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Abstract

In analogy to a concept of Fibonacci trees, we define the leaf-Fibonacci tree of size n and investigate its number of
nonisomorphic leaf-induced subtrees. Denote by f0 the one vertex tree and by f1 the tree that consists of a root with
two leaves attached to it; the leaf-Fibonacci tree fn of size n ≥ 2 is the binary tree whose branches are fn−1 and fn−2.
We derive a nonlinear difference equation for the number N(fn) of nonisomorphic leaf-induced subtrees (subtrees
induced by leaves) of fn, and also prove that N(fn) is asymptotic to K1 · Kφn

2 as n tends to infinity, where φ is the
golden ratio and K1,K2 are explicitly calculated constants.
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1. Introduction

Fibonacci trees provide an alternative approach to a binary search in computer science and information processing [12,
p. 417]. The Fibonacci tree of order n is defined as the binary tree whose left branch is the Fibonacci tree of order
n− 1 and right branch is the Fibonacci tree of order n− 2, while the Fibonacci tree of order 0 or 1 is the tree with only
one vertex [12]. We show in Figure 1 the Fibonacci tree of order 5.

Figure 1: The Fibonacci tree of order 5.

Thus, the Fibonacci tree of order n has precisely Fn+1 leaves (so 2Fn+1 − 1 vertices), where Fn denotes the n-th
Fibonacci number:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 1 .

Fibonacci trees form a subclass of the so-called AVL (“Adel’son-Vel’skii and Landis”—named after the inventors)
trees [1]; these trees have the defining property that for every internal vertex v, the heights (i.e., the greatest distance
to a leaf from the root) of the left and right branches of the subtree rooted at v (consisting of v and all its descendants)
differ by at most one. Figure 2 shows an AVL tree of height 3. For more information on Fibonacci trees and their uses,
we refer to [9–11,15].

In analogy to the concept of Fibonacci trees, we define the leaf-Fibonacci tree of size n as follows:

• Denote by f0 the tree with only one vertex and by f1 the tree that consists of a root with two leaves attached to
it;

• For n ≥ 2, connect the roots of the trees fn−1 and fn−2 to a new common vertex to obtain the tree fn.
∗E-mail address: audace@aims.ac.za



Figure 2: An AVL tree of height 3.

In other words, the leaf-Fibonacci tree fn of size n ≥ 2 is the binary tree whose branches are the leaf-Fibonacci trees
fn−1 and fn−2. Hence, fn has precisely Fn+2 leaves, where Fn is the n-th Fibonacci number (F1 = 1, F2 = 1, F3 =

2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, . . .). Figure 3 shows the leaf-Fibonacci tree of size 5.

Figure 3: The leaf-Fibonacci tree of size 5.

Let T be a rooted tree without vertices of outdegree 1 (also known as topological or series-reduced or homeomor-
phically irreducible trees [2,3,6,14]). Every choice of k leaves of T induces another topological tree, which is obtained
by extracting the minimal subtree of T that contains all the k leaves and contracting (if any) all vertices of outdegree
1; see Figure 4 for an illustration.

`1 `2 `3 `4 `1 `2 `3 `4

Figure 4: A topological tree (on the left) and the subtree induced by the leaves `1, `2, `3, `4 (on the right).

Every subtree obtained through this operation is sometimes referred to as a leaf-induced subtree [4–6]. We note
that the study of leaf-induced subtrees of binary trees finds a noteworthy relevance in phylogenetics—see Semple and
Steel’s book [13] which describes the mathematical foundations of phylogenetics.

In this note, we shall be interested in the number of nonisomorphic leaf-induced subtrees of a leaf-Fibonacci tree
of size n. Two rooted trees are said to be isomorphic if there is a graph isomorphism (preserving adjacency) between
them that maps the root of one to the root of the other. It is important to note that the problem of enumerating leaf-
induced subtrees becomes trivial if isomorphisms are not taken into account: in fact, it is clear that every topological
tree with n leaves has exactly 2n − 1 leaf-induced subtrees.

We mention that nonisomorphic leaf-induced subtrees of a topological tree have been studied only very recently:
Wagner and Dossou-Olory [7] obtained exact and asymptotic enumeration results on the number of nonisomorphic
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leaf-induced subtrees of two classes of d-ary trees, namely the so-called d-ary caterpillars and even d-ary trees. In [7],
the authors also derived extremal results for the number of root containing leaf-induced subtrees of a topological tree.

