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Abstract

A pseudo walk matrix associated with a graph G having adjacency matrix A is a matrix with columns v,Av,A2v, . . . ,
Ar−1v (for a specific r) where the Gram matrix of these columns contains particular walk enumerations in G. For
any subset S of the Cartesian product of the vertex set V(G) with itself, we consider the total number of walks
N0(S), N1(S), N2(S), . . . of length 0, 1, 2, . . . in G that start from vertex i and end at vertex j for all (i, j) ∈ S. We
present a method that, given such a set S, produces a walk vector v (with possibly complex entries) such that the
Gram matrix of the columns of the pseudo walk matrix resulting from this walk vector is the Hankel matrix whose
skew diagonals contain the values N0(S), . . . , N2r−2(S). Various results on such pseudo walk matrices are derived,
particularly on closed pseudo walk matrices whose set S contains only the pairs (v, v) for all v ∈ V(G). Moreover, a
result akin to the classic Harary-Sachs coefficient theorem in chemical graph theory that computes any coefficient of
the characteristic polynomial of the companion matrix of a pseudo walk matrix is conveyed.
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1. Introduction

Let G be a simple graph on n vertices, having vertex set V(G) and adjacency matrix A. The eigenvalues and eigen-
vectors of G are those of A, where each eigenvalue λ of G satisfies Ax = λx for some nonzero eigenvector x in the
eigenspace of λ. Since A is a real and symmetric matrix, there exists an orthonormal set of n eigenvectors {x1, . . . ,xn}
of A. Thus A = XΛXT, where X is an orthogonal matrix whose columns are x1,x2, . . . ,xn, XT is its transpose, and Λ

is the diagonal matrix whose main diagonal entries are the (possibly not distinct) eigenvalues λ1, λ2, . . . , λn.
We denote the entry in the ith row and jth column of any matrix M by [M]ij ; similarly, we denote the kth entry of

a vector v by [v]k. We remark that [M]ij = eT
i Mej , where ek is the kth column of the identity matrix I; analogously,

[v]k = eT
kv. If M is a square matrix, then |M| denotes its determinant. A Hankel matrix is a square matrix with

constant skew diagonal entries. The entries of the vector j are all equal to 1.
A walk of length ` in G, starting from u ∈ V(G) and ending at v ∈ V(G), is a sequence of ` edges e1, e2, . . . , e` such

that e1 is incident to u, e` is incident to v and the two edges ej , ej+1 share a vertex for all j = 1, 2, . . . , `− 1. Note that
neither these edges nor the vertices u and v need to be distinct. If u = v, then the walk is closed.

Let S be any subset of the set V2 = V(G) × V(G). For any non-negative integer k, we focus our attention on the
walks of length k in G that start from vertex u and end at vertex v for all pairs (u, v) in S. We denote the total number
of all such walks by Nk(S). It is well–known [1,3] that

Nk(S) =
∑

(u,v)∈S

[
Ak
]
uv
. (1)

In the literature, the walk matrix W associated with a graphG is either the n×nmatrix
(
j Aj A2j · · · An−1j

)
[4,7,8] or the n×rmatrix

(
j Aj A2j · · · Ar−1j

)
where r is the smallest value for this matrix to attain its maximum

column rank [2, 12]. Here, we shall adopt the second definition of a walk matrix, that is, the one having r columns.
Note that the matrix

(
j Aj A2j · · · Ap−1j

)
has rank r for all p ≥ r and has rank p for all 1 ≤ p ≤ r [12,13]. It is

known that r is the number of main eigenvalues of G, that is, the number of eigenvalues of G having an eigenvector
in their eigenspace whose entries sum up to a nonzero number [9]. Moreover, G is a regular graph if and only if
r = 1 [13], while G is a controllable graph if and only if r = n [4,8]. By (1), the entry [W]ij is equal to Nj−1(Si), where
Si = {(i, k) | k ∈ V(G)}.
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The matrix WTW, that is, the Gram matrix of the columns of W, is a positive semidefinite Hankel matrix where[
WTW

]
ij

is equal to Ni+j−2(V2) for all i, j. Note that the previous sentence is true irrespective of the number of

columns of W. It is well–known that W and WTW have the same rank [11]; thus, WTW is an r × r invertible (and,
hence, positive definite) matrix. In this sense, we can say that the vector j is a walk vector for V2, because an n × r
walk matrix W having the r linearly independent columns j,Aj, . . . ,Ar−1j produces a Hankel matrix WTW containing
the walk enumerations N0(V2), N1(V2), . . . , N2r−2(V2) on its (2r − 1) skew diagonals.

