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Abstract

A possible generalization of irregular harmonic graphs is presented. Starting with the study of known properties of
traditional harmonic graphs, we introduce the notion of almost harmonic graphs including irregular harmonic graphs
as a subset. It is demonstrated on examples that the spectral radius ρ(G) of an almost harmonic graph G can be
estimated by simple formulas involving Zagreb indices. It is verified that if G is an almost regular graph with m
edges, then ρ(G) ≥ (M2/m)1/2, where M2 is the second Zagreb index of G.
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1. Introduction

In this study, we consider connected simple graphs. For a graph G, V (G) and E(G) denote the sets of vertices and
edges, respectively, in G. Denote by n and m the numbers of vertices and edges, respectively, in G. For a vertex u
in G, d(u) stands for the degree of u. By the degree set of a graph G, we mean the set of all different vertex degrees
of G. We denote by ∆ = ∆(G) and δ = δ(G) the maximum and minimum degrees, respectively, of G. An edge of G
connecting the vertices u and v is denoted by uv. By an m-edge graph, we mean a graph with m edges. For a graph
G, let {mr,s = mr,s(G) : mr,s > 0, 1 ≤ s, r ≤ ∆} be the finite set of positive integers mr,s representing the number of
edges in G with end-vertex degrees r and s. For simplicity, numbers mr,s are called the edge-parameters of G.

We use the standard terminology of graph theory, for notations not defined here we refer the reader to [3,6]. Denote
by A(G) the adjacency matrix of graph G. The largest eigenvalue ρ(G) of A(G) is called the spectral radius of G.

A graph is called R-regular if all its vertices have the same degree R. A connected graph is called irregular if
it contains at least two vertices with different degrees. Bidegreed (respectively, tridegreed) graph is an irregular
graph whose degree set contains exactly two (respectively, three) elements. A connected bipartite bidegreed graph
G is semiregular if every edge of G joins a vertex of degree δ to a vertex of degree ∆. A connected graph G is called
harmonic (pseudo-regular) [4, 13, 15, 17] if there exists a positive integer p(G) such that each vertex u of G has the
same average neighbor degree number equal to p(G). For the spectral radius of a harmonic graph G, the equality
ρ(G) = p(G) holds. From the definition, it follows that any regular graph is a harmonic graph. Irregular harmonic
graphs are called strictly harmonic graphs. It is easy to see that there exist infinitely many bipartite and non-bipartite
harmonic graphs [4, 9, 13, 15, 17]. A bipartite graph G is called pseudo-semiregular [17] if each vertex in the same
part of bipartition has the same average degree. From these definitions, it follows that any semiregular graph is a
bipartite pseudo-semiregular graph.

In this note, a possible generalization of irregular harmonic graphs is presented. Starting with the study of
known properties of traditional harmonic graphs, we introduce the notion of almost harmonic graphs containing, as
a subset, the irregular harmonic graphs. Methods are outlined for the construction of infinite sequence of almost
harmonic graphs. Additionally, it is demonstrated on examples that the spectral radius ρ(G) of an almost harmonic
graph G can be estimated by simple formulas containing Zagreb indices.

2. Some properties of strictly harmonic graphs

Let M1 = M1(G) and M2 = M2(G) be the first and second Zagreb indices of a graph G. By definition, the first Zagreb
index M1 is equal to the sum of squares of the degrees of the vertices of G, and the second Zagreb index M2 is equal

∗Corresponding author (reti.tamas@bgk.uni-obuda.hu)



to the sum of products of the degrees of pairs of adjacent vertices of the graph G [1,7,8,10–12,16,18], that is

M1 = M1(G) =
∑

u∈V (G)

(
d(u)

)2 and M2 = M2(G) =
∑

uv∈E(G)

d(u)d(v).

Lemma 2.1. [18] Let G be a connected graph and let ρ(G) be the spectral radius of G. Then

ρ(G) ≥ 2M2

M1
,

and equality holds if and only if G is regular or strictly harmonic.

Lemma 2.2. [5,14,18] Let G be a strictly harmonic m-edge graph with spectral radius ρ(G). Then

ρ(G) =
2M2

M1
=

√
M2

m
=
M1

2m
.

3. Almost harmonic graphs

Let G be a connected graph and consider the graph invariant defined as

Ω(G) =
(
M1

)2 − 4mM2 .