We shall denote the number of nonisomorphic leaf-induced subtrees of the leaf-Fibonacci tree fn by N(fn). Our
main results are a recurrence relation and an asymptotic formula for N(fn). As it turns out, the plan to compute
N(fn) will be to consider the number of root containing leaf-induced subtrees of fn.

In [16], Wagner studied the number of independent vertex subsets (sets of vertices containing no pair of adjacent
vertices) of a Fibonacci tree of order n with the notable difference that in his context, the Fibonacci tree of order 0

has no vertices. Wagner derived a system of recurrence relations for the number of independent vertex subsets of a
Fibonacci tree of an arbitrary order n, and also proved that there are positive constantsA,B > 0 such that the number
of independent vertex subsets of a Fibonacci tree of order n is asymptotic toA·BFn as n tends to infinity. In the present
study, we obtain a similar asymptotic formula for the number N(fn) of nonisomorphic leaf-induced subtrees of the
leaf-Fibonacci tree of size n: we demonstrate that for some effectively computable constants A1, A2 > 0,

N(fn) ∼ A1 ·AFn
2 as n→∞ .

2. Main results

We note from the recursive definition of the tree fn that fm is a leaf-induced subtree of fn for every m ≤ n. However,
not every leaf-induced subtree of fn is again a leaf-Fibonacci tree: in fact, by repeatedly removing leaves from fn, one
easily sees that fn has leaf-induced subtrees of every number of leaves k between 1 and n.

As was mentionned in the introduction, the plan to compute N(fn) will be to consider the number of root containing
leaf-induced subtrees of fn. In Lemma 2.1, we show that among all isomorphic leaf-induced subtrees with two or more
leaves of fn, there is always at least one of them that contains the root of fn.

Lemma 2.1. All nonisomorphic leaf-induced subtrees with two or more leaves of the leaf-Fibonacci tree fn can be
identified as containing the root of fn.

Proof. The tree f0 has only one vertex which is also its leaf and root, so the statement holds vacuously for n = 0. The
statement is trivial for n = 1 (f1 is the only leaf-induced subtree in this case). Let n > 1 and consider a subset of k > 1

leaves of fn. We argue by double induction on n and k:

• If all k leaves belong to fn−1 then by the induction hypothesis on n, the induced subtree with k leaves contains
the root of fn−1. Moreover, by the induction hypothesis on k, the tree fn−1 can be identified as containing the root
of fn (as fn−1 is clearly a leaf-induced subtree of fn). Hence, the induced subtree with k leaves can be identified
as containing the root of fn.

• If all k leaves belong to fn−2, then we also deduce by the induction hypothesis that the induced subtree with k

leaves is a root containing leaf-induced subtree of fn.

• If k1 leaves belong to fn−1 and k−k1 leaves belong to fn−2, then by the induction hypothesis, the induced subtrees
with k1 and k−k1 leaves are root containing leaf-induced subtrees of fn−1 and fn−2, respectively. Consequently,
the root of the induced subtree with k leaves coincides with the root of fn.

This completes the induction step as well as the proof of the lemma.

We then obtain the following proposition.

Proposition 2.1. The number N(fn) of nonisomorphic leaf-induced subtrees of the leaf-Fibonacci tree fn satisfies the
following nonlinear recurrence relation:

N(fn) = 1 +
1

2
N(fn−2)−

1

2
N(fn−2)

2 + N(fn−2) ·N(fn−1) (1)

with initial values N(f0) = 1,N(f1) = 2.

Proof. It is obvious that N(f0) = 1 and N(f1) = 2. Let n > 1. By Lemma 2.1, N(fn) is precisely one more the number of
nonisomorphic root containing leaf-induced subtrees of fn (the subtree with only one vertex has been included). Since
all leaf-induced subtrees of the leaf-Fibonacci tree fn−2 are again leaf-induced subtrees of fn−1, the nonisomorphic
root containing leaf-induced subtrees of fn can be categorised by two types of enumeration:
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• Both branches of the induced subtree are leaf-induced subtrees of fn−2. The total number of these possibilities
is
(
1+N(fn−2)

2

)
as the induced subtrees have to be nonisomorphic.