The purpose of this paper is to obtain walk vectors for any S ⊆ V2. In other words, given a subset S of V2, we produce
a vector v such that the Gram matrix of the columns of Wv =

(
v Av A2v · · · Ar−1v

)
, where r is the least value

that maximizes the rank of Wv, is a Hankel matrix containing the walk enumerations N0(S), N1(S), . . . , N2r−2(S) on
its skew diagonals. We shall show, in Theorem 3.1, that this is possible for any S; indeed, different suitable walk
vectors associated with a given set S usually exist. Unfortunately, often v does not end up being a 0–1 vector, in which
case, the matrix Wv itself would not contain walk enumerations, even though WT

vWv would. If this is the case, then
we call Wv a pseudo walk matrix associated with S.

The following definition summarizes the terminology introduced thus far.

Definition 1.1. A pseudo walk matrix Wv associated with S ⊆ V2 is a matrix of the form
(
v Av A2v · · · Ar−1v

)
such that r is the smallest value for which the rank of Wv is maximum and, for all i and j,[

WT
vWv

]
ij
= Ni+j−2(S).

The vector v in the previous sentence is a walk vector associated with S. If v is a 0–1 vector, then Wv may be simply
called a walk matrix associated with S.

Thus, the walk matrix associated with the entire set V2, which is the walk matrix usually alluded to in the litera-
ture, is represented in this work by Wj.

2. Useful results

Before proving our main result in Theorem 3.1 that pseudo walk matrices exist for any set S ⊆ V2, we first present
some results on pseudo walk matrices that are analogous to those for walk matrices found in the literature.

We mentioned earlier that the rank of the walk matrix Wj (and hence, its number of columns) is equal to the
number of main eigenvalues of G [9]. We have an analogous result for pseudo walk matrices Wv in Theorem 2.1
below. This result also tells us that if we manage to obtain a suitable pseudo walk matrix Wv for the set S ⊆ V2, then
it has the same rank as any other suitable one that uses a walk vector different from v.

Theorem 2.1. The number of columns r of any pseudo walk matrix Wv =
(
v Av A2v · · · Ar−1v

)
associated with

S ⊆ V2 (so that any further columns Ar,Ar+1, . . . would not increase its rank) is equal to the number of eigenvalues of
G having an eigenvector not orthogonal to v. Moreover, if v1 and v2 are two distinct walk vectors associated with S,
then Wv1

and Wv2
have the same rank.

Proof. We assume that if a particular eigenvalue λ ofG is repeated t times, then we choose its eigenvectors xi, . . . ,xi+t−1

so that at least (t − 1) of them are orthogonal to v. (If xi and xi+1 are both not orthogonal to v, then replace one of
them by (vTxi)xi+1 − (vTxi+1)xi, and repeat until at least (t − 1) of xi, . . . ,xi+t−1 are orthogonal to v.) Since the
columns of X span Rn, we may express v as

∑n
j=1 vjxj for constants v1, . . . , vn; moreover, vj = vTxj for all j, since

the columns of X are mutually orthogonal. This means that Akv =
∑n

j=1(vTxj)λj
kxj for any non–negative integer k.

Hence
Akv =

(
x1 x2 · · · xn

) (
(vTx1)λ1

k (vTx2)λ2
k · · · (vTxn)λn

k
)T
.

Consider the n×n matrix W′v =
(
v Av A2v · · ·An−1v

)
, which has the same rank as the pseudo walk matrix Wv.

We have:

W′v =
(
x1 x2 · · · xn

)

(vTx1) (vTx1)λ1 · · · (vTx1)λ1

n−1

(vTx2) (vTx2)λ2 · · · (vTx2)λ2
n−1

...
...

...
(vTxn) (vTxn)λn · · · (vTxn)λn

n−1

 . (2)

Since
(
x1 x2 · · · xn

)
has full rank, the rank of W′v is equal to the rank of the matrix

M =


(vTx1) (vTx1)λ1 · · · (vTx1)λ1

n−1

(vTx2) (vTx2)λ2 · · · (vTx2)λ2
n−1

...
...

