index for predicting the octanol-water
partition coefficient of octane isomers has 0.29 (respectively 0.36) coefficient of determination. While the variable
sum exdeg index SEI0.37 has 0.99 coefficient of determination, for predicting the aforementioned property of octane
isomers [11]. It is, therefore, interesting to study the mathematical properties of the variable sum exdeg index SEIa,
particularly the variable sum exdeg index SEI0.37. Vukičević [12] initiated the mathematical study of the variable
sum exdeg index SEIa. For a > 1, he found the extremal graphs with respect to the SEIa among the classes of all n-
vertex (i) connected graphs (ii) trees (iii) unicyclic graphs (iv) chemical graphs (v) chemical trees (vi) chemical unicyclic
graphs (vii) graphs with given maximal degree (viii) graphs with given minimal degree (ix) trees with given number
of pendant vertices (x) connected graphs with given number of pendant vertices. For 0 < a < 1, the extremal graphs
with respect to the SEIa among the collections (iv), (v), (vi) were presented in [12] and characterizing the extremal
graphs in the remaining seven collections was left as an open problem. Yarahmadi and Ashrafi [14] proposed a
notion of the variable sum exdeg polynomial, studied the effects of this polynomial under some graph operations
and investigated the behaviour of some nanotubes and nanotori under the aforementioned polynomial. Recently,
Ghalavand and Ashrafi [1] found the extremal graphs with respect to the SEIa (for a > 1) among the classes of all
n-vertex trees and unicyclic graphs by using the majorization technique. The same authors also characterized the
graphs having maximum SEIa value (for a > 1) among the collections of all n-vertex bicyclic and tricyclic graphs.
Recently Ali and Dimitrov [2] provided alternative proofs of four main results proved in [1] and extended the results
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from [1] for tetracyclic graphs. In [7], the problem of finding extremal graphs with respect variable sum exdeg index
among the trees having vertices with prescribed degree was attempted.

Let G be a simple connected graph with the vertex set V (G) = {v1, v2, · · · , vn}. For vi ∈ V (G), let d(vi) (or simply
di) denote the degree of vi, that is, the number of edges incident to vi. The sequence D(G) = (d1, d2, . . . , dn) is called
degree sequence of the graph G. In the rest of paper, it will be assumed that d1 ≥ d2 ≥ · · · ≥ dn.

The variable sum exdeg index of G can be expressed as

SEIa(G) =
∑

u∈V (G)

d(u)ad(u) =
∑

u∈V (G)

fa(u).

The last equality indicates that the variable sum exdeg index with a given a depends only on the degree sequence of
G.

In the sequel we present some notation that will be used in the rest of the paper.
The cyclomatic number (or the circuit rank) of an undirected graph G is the minimum number of edges whose

removal from G breaks all its cycles, making it into a tree or a forest. The cyclomatic number r can be expressed as
r = |E(G)| − |V (G)| + |C(G)|, where |C(G)| is the number of connected components of G. Since we are interested in
connected graphs, we will assume that |C(G)| = 1. Connected graphs with r = 0, 1, 2, 3 are also called trees, unicyclic,
bicyclic and tricyclic graphs. As usual, the n-vertex star graph is denoted by Sn. The unique n-vertex unicyclic graph
obtained from Sn by adding an edge is denoted by S+

n .
A function f(x) is convex on an interval [a, b] if for any x1 and x2 in [a, b] and any λ, where 0 < λ < 1, f(λx1 + (1−

λ)x2) ≤ λf(x1) + (1 − λ)f(x2). If the inequality above is strict for all x1 and x2, then f(x) is called strictly convex. If
the sign of the inequality is reversed, the function is called (strictly) concave.

Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be non-increasing sequences of real numbers. Then x majorizes y if,
for each k = 1, 2, . . . , n,

∑k
i=1 xi ≥

∑k
i=1 yi, with equality if k = n, and we write x < y. If x 6= y, we write x � y.

The next inequality, known as Karamata’s inequality [6], plays an important role in deriving the main result of
this note.

Theorem 1.1. Let U ⊆ R be an open interval and f : U → U a convex function. Let x = (x1, x2, ..., xn) and y =

(y1, y2, ..., yn) be two non-increasing sequences in U . If x < y then
∑n

i=1 f(xi) ≥
∑n

i=1 f(yi). Moreover, if f is a strictly
convex function, then the above inequality holds with equality if and only if x = y, and the inequality is reversed if f is
concave.