It is observed that Ω(G) may be positive, negative or zero. From this, it follows that connected graphs can be classified
into 3 disjoint subsets. Examples of such graphs are demonstrated in Figure 1. For graphs depicted in Figure 1, it
holds that Ω(J1) = 0, Ω(J2) = 0, Ω(J3) = 28 and Ω(J4) = −24.

J1 J2 J3 J4

Figure 1: Connected graphs characterized by their topological indices Ω(G).

A connected graph G is said to be an almost harmonic graph if Ω(G) = 0 holds. It is easy to see that J1 is a 7-vertex
strictly harmonic graph, while J2 is an 8-vertex almost harmonic graph.

Proposition 3.1. Let G be a connected m-edge graph characterized by the corresponding first and second Zagreb
indices. Then G is an almost harmonic graph if

2M2

M1
=

√
M2

m
=
M1

2m
.

Proof. From the given condition, it follows directly that Ω(G) = 0.

From Proposition 3.1 and Lemmas 2.1 and 2.2, the next result follows.

Corollary 3.1. For an almost harmonic graph G, it holds that

ρ(G) ≥ 2M2

M1
=

√
M2

m
=
M1

2m

with equality if G is strictly harmonic graph.

It can be concluded that strictly harmonic graphs represent a subset of the set of almost harmonic graphs.
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4. Estimation of spectral radius

In what follows, it will be demonstrated that the topological index

Λ(G) =

√
M2

m

can be considered as a very good estimate (lower bound) of the spectral radius of almost harmonic graphs. According
to our observations based on computational results, for almost harmonic graphs the difference ε = ρ(G) − Λ(G) is
considerably small.

Lemma 4.1. Let G(∆, δ) be a connected bidegreed m-edge graph, for which mδ,δ = m∆,∆ = m/4 is fulfilled. Then,
G(∆, δ) is an almost harmonic graph.

Proof. Because mδ,∆ = m− (mδ,δ +m∆,∆) = m
2 , this implies that

M1 = 2δmδ,δ + (δ + ∆)mδ,∆ + 2∆m∆,∆ = (δ + ∆)m

and
M2 = δ2mδ,δ + ∆δmδ,∆ + ∆2m∆,∆ =

m

4
(∆ + δ)2.

After performing simple computations, we obtain Ω(G(∆, δ)) = M2
1 − 4mM2 = 0.

Example 4.1. Consider the non-isomorphic, bidegreed graphs shown in Figure 2. It is easy to see that polyhedral
graphs Ga, Gb and Gc are characterized by several identical topological parameters: n = 7, m = 12, M1 = 84 and
M2 = 147. Because for edge-parameters the equality m3,3 = m4,4 = m/4 = 3 holds, from Lemma 4.1 it follows that
these graphs are almost harmonic and Λ(Ga) = Λ(Gb) = Λ(Gc) = 7/2 is fulfilled for them. The corresponding spectral
radii are: ρ(Ga) = 3.514137, ρ(Gb) = 3.507903 and ρ(Gc) = 3.503224. As we can conclude, the values of corresponding
spectral radii are very close to the parameter Λ = 3.5.

Ga Gb Gc

Figure 2: Almost harmonic polyhedral graphs.

Remark 4.1. It should be noted that Λ(G) is a good estimate (approximation) of spectral radius not only for almost
harmonic graphs, but also for several connected graphs differing from almost harmonic graphs. Recently, It has been
proved [2,5] that there exists a broad class of connected graphs (the so-called Z2 graphs) including harmonic, semireg-
ular, pseudo-semiregular graphs, for which the equality ρ(G) = Λ(G) holds.

Lemma 4.2. Let G(∆, δ) be a connected bidegreed graph with m edges, such that the equality

mδ,∆

m
=
m∆,∆

m
=

4

9

holds. Then, G(∆, δ) is an almost harmonic graph.

Proof. It suffices to verify that
M2

1 − 4mM2 = (∆− δ)2(9m∆,∆ − 4m)m∆,∆.

Because mδ,∆ = m∆,∆, this implies that mδ,δ = m− 2m∆,∆. Consequently,

M1 = 2δmδ,δ + (δ + ∆)mδ,∆ + 2∆m∆,∆ = 2mδ + 3(∆− δ)m∆,∆

and
M2 = δ2mδ,δ + ∆δmδ,∆ + ∆2m∆,∆ = mδ2 + (∆2 + ∆δ − 2δ2)m∆,∆.
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Moreover, because
M2

1 = 4δ2m2 + 12δm(∆− δ)m∆,∆ + 9(∆− δ)2m2
∆,∆

and
4mM2 = 4m2δ2 + 4m(∆2 + ∆δ − 2δ2)m∆,∆,

we have
Ω(G) = M2

1 − 4mM2 = (∆− δ)2(9m∆∆ − 4m)m∆,∆.