...
(vTxn) (vTxn)λn · · · (vTxn)λn

n−1

 .
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Let r be the number of eigenvalues of G that have an eigenvector not orthogonal to v. Then M has exactly r nonzero
rows, and consequently, the rank of M is at most equal to r. We now show that the rank of M is exactly r. Let M′ be
the r × r submatrix obtained from M by removing its zero rows and its last (n− r) columns, so that

M′ =


(vTy1) (vTy1)µ1 · · · (vTy1)µ

r−1
1

(vTy2) (vTy2)µ2 · · · (vTy2)µ
r−1
2

...
...

...
(vTyr) (vTyp)µr · · · (vTyr)µ

r−1
p


where y1, . . . ,yr are the r eigenvectors of A that are not orthogonal to v and that are associated with the eigenval-
ues µ1, . . . , µr respectively. Note that µ1, . . . , µr are distinct, since we have ensured that only one eigenvector in the
eigenbasis of µi is not orthogonal to v. The determinant of M′ is

(
r∏

i=1

(vTyi)

)∣∣∣∣∣∣∣∣∣
1 µ1 · · · µr−1

1

1 µ2 · · · µr−1
2

...
...

...
1 µr · · · µr−1

r

∣∣∣∣∣∣∣∣∣ .
But the above determinant is that of a Vandermonde matrix, which is known to be nonzero if and only if the eigenvalues
µ1, . . . , µr are distinct [11, p. 37]. Since vTyi 6= 0 for all i ∈ {1, 2, . . . , r} as well,

∣∣M′∣∣ is nonzero. Consequently, the
order of the largest non–vanishing minor of M is r, which means that the (determinantal) rank of W′v is r. Thus, Wv

must have r columns.
Finally, suppose Wv1

and Wv2
are both pseudo walk matrices for the set S, and the former has r1 columns while the

latter has r2 columns, where r1 ≤ r2. Recall that r1 is the smallest number of columns such that Wv1
has maximum

rank; an analogous statement can be said for r2 and Wv2 . Then H1 = WT
v1

Wv1 has rank r1 and H2 = WT
v2

Wv2 has rank
r2. But the upper left r1×r1 submatrix of H2 is H1, since Wv1 and Wv2 are both pseudo walk matrices associated with
S. Moreover, H1 and H2 are both invertible. This means that Wv1

must have r2 columns, so r1 = r2, as required.

The following two corollaries are immediate.

Corollary 2.1. For any S ⊆ V2, the number of distinct eigenvalues of G is an upper bound for the number of columns
of any pseudo walk matrix associated with S.

Proof. By Theorem 2.1, the number of columns of Wv is the number of eigenvalues of G having an eigenvector not
orthogonal to v. This number is the maximum possible whenever each and every distinct eigenvalue of G has such
an eigenvector in its eigenspace.

We conclude, from Corollary 2.1, that if any pseudo walk matrix has rank n, then G has n distinct eigenvalues.
Moreover, we shall show in Theorem 4.2 that the upper bound mentioned in Corollary 2.1 is always attained by a
particular pseudo walk matrix for all graphs G.

Powers and Sulaiman in [12] describe the companion matrix Cj as being the r×r matrix satisfying AWj = WjCj. It
is clear that the first (r−1) columns of Cj must be e2, . . . ,er. On the other hand, the last column c satisfies Arj = Wjc,
from which we obtain c =

(
WT

j Wj
)−1

Arj [5]. Note also that the characteristic polynomial of Cj is xr − cr−1xr−1 −

cr−2x
r−2 − · · · − c0, where

(
c0 c1 · · · cr−1

)T
= c — this can be derived simply by employing the usual Laplace

determinant expansion along the last column of xI − Cj. A much more important result is that this characteristic
polynomial is

∏
(x− λk), where the product runs over the main eigenvalues λk of G [12, Theorem 4].

All of these results carry over for pseudo walk matrices in a natural way, by replacing the vector j with v in their
respective proofs.

Theorem 2.2. The companion matrix Cv of the pseudo walk matrix Wv satisfying AWv = WvCv is the r × r matrix(
e2 e3 · · · er cv

)
, where the column cv =

(
c0 c1 · · · cr−1

)T
=
(
WT

vWv
)−1

Arv. Moreover, the characteristic
polynomial of Cv is xr − cr−1x

r−1 − cr−2x
r−2 − · · · − c0, which is equal to the product

∏
(x − λk) running over the

eigenvalues λk of G that have an eigenvector not orthogonal to v.