In this work, firstly, we extend the work of Ghalavand and Ashrafi [1] by characterizing the extremal graphs with
a cyclomatic number k ≤ n− 2 with respect to the SEIa, for a > 1. We obtain those characterizations also by applying
the majorization technique and the Karamata’s inequality.

Next, we characterize the extremal graphs with a cyclomatic number k ≤ n − 2 with respect to the SEIa, for
0 < a < 1/e2 ≈ 0.135335. It turns out that for the case 1/e2 ≈ 0.135335 < a < 1, the majorization technique is not
applicable. Instead, here, we show a certain property of the graphs with maximal SEIa, which significantly reduces the
searching space within the considered family of graphs. With help of this property, we characterize trees, unicyclic,
bicyclic, tricyclic and tetracyclic graphs with maximal SEIa, for 0 < a < 1/3. Thereby, we give (partial) solutions to
some uncovered cases and open problems from [1,12].

2. Extremal graphs with cyclomatic number k

2.1 Extremal graphs for a > 1

The following theorem was presented in [1] and it will be used in the proofs in the rest of this paper.

Theorem 2.1. LetG andG′ be two simple connected graphs with degree sequencesD(G) = (d1, d2, . . . , dn) andD(G′) =

(d′1, d
′
2, . . . , d

′
n). If a > 1 and D(G) < D(G′) then SEIa(G) ≥ SEIa(G

′) with equality if and only if D(G) = D(G′).

Next, we characterize the graphs with maximal variable sum exdeg index with an cyclomatic number k.

Theorem 2.2. Among all graphs with n vertices and cyclomatic number k, 1 ≤ k ≤ n− 2, a graph Gk with the degree
sequence D(Gk) = (n− 1, k + 1, 2, . . . , 2︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
n−k−2

) has the maximal variable sum exdeg index for a > 1.

Proof. Let G an arbitrary connected simple graph with n vertices and with cyclomatic number k, which is different
than Gk with D(G) = (d′1, d

′
2, . . . , d

′
n). It holds that

∑n
i=1 di =

∑n
i=1 d

′
i = 2n+ 2k − 2 and that at least k + 2 vertices of

G have degree at least 2.

43



We show that D(Gk) � D(G), by considering few cases with respect to the value of the index j in the sums
∑j

i=1 di

and
∑j

i=1 d
′
i.

For j = 1, it holds that d1 ≥ d′1, since d1 = n− 1.
For j = 2 we have that d′1 + d′2 ≤ 2n + 2k − 2 − 2k − (n − k − 2) = n + k. It holds that d1 + d2 = n + k, and thus

d1 + d2 ≥ d′1 + d′2.
Consider now the case 3 ≤ j ≤ k+2. Here we have that

∑j
i=1 d

′
i ≤ 2n+2k−2−2(k+2−j)−(n−k−2) = n+k+2j−4.

On the other hand
∑j

i=1 di = n−1+k+1+2(j−2) = n+k+2j−4. Therefore, also in this case we have
∑j

i=1 di ≥
∑j

i=1 d
′
i.

The last case is when k + 3 ≤ j ≤ n. Then,
∑j

i=1 d
′
i ≤ 2n + 2k − 2 − (n − j) = n + 2k + j − 2. We have that∑j

i=1 di = n− 1 + k+ 1+ 2k+ (j − k− 2) = n+ 2k+ j − 2, and consequently also in this case holds
∑j

i=1 di ≥
∑j

i=1 d
′
i.

Thus, we have shown that
∑i

k=1 dk ≥
∑i

k=1 d
′
k, for any i ∈ [1, n], or that D(Gk) � D(G). By Theorem 2.1 we have

that SEIa(Gk) > SEIa(G).

As special instances of Theorem 2.2 we have the following corollaries.

Corollary 2.1. Among all trees graphs, a star graph Sn with the degree sequence (n − 1, 1, . . . , 1︸ ︷︷ ︸
n−1

) has the maximal

variable sum exdeg index for a > 1.

Corollary 2.2. Among all unicyclic graphs, a graph Un with the degree sequence (n−1, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

) has the maximal

variable sum exdeg index for a > 1.

Corollary 2.3. Among all bicyclic graphs, a graph with the degree sequence (n − 1, 3, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−4

) has the maximal

variable sum exdeg index for a > 1.

Corollary 2.4. Among all tricyclic graphs, a graph with the degree sequence (n− 1, 4, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸
n−5

) has the maximal

variable sum exdeg index for a > 1.