• One of the branches of the induced subtree is a leaf-induced subtree of fn−2 while the other branch is a leaf-
induced subtree of fn−1 but does not belong to the set of leaf-induced subtrees of fn−2. The total number of these
possibilities is N(fn−2)(N(fn−1)−N(fn−2)).

Therefore, we obtain

N(fn) = 1 +

(
1 + N(fn−2)

2

)
+ N(fn−2)(N(fn−1)−N(fn−2))

= 1 +
1

2
N(fn−2)−

1

2
N(fn−2)

2 + N(fn−2) ·N(fn−1) ,

which completes the proof of the proposition.

The sequence (N(fn))n≥0 starts as

N(f0) = 1, N(f1) = 2, N(f2) = 3, N(f3) = 6, N(f4) = 16, N(f5) = 82, N(f6) = 1193,

N(f7) = 94506, N(f8) = 112034631, . . .

It seems that recursion (1) cannot be solved explicitly: in fact, we fail to find a transformation strategy that can
reduce (1) to a linear recursion. Therefore, finding an asymptotic formula should be in order. In the following theorem,
we show that N(fn) grows doubly exponentially in n.

Theorem 2.1. There are two positive constantsK1,K2 > 0 (both solely depending on the first terms of (N(fn))n≥0) such
that

N(fn) = (1 + o(1))K1 ·K
(

1+
√

5
2

)n
2

as n→∞.

Proof. For ease of notation, set An := N(fn). Then we have

An = 1 +
1

2
An−2 −

1

2
A2
n−2 +An−2 ·An−1

with initial values A0 = 1, A1 = 2. Since the sequence (An)n≥0 increases with n, it is not difficult to note that

An ≥
1

2
An−1 ·An−2

for all n ≥ 2. Also, since An ≥ A2 = 3 for all n ≥ 2 and 1 +A1/2−A2
1/2 = 0, it is not difficult to see that

An ≤ An−1 ·An−2

for all n ≥ 3. Thus, we have

lim
n→∞

An−1
An

= 0 , (2)

which also implies that the sequence (An−1/An)n≥1 is bounded for every n ≥ 1. We may then start by proceeding as
in [8, Section 2.2.3]. Let us use Qn as a shorthand for log(An) and En as a shorthand for

log
(
1 +

1

2An−1
− An−2

2An−1
+

1

An−1 ·An−2

)
. (3)

With these notations, we have

Qn = Qn−1 +Qn−2 + En .

By setting Rn−1 := Qn−2, we obtain the following system (written in matrix form) of two linear difference equations:(
Qn
Rn

)
=

(
1 1
1 0

)(
Qn−1
Rn−1

)
+

(
En
0

)
.
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By iteration on n, one gets (
Qn
Rn

)
=

(
1 1
1 0

)n−1(
Q1

Q0

)
+

n∑
i=2

(
1 1
1 0

)n−i(
Ei
0

)
for all n ≥ 2, as R1 = Q0. The eigenvalue decomposition gives us(

1 1
1 0

)
=

1

λ1 − λ2

(
λ1 λ2
1 1

)(
λ1 0
0 λ2

)(
1 −λ2
−1 λ1

)
with

λ1 =
1−
√
5

2
and λ2 =

1 +
√
5

2
.

It follows that (
1 1
1 0

)m
=

1

λ1 − λ2

(
λ1 λ2
1 1

)(
λm1 0
0 λm2

)(
1 −λ2
−1 λ1

)
=

1

λ1 − λ2

(
λm+1
1 − λm+1

2 λ1 · λm+1
2 − λm+1

1 · λ2
λm1 − λm2 λ1 · λm2 − λm1 · λ2

)
for all integer values of m. Consequently, we have(

Qn
Rn

)
=

log(2)

λ1 − λ2

(
λn1 − λn2

λn−11 − λn−12

)
+

n∑
i=2

Ei
λ1 − λ2

(
λn−i+1
1 − λn−i+1

2

λn−i1 − λn−i2

)
for all n ≥ 2 as Q0 = 0 and Q1 = log(2). Therefore, we obtain

Qn =
log(2)