An immediate corollary of Theorem 2.2 is the following.

Corollary 2.2. The characteristic polynomial of the companion matrix of any pseudo walk matrix divides the minimal
polynomial of G.
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In this paper, we contribute a Cramer–like rule to produce the coefficients of the characteristic polynomial of Cv

from the 2r walk enumerations N0(S), N1(S), . . . , N2r−1(S).

Theorem 2.3. The coefficient of xk of the characteristic polynomial of Cv is (−1)r−k |N||H| , where H = WT
vWv and N is

the matrix whose first k columns are those of H and whose last r − k columns are those of H′ = WT
vAWv.

Proof. We start from the relation WT
v (xI−A)Wv = WT

vWv(xI−Cv), from which we get

|xI−Cv| =
1

|H|
∣∣xH−H′

∣∣ .
We note that H is the Hankel matrix whose columns are w0,w1, . . . ,wr−1, where

wi =
(
Ni(S) Ni+1(S) · · · Ni+r−1(S)

)T
for all i. Moreover, the columns of the Hankel matrix H′ are w1,w2, . . . ,wr. Thus

xH−H′ =
(
xw0 −w1 xw1 −w2 · · · xwr−1 −wr

)
.

By the multilinearity property of the determinant,∣∣xH−H′
∣∣ = x

∣∣w0 xw1 −w2 · · · xwr−1 −wr

∣∣− ∣∣w1 xw1 −w2 · · · xwr−1 −wr

∣∣ . (3)

The second determinant of (3) becomes∣∣w1 w1 xw2 −w3 · · · xwr−1 −wr

∣∣− ∣∣w1 w2 xw2 −w3 · · · xwr−1 −wr

∣∣ (4)

so the first determinant in (4) vanishes. By expanding it further in this fashion, the second determinant of (3) is
equal to (−1)r

∣∣w1 w2 · · · wr

∣∣.
In a similar way, the first determinant of (3) expands to

xr
∣∣w0 w1 · · · wr−1

∣∣− xr−1 ∣∣w0 w1 · · · wr−2 wr

∣∣
+ xr−2

∣∣w0 w1 · · · wr−3 wr−1 wr

∣∣− · · ·+ (−1)r−1x
∣∣w0 w2 w3 · · · wr

∣∣ .
This proves the result.

We note that if v = j, then Theorem 2.3 above yields the coefficients of the main characteristic polynomial [2],
that is, the polynomial

∏p
k=1(x− µk) where µ1, . . . , µp are the p main eigenvalues of G (this polynomial is denoted by

mG(x) in [13]). Furthermore, the result in Theorem 2.3 is similar in nature to the classical Harary-Sachs coefficient
theorem [10, 14] that determines each coefficient of the characteristic polynomial of any graph from its so–called
elementary and basic figures. In Theorem 2.3, we are obtaining each coefficient of the characteristic polynomial of Cv

from the 2r walk enumerations N0(S), N1(S), . . . , N2r−1(S).

3. Main result

We now come to the main result of this paper, in which, given S ⊆ V2, a walk vector v and, consequently, a suitable
pseudo walk matrix Wv, are produced such that the Gram matrix of the columns of Wv has the walk enumerations
N0(S), N1(S), . . . , N2r−2(S) on its skew diagonals.

As we did in the proof of Theorem 2.1, we may express eu and ev as
∑n

j=1(eT
uxj)xj and

∑n
j=1(eT

vxj)xj respectively.
Hence

eT
uAkev =

 n∑
j=1

(eT
uxj)xT

j

(XΛkXT
) n∑

j=1

(eT
vxj)xj


=

 n∑
j=1

[xj ]u (x
T
j X)

Λk

 n∑
j=1

[xj ]v (X
Txj)


=

 n∑
j=1

[xj ]u eT
j

Λk

 n∑
j=1

[xj ]v ej


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=
(
[x1]u [x2]u · · · [xn]u

)

λ1

k 0 · · · 0

0 λ2
k

...
... . . . 0

0 · · · 0 λn
k



[x1]v
[x2]v

...
[xn]v

 .