We would like to note that Corollaries 2.1, 2.2 and 2.3 coincide with the main results from [1]. However, in
[1] it was claimed that among tricyclic graphs, a graph with the degree sequence (n − 1, 3, 3, 2, 2, 1, . . . , 1︸ ︷︷ ︸

n−5

) has the

maximal variable sum exdeg index for a > 1. A direct calculation shows that a graph with the degree sequence
(n− 1, 4, 2, 2, 2, 1, . . . , 1︸ ︷︷ ︸

n−5

) has a larger maximal variable sum exdeg index.

Next, we characterize the graphs with minimal variable sum exdeg index with an cyclomatic number k.

Theorem 2.3. Let Gk be a graph with n vertices, cyclomatic number k, 1 ≤ k ≤ n − 2, that has the minimal variable
sum exdeg index for a > 1. Let x = b 2n+2k−2

n c and y ≡ 2n+ 2k − 2n. Then, D(Gk) = (x+ 1, . . . , x+ 1︸ ︷︷ ︸
y

, x, . . . , x︸ ︷︷ ︸
n−y

).

Proof. Let G an arbitrary connected simple graph with n vertices and with cyclomatic number k, which is different
than Gk with D(G) = (d′1, d

′
2, . . . , d

′
n). Let denote the degree sequence of Gk as D(Gk) = (d1, d2, . . . , dn).

Observe that when the sum of degrees of Gk, 2n+ 2k − 2 is divisible by n then y = 0, and D(Gk) = (x, . . . , x︸ ︷︷ ︸
n

).

Assume that there are l1 degrees in G that have degree larger than x+1 (or x, when 2n+2k− 2 is divisible by n),
l2 degrees in G are same as in Gk, and l3 degrees in G are smaller than x. It holds that x+ 1 (or x, when 2n+ 2k − 2

is divisible by n) is the smallest maximal degree that a graph with a cyclomatic number k can have. Thus, it follows
that l1, l3 > 0. It holds that

l1∑
i=1

d′i >

l1∑
i=1

di,

n∑
i=l1+l2+1

d′i <

n∑
i=l1+l2+1

di,

l1+l2∑
i=l1+1

d′i =

l1+l2∑
i=l1+1

di, and (1)

l1∑
i=1

d′i +

n∑
i=l1+l2+1

d′i =

l1∑
i=1

di +

n∑
i=l1+l2+1

di. (2)
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Since dn = x and d′n < x, we have from (2)

l1∑
i=1

d′i +

n−1∑
i=l1+l2+1

d′i >

l1∑
i=1

di +

n−1∑
i=l1+l2+1

di. (3)

From (1) and (3), it follows that

n−1∑
i=1

d′i >

n−1∑
i=1

di.

Together with
∑n

i=1 d
′
i =

∑n
i=1 di, it follows that D(G) � D(Gk), and thus, by Theorem 2.1 SEIa(G) < SEIa(Gk).

As special instances of Theorem 2.3, we have the following corollaries.

Corollary 2.5. Among all unicyclic graphs the cyclic graph Cn has the minimal variable sum exdeg index for a > 1.

Corollary 2.6. Among all bicyclic graphs a graph with the degree sequence (3, 3, 2, . . . , 2︸ ︷︷ ︸
n−2

) has the minimal variable

sum exdeg index for a > 1.

Corollary 2.7. Among all tricyclic graphs a graph with the degree sequence (3, 3, 3, 3, 2, . . . , 2︸ ︷︷ ︸
n−4

) has the minimal variable

sum exdeg index for a > 1.

We would like to note that Corollaries 2.5 and 2.6 coincide with the main results from [1].
In the next section, we consider the extremal graphs with respect to the variable sum exdeg index for 0 < a < 1,

the interval that was not considered before. Here, we characterize the extremal trees, unicyclic, bicyclic, tricyclic and
tetracyclic graphs.

2.2 Extremal graphs for 0 < a < 1

The first and the second derivative of the function fa(x) = xax are

d fa(x)

d x
= ax + axx ln a and d2 fa(x)

d x2
= 2ax ln a+ axx(ln a)2.

The maximum of fa(x) is reached at x = −1/ ln a and it has one inflection point at x = −2/ ln a. Thus, the function
is increasing for 0 < x < −1/ ln a decreasing for x > −1/ ln a, for 0 < x < −2/ ln a it si concave, while for x > −2/ ln a
it is convex. Thus, for 0 < a < 1 is in general neither concave nor convex. As consequence, we cannot apply the above
used majorization technique for all a ∈ (0, 1). Instead, we consider subintervals of (0, 1). First, we consider when
a ∈ (0, 1/e2) ≈ (0, 0.135335).