λ2 − λ1
(
λn2 − λn1

)
+

1

λ2 − λ1

n∑
i=2

Ei
(
λn−i+1
2 − λn−i+1

1

)
for all n ≥ 2. Since the sequence (En)n≥2 is bounded for every n ≥ 2 (as limn→∞En = 0 by virtue of (2) and (3)), we
derive that

n∑
i=2

|Ei| · |λ1|n−i+1 ≤ |λ1|
n − |λ1|
|λ1| − 1

· sup
2≤m≤n

|Em|

for all n ≥ 2. This implies that the quantity

1

λ2 − λ1

n∑
i=2

Ei · λn−i+1
1

converges to a definite limit as n → ∞ (note that |λ1| < 1 and sup2≤m≤n |Em| is finite for every n ≥ 2). On the other
hand, we have

0 ≤
∣∣∣ ∞∑
i=n+1

Ei · λn−i+1
2

∣∣∣ ≤ λ2
λ2 − 1

· sup
m≥n+1

|Em|

for all n ≥ 2 (note that λ2 > 1), which implies that

1

λ2 − λ1

∞∑
i=n+1

Ei · λn−i+1
2 = O

(
sup

m≥n+1
|Em|

)
= o(1)

as n→∞. Putting everything together, we arrive at

Qn =
λn2

λ2 − λ1

(
log(2) +

∞∑
i=2

Ei · λ−i+1
2

)
− 1

λ2 − λ1

n∑
i=2

Ei · λn−i+1
1

+O
(

sup
m≥n+1

|Em|
)
+O(λn1 )

=
λn2

λ2 − λ1

(
log(2) +

∞∑
i=2

Ei · λ−i+1
2

)
− 1

λ2 − λ1

n∑
i=2

Ei · λn−i+1
1 + o(1)

as n→∞. We deduce that

An =
(
1 +O

(
λn1 + sup

m≥n+1
|Em|

))
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· exp

(
λn2

λ2 − λ1

(
log(2) +

∞∑
i=2

Ei · λ−i+1
2

)
− 1

λ2 − λ1

n∑
i=2

Ei · λn−i+1
1

)

= (1 + o(1)) · exp

(
λn2

λ2 − λ1

(
log(2) +

∞∑
i=2

Ei · λ−i+1
2

)
− 1

λ2 − λ1

n∑
i=2

Ei · λn−i+1
1

)

as n→∞. Denote by K2 the quantity

exp

(
1

λ2 − λ1

(
log(2) +

∞∑
i=2

Ei · λ−i+1
2

))

and by K1 the quantity

exp

(
− 1

λ2 − λ1
· lim
n→∞

(
n∑
i=2

Ei · λn−i+1
1

))
.

Thus,

An = N(fn) = (1 + o(1))K1 ·K
λn
2

2 = (1 + o(1))K1 ·K
(

1+
√

5
2

)n
2

as n→∞, where K1 and K2 can now be written as

K2 = exp

(
1√
5

(
log(2) +

∞∑
i=2

(1 +√5
2

)−i+1

· log
(
1 +

1

2N(fi−1)
− N(fi−2)

2N(fi−1)
+

1

N(fi−1) ·N(fi−2)

)))
and

K1 = exp

(
− 1√

5
· lim
n→∞

(
n∑
i=2

(1−√5
2

)n−i+1

· log
(
1 +

1

2N(fi−1)
− N(fi−2)

2N(fi−1)
+

1

N(fi−1) ·N(fi−2)

)))
.

By (numerically) evaluating K1 and K2, we obtain that the number of nonisomorphic leaf-induced subtrees of the
leaf-Fibonacci tree fn is asymptotically

1.00001887227319 · · · (1.48369689570172 . . .)
(

1+
√

5
2

)n
as n→∞. This completes the proof of the theorem.

The asymptotic formula from Theorem 2.1 can also be written in terms of the Fibonacci number Fn: indeed, the
number of leaves of fn is given by

|fn| = Fn+2 =
1√
5

((1 +√5
2

)2+n
−
(1−√5

2

)2+n)
for every n; so we deduce that

10

5 + 3
√
5
· |fn| ∼

(1 +√5
2

)n
as n→∞. This implies that

N(fn) ∼ K1 ·K
10

5+3
√

5
·|fn|

2

= 1.00001887227319 · · · (1.48369689570172 . . .)
−5+3

√
5

2 ·|fn|

as n→∞.
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