[
Ak
]
uv

=

n∑
j=1

[xj ]u [xj ]v λj
k. (5)

Consequently, by combining (1) and (5), and recalling that xj is the jth column of X for all j, the number of walks of
length k starting from vertex u and ending at vertex v within all possible pairs (u, v) in S is

Nk(S) =
∑

(u,v)∈S

 n∑
j=1

[X]uj [X]vjλj
k

 =

n∑
j=1

 ∑
(u,v)∈S

[X]uj [X]vj

λj
k. (6)

Now suppose Wv is a pseudo walk matrix for S with walk vector v. Then each entry of WT
vWv is of the form vTAkv

for some appropriate value of k. Since we may also write down v as
∑n

j=1(vTxj)xj , we may repeat what we did in (5)
above, after replacing both eu and ev with v, to obtain

vTAkv =

n∑
j=1

(vTxj)
2λj

k. (7)

Hence, by comparing (6) and (7), our choice of the walk vector v will yield the desired results if we force (vTxj)
2 to be

equal to
∑

(u,v)∈S [X]uj [X]vj for all j = 1, 2, . . . , n. Thus, let

dj = ±(vTxj) = ±

 ∑
(u,v)∈S

[X]uj [X]vj

1/2

, j ∈ {1, 2, . . . , n}

where the choice of sign is arbitrary for all j. Note that, for any j, if dj 6= 0, then it is either real or purely imaginary.
We now form the vector d =

(
d1 d2 · · · dn

)T; we have up to 2n different options for d, depending on our choice of
sign for each of its entries.

But since v =
∑n

j=1(vTxj)xj , we have

XTv =

n∑
j=1

(vTxj)(XTxj) =

n∑
j=1

djej = d.

Consequently, v = Xd, and we obtain the main result of this paper.

Theorem 3.1. Let S be any subset of V2. Then v is a walk vector associated with S if v = Xd, where X is an orthogonal
matrix whose columns are n orthonormal eigenvectors of G associated with its n (possibly not distinct) eigenvalues and
d is any column vector where, for k = 1, 2, . . . , n, [d]k = ±

√∑
(u,v)∈S [X]uk[X]vk.

Thus, by Theorem 3.1, possible walk vectors for S may be found using just X, an n × n matrix of orthonormal
eigenvectors of G. Moreover, if d contains at least one purely imaginary entry, then v may contain complex entries,
and hence, so would the pseudo walk matrix Wv associated with S.

If we have two disjoint subsets S1 and S2 of V2, then a simple application of Theorem 3.1 yields the walk vector for
S1 ∪ S2 from those of S1 and S2, which is the next corollary.

Corollary 3.1. Let S1 and S2 be two disjoint subsets of V2, having walk vectors v1 and v2 respectively. Then a suitable
walk vector for S1 ∪ S2 is Xd, where, for all i, [d]i satisfies

[d]i2 =
[
XTv1

]
i

2

+
[
XTv2

]
i

2

.

Recall that any pseudo walk matrix is a walk matrix if and only if its walk vector is a 0–1 vector. Such a 0–1 walk
vector is clearly the walk matrix associated with V × V where V is some subset of V(G). Thus, if S 6= V × V for some
V ⊆ V(G), then every walk vector associated with S produces a pseudo walk matrix that is not a walk matrix.
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4. Closed pseudo walk matrices

A closed pseudo walk matrix is any pseudo walk matrix associated with the set C = {(v, v) | v ∈ V(G)}. The Gram
matrix of the columns of any closed pseudo walk matrix contains the number of all closed walks of length 0, 1, 2, . . . , 2s−
2 in G. Walk vectors associated with closed pseudo walk matrices have a special form.

Theorem 4.1. Any one of the 2n vectors ±x1±x2±· · ·±xn is a walk vector for closed pseudo walk matrices associated
with C.

Proof. By Theorem 3.1, the walk vector v associated with C is Xd, where

[d]i = ±
√

[X]i1
2
+ · · ·+ [X]in

2

for all i. The result follows since X is orthogonal, and hence d ends up being the vector
(
±1 ±1 · · · ±1

)T.

Closed pseudo walk matrices have the maximum number of columns allowed by Theorem 2.1.

Theorem 4.2. The number of columns of any closed pseudo walk matrix is equal to s, the number of distinct eigenvalues
of G.

Proof. By Theorem 4.1, a suitable walk vector for any closed pseudo walk matrix is v = Xj. Since xT
i Xj = eT

i j = 1 6= 0

for all i, all eigenvalues of A have an eigenvector that is not orthogonal to Xj. By Theorem 2.1, any closed pseudo walk
matrix must have as many columns as the number of distinct eigenvalues of G.