Theorem 2.4. Among all graphs with n vertices and cyclomatic number k, 1 ≤ k ≤ n− 2, a graph Gk with the degree
sequenceD(Gk) = (n−1, k+1, 2, . . . , 2︸ ︷︷ ︸

k

, 1, . . . , 1︸ ︷︷ ︸
n−k−2

) has the maximal variable sum exdeg index for 0 < a < 1/e2 ≈ 0.135335.

Proof. For a < 1/e2 the inflection point of fa(x) is smaller than 1, and thus, for x > 1 the function fa<0.135335(x) is
convex. The rest of the proof is identical with the proof of Theorem 2.2.

The proof of the following result follows also from the fact that fa<0.135335(x) is convex and from the proof of Theo-
rem 2.3, and therefore, it will be omitted.

Theorem 2.5. Let Gk be a graph with n vertices, cyclomatic number k, 1 ≤ k ≤ n − 2, that has the minimal vari-
able sum exdeg index for 0 < a < 1/e2 ≈ 0.135335. Let x = b 2n+2k−2

n c and y ≡ 2n + 2k − 2n. Then, D(Gk) =

(x+ 1, . . . , x+ 1︸ ︷︷ ︸
y

, x, . . . , x︸ ︷︷ ︸
n−y

).

Next, we show the following property of the extremal graphs in this case 0 < a < 1/3, which significantly reduces
the searching space within the family of trees, unicyclic, bicyclic, tricyclic and tetracyclic graphs.

Lemma 2.1. Let G be a graph with n vertices and cyclomatic number k, 1 ≤ k ≤
(
n
2

)
− n + 1 a graph Gk. If G has

maximal variable sum exdeg index for 0 < a < 1/3, then maximal degree in G is n-1.
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Proof. For a < 1/e ≈ 0.367879, fa(x), x > 1 is decreasing. For a < 1/3, f(x) has its maximum for xm < 0.91024 and the
inflection point xi < 1.82048. The function fa(x) for 0 < x < xm is concave, while for x > xm is convex. For a < 1/3, it
holds

fa(1)− fa(2) > fa(2)− fa(3) and fa(2)− fa(3) > fa(3)− fa(4). (4)

The slope of fa(x), f ′a(x) is maximal for xi = 1.82048 and it is decreasing function for x > xi. This together with (4)
implies

fa(k − 1)− fa(k) > fa(l)− fa(l + 1), for l ≥ k ≥ 2,

fa(k − s)− fa(k) > fa(l)− fa(l + s), for l ≥ k ≥ s+ 1. (5)

Suppose that the statement of the theorem is false and G has maximal degree at most n − 2. Let u be a vertex
of G with maximum degree. The assumption d(u) ≤ n − 2 implies that there exists a vertex v1 ∈ V (G), which is not
adjacent with u. Let v be a non-pendent neighbor of v1. Then, N(v) \ N(u) is not-empty. Here, N(x) denotes the
neighbors of a vertex x. Let N(v) \N(u) = {v1, v2, . . . , vs}. Suppose that G′ is the graph obtained from G by removing
the edges vv1, vv2, . . . , vvs and adding the edges uv1, uv2, . . . , uvs. Then,

SEIa(G
′)− SEIa(G) = f(d(v)− s) + f(d(u) + s)− f(d(v))− f(d(u)

= f(d(v)− s)− f(d(v))− (f(d(u))− f(d(u) + s)). (6)

From (5) it follows that (6) is larger than 0, and thus SEIa(G
′) > SEIa(G), which is a contradiction to the initial

assumption that G is a graph maximal variable sum exdeg index.

Now, we can obtain trees, unicyclic, bicyclic, tricyclic and tetracyclic graphs with maximum value of the SEIa,
0 < a < 1/3. Recall that by S+

n , we denote the unique n-vertex unicyclic graph obtained from Sn by adding an edge.

Theorem 2.6. For 0 < a < 1/3, the graphs Sn, S
+
n , B1 (depicted in Figure 1) have the maximum SEIa values among

trees, unicyclic, and bicyclic graphs, respectively. For 1
4 ≤ a < 1

3 and for 0 < a ≤ 1
4 the graphs G4 and G5 (depicted in

Figure 2), respectively, have the maximum SEIa values among tricyclic graphs. For 0.22042795720542145 < a < 1
3 and

for 0 < a < 0.22042795720542144 the graphs H4 and H5 (depicted in Figure 3), respectively, have the maximum SEIa

values among tetracyclic graphs.