Analogously to Lemma 4.2, the following result can be obtained.

Lemma 4.3. Let G(∆, δ) be a connected bidegreed graph with m edges, for which the equality

mδ,∆

m
=
mδ,δ

m
=

4

9

holds. Then, G(∆, δ) is an almost harmonic graph.

Figure 3: Almost harmonic bicyclic graph B8.

Example 4.2. Consider the 8-vertex and 9-edge graph B8 depicted in Figure 3. The spectral radius of the graph B8 is
ρ(B8) = 2.3429. Because for the 9-edge graphB8, the equalitym2,3/m = m2,2/m = 4/9 holds, from Lemma 4.3 it follows
that B8 is an almost harmonic graph with Λ(B8) = 7/3 = 2.3333. It can be seen that the difference ε = ρ(B8)− Λ(B8)

is considerably small.

Proposition 4.1. There exist infinitely many almost harmonic trees satisfying Λ = 2.

n−6︷ ︸︸ ︷
Figure 4: An infinite sequence of almost harmonic trees Tn.

Proof. In Figure 4, a tree Tn with n ≥ 8 vertices is depicted. For this infinite sequence of trees Tn with degree set
{1, 2, 3} one obtains that m1,2 = 3, m2,2 = n− 7, m2,3 = 3, m = n− 1 and M1 = M2 = 4(n− 1). It is easy to see that if
n ≥ 8 then Tn are almost harmonic graphs characterized by the following relationship:

Λ(Tn) =
M1

2m
=

√
M2

m
=

2M2

M1
= 2 < ρ(Tn).

Example 4.3. For the 8-vertex tree T 8 (see Figure 4), it holds that m1,2 = 3, m2,2 = 1, m2,3 = 3 and M1 = M2 = 28.
Consequently, we have ρ(T 8) = 2.02852 > 2 = Λ(T 8).

Proposition 4.2. There exist infinitely many almost harmonic cyclic graphs with identical Λ parameter.

1 2 q − 1 q

Figure 5: Bidegreed almost harmonic graph G(q) where q is an arbitrary positive integer.
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Proof. Consider the infinite sequence of connected bidegreed graphs G(q) depicted in Figure 5 with degree set {2, 3},
where q is an arbitrary positive integer. These planar graphs G(q) contain q triangles, q quadrilaterals, and one 4q-
gon. It is easy to see that for these graphs n = 7q, m = 9q, m2,2 = q, m2,3 = 4q, m3,3 = 4q, M1 = 48q and M2 = 64q are
fulfilled. Because m2,3/m = m3,3/m = 4/9, from Lemma 4.2, it follows that graphs G(q) are almost harmonic with
identical parameter Λ(G(q)) = 8/3.

Proposition 4.3. There exist infinitely many almost harmonic tridegreed graphs having identical Λ parameter, where
Λ is a positive integer.

Figure 6: Planar almost harmonic graph H(k) where k ≥ 2 is an arbitrary positive integer.

Proof. Consider the infinite sequence of connected tridegreed graphsH(k) shown in Figure 6, with degree set {3, 4, 6},
where k ≥ 2 is an arbitrary positive integer. These planar graphs contain only triangles and quadrilaterals. It is easy
to check that the graphs H(k) are not strictly harmonic, but they are almost harmonic. For these graphs n = 6k + 2,
m = 2n − 1, m3,4 = 12, m4,4 = 2n − 19, m4,6 = 6, M1 = 16n − 8 and M2 = 32n − 16 are fulfilled. This implies that
Ω(H(k)) = M2

1 − 4mM2 = 0, and consequently Λ(H(k)) = 4.
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[2] H. Abdo, D. Dimitrov, T. Réti, D. Stevanović, Estimation of the Spectral radius of Graphs by the Second Zagreb Index, MATCH Commun.

Math. Comput. Chem. 72 (2014) 741–751.
[3] J. A. Bondy, U.S.R. Murty, Graph Theory with Applications, Esevier, New York, 1976.
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