Note that closed pseudo walk matrices may not be the only pseudo walk matrices that have the maximum rank s.
Theorem 4.2 is simply assuring us that we have at least one n× s pseudo walk matrix at our disposal.

Corollary 4.1. Any pseudo walk matrix has at most as many columns as any closed pseudo walk matrix.

Proof. Immediate by combining Theorem 2.1 and Theorem 4.2.

We also have the following interesting result as a direct consequence of Corollary 2.2 and Theorem 4.2.

Theorem 4.3. The characteristic polynomial of the companion matrix of any closed pseudo walk matrix is the minimal
polynomial of G.

The coefficients of the minimal polynomial of G may thus be calculated by Theorem 2.3.

Theorem 4.4. The coefficient of xk of the minimal polynomial of G, having s distinct eigenvalues, is (−1)r−k |N||H| , where

H =


N0(C) N1(C) · · · Ns−1(C)
N1(C) N2(C) · · · Ns(C)

...
...

...
Ns−1(C) Ns(C) · · · N2s−2(C)

 , H′ =


N1(C) N2(C) · · · Ns(C)
N2(C) N3(C) · · · Ns+1(C)

...
...

...
Ns(C) Ns+1(C) · · · N2s−1(C)


and N is the matrix whose first k columns are those of H and whose last r − k columns are those of H′.

Note that, by Theorem 4.2, the number of distinct eigenvalues of G is the size of the largest nonsingular Hankel
matrix H described in Theorem 4.4. This is the case since any closed pseudo walk matrix Wv, where v is any vector
presented in Theorem 4.1, has the same rank as H = WT

vWv.
Furthermore, if G has n distinct eigenvalues, then Theorem 4.4 computes the characteristic polynomial of G, and

hence is an alternative to the Harary-Sachs coefficient theorem. Almost all graphs have a trivial automorphism
group [6]; moreover, such graphs must have n distinct eigenvalues [12]. Thus, almost all graphs may utilize Theorem
4.4 to evaluate coefficients of their characteristic polynomial.

A strongly regular graph with parameters (n, ρ, σ, τ) is a regular graph of degree ρ ∈ {1, 2, . . . , n− 2} in which any
two adjacent vertices have σ common neighbours and any two non–adjacent vertices have τ common neighbours. A
graph is strongly regular if and only if it has exactly 3 distinct eigenvalues [15]; moreover, the parameters ρ, σ and τ
may be derived from these 3 eigenvalues. By Theorem 4.2, any closed pseudo walk matrix of a graph G has 3 columns
if and only if G is a strongly regular graph. Moreover, by Theorem 4.4, the three distinct eigenvalues of any strongly
regular graph (and hence, its 4 parameters) may be determined from the number of closed walks of length up to five
within the graph.
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5. Examples

Consider the graph G depicted below (right). The six distinct eigenvalues of G are {3.223, 1, 0.112,−1,−1.527,−1.809}.
An orthogonal matrix of orthonormal eigenvectors associated with these eigenvalues is the one displayed underneath
(left):

X =


0.3 −0.5 −0.483 0.5 0.131 −0.4

0.566 0 −0.185 0 −0.683 0.424
0.3 0.5 −0.483 −0.5 0.131 −0.4
0.424 0 0.683 0 −0.185 −0.566
0.4 −0.5 0.131 −0.5 0.483 0.3
0.4 0.5 0.131 0.5 0.483 0.3


Let us first determine a pseudo walk matrix Wv1

such that the Gram matrix of the columns of Wv1
contains the

number of walks in G starting from vertex 1 and ending at vertex 2. The set S1 under consideration is simply {(1, 2)}.
By Theorem 3.1, a suitable walk vector v1 is determined by first constructing the vector d1, whose entries may be taken
to be, respectively:

√
0.3× 0.566 = 0.412,

√
−0.5× 0 = 0,

√
−0.483×−0.185 = 0.299,

√
0.5× 0 = 0,

√
0.131×−0.683 =

0.412i,
√
−0.4× 0.424 = 0.299i. Then the walk vector v1 is simply Xd1, which is equal to

v1 =
(
−0.021− 0.126i 0.178− 0.029i −0.021− 0.126i 0.379− 0.289i 0.204 + 0.268i 0.204 + 0.268i

)T
.