B1 B2

︷ ︸︸ ︷ ︷ ︸︸ ︷n− 4 ≥ 0 n− 5 ≥ 0

Figure 1: All non-isomorphic n-vertex bicyclic graphs with maximum degree n− 1.

Proof. Due to Lemma 2.1, we need to consider only those graphs, which have at least one vertex of degree n−1. There
is only one n-vertex tree, unicyclic graph, namely Sn, S+

n respectively, having maximum vertex degree n−1. Also, there
are only two non-isomorphic n-vertex bicyclic graphsB1 andB2, depicted in Figure 1. Moreover, all the non-isomorphic
n-vertex tricyclic graphsG1, G2, ..., G5 and all the non-isomorphic n-vertex tetracyclic graphsH1, H2, ...,H11 are shown
in Figure 2 and Figure 3, respectively. Routine calculations yield: SEIa(B1)− SEIa(B2) = a(1− 4a+ 3a2),SEIa(G4)−
SEIa(G1) = 2a(1 − 3a + 2a3),SEIa(G4) − SEIa(G2) = a(1 − 2a − 3a2 + 4a3),SEIa(G4) − SEIa(G3) = 2a2(1 − 3a + 2a2),
which are all positive for a < 1/3. Also,

SEIa(G4)− SEIa(G5) = a(−1 + 6a− 9a2 + 4a3)


> 0 for 1

4 < a < 1
3 ,

< 0 for 0 < a < 1
4 ,

= 0 for a = 1
4 .
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︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷n− 7 ≥ 0 n− 6 ≥ 0 n− 5 ≥ 0 n− 5 ≥ 0 n− 4 ≥ 0

G1 G2 G3 G4 G5

Figure 2: All non-isomorphic n-vertex tricyclic graphs with maximum degree n− 1.

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

︷ ︸︸ ︷

n− 9 ≥ 0 n− 7 ≥ 0 n− 6 ≥ 0 n− 6 ≥ 0 n− 5 ≥ 0

n− 6 ≥ 0 n− 6 ≥ 0 n− 5 ≥ 0 n− 7 ≥ 0 n− 7 ≥ 0

n− 8 ≥ 0

H1 H2 H3 H4 H5

H6 H7 H8 H9 H10

H11

Figure 3: All non-isomorphic n-vertex tetracyclic graphs with maximum degree n− 1.

After similar calculations, we obtain SEIa(H5)−SEIa(H8) > 0 and SEIa(H4)−SEIa(Hi) > 0, where i ∈ {1, 2, 3, ..., 11} \
{5, 8} and 0 < a < 1/3. Furthermore,

SEIa(H4)− SEIa(H5) = a(−1 + 6a− 6a2 − 4a3 + 5a4)

{
> 0 for 0.22042795720542145 < a < 1

3 ,

< 0 for 0 < a < 0.22042795720542144.

Observe that the exact solution of the equality−1+6a−6a2−4a3+5a4 = 0 (the case when SEIa(G4) = SEIa(G5)), for a ∈
(0, 1/3], has infinite decimal representations and it lies in the interval (0.22042795720542144, 0.22042795720542145).

3. Concluding comments

By using the majorization technique, we have determined the graphs having maximal and minimal variable sum
exdeg index SEIa from the class of graphs with n vertices and k cyclomatic number for 0 < a < 1/e2 ≈ 0.135335

and a > 1. It turns out that for the case 1/e2 ≈ 0.135335 < a < 1, the majorization technique is not applicable.
Instead, here, we show a certain property of the graphs with maximal SEIa, which significantly reduces the searching
space within the considered family of graphs. With help of this property, we characterize trees, unicyclic, bicyclic,
tricyclic and tetracyclic graphs with maximal SEIa, for 0 < a < 1/3. Consequently, we give (partial) solutions to some
uncovered cases and open problems from [1,12].

We would like to mention that the problem of finding the extremal graphs with respect to the variable sum exdeg
index SEIa, 1/e2 < a < 1, having a fixed cyclomatic number is open. Theorem 2.6 provides a step towards its solution.

47



Acknowledgment

This work was partially supported by Slovenian research agency ARRS, program no. P1-0383.

References
[1] A. Ghalavand, A. R. Ashrafi, Extremal graphs with respect to variable sum exdeg index via majorization, Appl. Math. Comput. 303 (2017)

19–23.
[2] A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math. 238 (2018) 32–40.
[3] I. Gutman, B. Furtula (Eds.), Novel molecular structure descriptors – theory and applications, vols. I-II, Univ. Kragujevac, Kragujevac, 2010.
[4] I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Spinger, Berlin, 1986.
[5] http://www.iamc-online.org/
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