This walk vector produces the following pseudo walk matrix of rank 4, having complex entries:

Wv1
=


−0.021− 0.126i 0.382 + 0.238i 1.281− 0.448i 4.133 + 0.836i
0.178− 0.029i 0.745− 0.004i 2.420 + 0.096i 7.802− 0.307i
−0.021− 0.126i 0.382 + 0.238i 1.281− 0.448i 4.133 + 0.836i
0.379− 0.289i 0.586 + 0.506i 1.816− 0.891i 5.845 + 1.576i
0.204 + 0.268i 0.536− 0.444i 1.712 + 0.740i 5.517− 1.244i
0.204 + 0.268i 0.536− 0.444i 1.712 + 0.740i 5.517− 1.244i

 .

The Gram matrix of the columns of Wv1
is 

0 1 1 7
1 1 7 16
1 7 16 63
7 16 63 183

 .

The entry in the ith row and jth column of this matrix is the number of walks of length i+ j − 2 starting from vertex
1 and ending at vertex 2 in G, as can be directly verified.

Let us now obtain a pseudo walk matrix Wv2 for the set S2 = {(1, 1), (2, 2)}. This time, the Gram matrix of the
columns of Wv2

contains the number of closed walks starting and ending at vertex 1 or 2. By applying Theorem 3.1
again, this time on this set, vector d2 may be taken to be

(
0.64 0.583 0.695 0.5 0.5 0.517

)T, by taking the positive
square root for all relevant numbers. Thus, a suitable walk vector is

v2 = Xd2 =
(
−0.2 0.04 −0.2 0.166 0.334 1.334

)T
.

This walk vector results in the pseudo walk matrix Wv2
of rank 6. The Gram matrix of the columns of Wv2

is a Hankel
matrix with first row

(
2 0 7 10 51 132

)
and last row

(
132 478 1450 4826 15288 49727

)
. The entries of

these two rows can be confirmed to be the number of closed walks of length 0, . . . , 5 and of length 5, . . . , 10 starting
and ending at vertex 1 or 2 respectively.

We now determine a walk vector for the set S = {(1, 1), (1, 2), (2, 1), (2, 2)}. Clearly S = S1 ∪S2 ∪{(2, 1)}. Moreover,
v1 may be taken to be a walk vector associated with the set {(2, 1)} as well. Thus, by Corollary 3.1, a suitable walk
vector for S would be Xd, where, for all i, the ith entry of d is the positive or negative square root of[

XTv1

]2
i
+
[
XTv1

]2
i
+
[
XTv2

]2
i
.

If we take the positive square root for all 6 entries of d, then we obtain the walk vector

v =
(
0 0 0 0.707 0.207 1.207

)T
.

However, if we take the positive square root for the first, second and fourth entries for d, while we take the negative
square root for the other entries, then we obtain the alternative walk vector v′ =

(
1 1 0 0 0 0

)T, which, of
course, is an obvious choice for S.

By Theorem 4.1, one walk vector for a closed pseudo walk matrix associated with C = {(v, v) | v ∈ {1, 2, 3, 4, 5, 6}} is
the sum of the columns of X, that is,

(
−0.452 0.122 −0.452 0.355 0.313 2.313

)T. This results in a closed pseudo
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walk matrix of rank 6, confirming Theorem 4.2. The Gram matrix H of the columns of this closed walk matrix has first
row

(
6 0 18 24 126 320

)
and last row

(
320 1170 3528 11782 37248 121298

)
, which can be verified as being

the number of all closed walks of length 0, . . . , 5 and of length 5, . . . , 10 in G respectively. Furthermore, by applying
Theorem 4.4, the coefficients of the minimal polynomial of G, in descending powers of x, are 1, 0,−9,−8, 9, 8 and −1.
Since all eigenvalues of G are distinct, these are actually the coefficients of the characteristic polynomial of G, as can
be verified by inspection.
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[4] D. Cvetković, P. Rowlinson, Z. Stanić, M. G. Yoon, Controllable graphs, Bull. Acad. Serbe Sci. Arts. Classe Sci. Math. Natur. Sci. Math. 143(36)

(2011) 81–88.
[5] M. Debono, Threshold Graphs as Models of Real-World Networks, Master’s thesis, University of Malta, 2012.
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